Tag Archives: Encryption

image_pdfimage_print

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

Digital representation of Ivanti Zero-Day Flaws threatening cybersecurity in a futuristic cityscape

Ivanti Patches Two Critical Zero-Day Vulnerabilities, One Under Active Attack

Ivanti, a leader in endpoint and network management solutions, has patched two critical zero-day vulnerabilities, one of which was actively exploited by cybercriminals. Learn more about these vulnerabilities and how to protect your organization.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

This sentence is under a slider that shows similar topics on the zero day.

The Ivanti zero-day flaws, written by Jacques Gascuel, inventor of cybersecurity solutions, of cyber-safety of sensitive data and of counter-espionage, deal with the subject of the Ivanti Zero Day 2024 vulnerabilities.

What are Zero-Day Flaws and Why are They Dangerous?

A zero-day flaw is a previously unknown vulnerability in software that hackers can exploit before the vendor becomes aware and devises a patch. These vulnerabilities are particularly perilous because there is no existing defense against their exploitation. Cybercriminals can use zero-day flaws to launch sophisticated cyberattacks, leading to unauthorized data access, system damage, and widespread security breaches.

Ivanti’s Two Zero-Day Vulnerabilities: CVE-2024-21888 and CVE-2024-21893

Ivanti’s announcement highlights two specific vulnerabilities:

  • CVE-2024-21888: This is a critical privilege escalation vulnerability found in the web components of Ivanti Connect Secure and Policy Secure (versions 9.x, 22.x). It allows malicious users to gain administrator privileges, thereby obtaining the ability to alter system configurations, access restricted data, and potentially introduce further malicious code into the network infrastructure.
  • CVE-2024-21893: Identified as a server-side request forgery (SSRF) flaw within the SAML component of Ivanti Connect Secure, Policy Secure (versions 9.x, 22.x), and Ivanti Neurons for ZTA, this vulnerability enables attackers to bypass authentication mechanisms to access restricted resources. This flaw is particularly concerning due to its active exploitation, which suggests a targeted approach by cybercriminals to leverage this vulnerability for malicious purposes.

Ivanti has acknowledged the targeted exploitation of CVE-2024-21893 and expressed concerns over the potential for increased malicious activities following the public disclosure of these vulnerabilities.

How to Protect Your Organization from Ivanti’s Zero-Day Flaws

In response to the discovery of these vulnerabilities, Ivanti has taken swift action by releasing patches for the affected products, including specific versions of Connect Secure and ZTA. The company strongly advises a precautionary factory reset of devices before applying the patches to eliminate any lingering threats from the system. Additionally, Ivanti recommends importing a mitigation file named “mitigation.release.20240126.5.xml” as a temporary countermeasure against these vulnerabilities.

To safeguard against these vulnerabilities, organizations are urged to apply Ivanti’s patches immediately, conduct a factory reset of devices prior to patching, and adopt a proactive cybersecurity posture. This includes regular software updates, comprehensive user education on cybersecurity best practices, and the implementation of robust security measures such as firewalls, intrusion detection systems, and regular security audits.

The Impact of Ivanti’s Zero-Day Flaws on the Cybersecurity Landscape

Since the beginning of 2024, the cybersecurity community has witnessed the disclosure of six zero-day vulnerabilities within Ivanti’s product lineup, with half of them being actively exploited. A study conducted by Volexity found that more than 1,700 Ivanti devices have been compromised worldwide, including nearly 100 in France. These attacks have affected organizations from all sectors, including government agencies, Fortune 500 companies and cloud service providers .

CISA Issues Emergency Directive for Federal Agencies

The US Cybersecurity and Infrastructure Security Agency (CISA) issued an emergency directive. It requires all federal agencies to apply Ivanti’s patches and mitigations, and report any compromise to the CISA. This directive is important because it shows the urgency and the severity of the situation, and its implications for the national and international security.

Mandiant Identifies Bypass Technique and Webshell Deployment

Mandiant, a cybersecurity firm, has identified a technique that bypasses the mitigation file and allows the deployment of a custom webshell named BUSHWALK. This webshell works by injecting malicious code into the legitimate web pages of Ivanti devices, and allows the attackers to execute commands and access files on the compromised systems. Mandiant has provided a detailed description of how this webshell works, how to detect it, and how to remove it. Mandiant has also clarified that this technique is distinct from the mass exploitation that followed the disclosure of the vulnerabilities.

UNC5221: The Threat Group Behind the Targeted Exploitation

Mandiant has also attributed the exploitation of the Ivanti zero-day flaws to a threat group named UNC5221, suspected to be linked to China. This group has targeted organizations from various sectors, including government agencies, Fortune 500 companies and cloud service providers . Mandiant has also revealed the tools and the malware used by this group, such as BUSHWALK, BLOODHOUND, CHOPSTICK and SLIGHTPULSE. These tools and malware are designed to perform reconnaissance, lateral movement, credential theft and data exfiltration on the compromised networks.

The Number of Victims and the Potential Consequences

According to the latest reports from Volexity and Mandiant, more than 1,700 Ivanti devices have been compromised worldwide, including nearly 100 in France. The sectors most affected by these intrusions include government, finance, healthcare, education, and technology. The potential consequences of these intrusions include unauthorized data access, system encryption by ransomware, installation of backdoors for persistent access, and execution of malicious code. Such incidents can lead to significant financial losses, reputational damage, operational disruptions, and legal implications for the affected organizations.

EviCypher and EviPass: Innovative Technologies to Protect Yourself from the Zero-Day Flaws

Facing the threat of the Ivanti zero-day flaws, there are innovative solutions to protect yourself effectively. These are the EviCypher and EviPass technologies, developed by Freemindtronic, a company specialized in pocket cybersecurity.

EviCypher is a NFC device that allows you to encrypt and decrypt messages securely and anonymously. You just need to slide your EviCypher card behind your smartphone for the message to be encrypted or decrypted. The system uses individual encryption keys, stored offline, in a non-volatile and physically secure memory. Thus, even if the message is intercepted by an attacker who exploits an Ivanti zero-day flaw, he will not be able to read it without the corresponding key.

EviPass is a mobile application that allows you to manage your passwords and credentials securely and conveniently. You just need to scan your EviPass card with your smartphone to access your online accounts. The application uses an OpenPGP encryption algorithm, based on public and private keys. The private keys are stored offline, in a non-volatile and physically secure memory. Thus, even if an attacker manages to access a compromised Ivanti device, he will not be able to steal the passwords and credentials without the EviPass card.

These two solutions offer a high level of security, based on the principle of “Air Gap”, which consists of creating a physical and digital barrier between the data and the attackers. They are also easy to use, without requiring any specific knowledge in cybersecurity. They are compatible with all digital communication systems, including those that use Ivanti products. They are protected by international patents, and manufactured in Andorra by Freemindtronic.

EviPass NFC NFC and EviPass HSM PGP: Freemindtronic’s Technologies for Password Management

EviPass NFC NFC and EviPass HSM PGP are two technologies developed by Freemindtronic for password management. EviPass NFC NFC is a technology that uses NFC cards to store and access passwords and credentials. EviPass HSM PGP is a technology that uses hardware security modules (HSM) to store and access passwords and credentials using the OpenPGP encryption algorithm. Both technologies are integrated into the EviPass mobile application, which allows users to manage their passwords and credentials securely and conveniently.

EviCypher NFC HSM and EviCypher HSM PGP: Freemindtronic’s Technologies for Message Encryption

EviCypher NFC HSM and EviCypher HSM PGP are two technologies developed by Freemindtronic for message encryption. EviCypher NFC HSM is a technology that uses NFC cards and hardware security modules (HSM) to encrypt and decrypt messages. EviCypher HSM PGP is a technology that uses hardware security modules (HSM) to encrypt and decrypt messages using the OpenPGP encryption algorithm. Both technologies are integrated into the EviCypher NFC device, which allows users to encrypt and decrypt messages securely and anonymously.

PassCypher and DataShielder: Freemindtronic’s Products that Incorporate EviCypher and EviPass Technologies

PassCypher and DataShielder are two products designed and manufactured by Freemindtronic that incorporate the EviCypher and EviPass technologies. PassCypher is a NFC device that connects to your smartphone or computer and allows you to access your online accounts using the EviPass technology. DataShielder is a NFC device that connects to your smartphone or computer and allows you to encrypt and decrypt messages using the EviCypher technology. With these products, you can benefit from the EviCypher and EviPass technology to protect your passwords, credentials and messages.

To learn more about these solutions, you can visit the Freemindtronic website or the Codeur blog, which present the features and benefits of EviCypher and EviPass.

Conclusion

In conclusion, the Ivanti zero-day flaws are dangerous vulnerabilities that can compromise the security and confidentiality of the users’ data. It is therefore important to protect yourself effectively against these flaws, by applying the patches provided by Ivanti, following the cybersecurity recommendations, and using innovative solutions like EviCypher and EviPass, developed by Freemindtronic. These solutions are integrated into innovative products, designed and manufactured in Andorra. Don’t wait any longer to protect yourself from the Ivanti zero-day flaws, and discover the EviCypher and EviPass solutions from Freemindtronic. What are your impressions on these products? Let us know in the comments below.

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

SSH handshake with Terrapin attack and EviKey NFC HSM

Terrapin Attack: How to Protect Your SSH Security

The Terrapin attack is a serious vulnerability in the SSH protocol that can be used to downgrade the security of your SSH connections. This can allow attackers to gain access to your sensitive data. In this article, we will explain what the Terrapin attack is, how it works, and how you can protect yourself from it.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

Terrapin attack: CVE-2023-48795 SSH security vulnerability articles for in-depth threat reviews and solutions. Stay informed by clicking on our scrolling topics.

Shield Your SSH Security from the Sneaky Terrapin Attack written by Jacques Gascuel, inventor of sensitive data safety and security systems. Are you safeguarding your SSH connections? Stay vigilant against the Terrapin attack, a stealthy vulnerability that can compromise your SSH security and expose your sensitive data.

Protect Yourself from the Terrapin Attack: Shield Your SSH Security with Proven Strategies

SSH is a widely used protocol for secure communication over the internet. It allows you to remotely access and control servers, transfer files, and encrypt data. However, SSH is not immune to attacks, and a recent vulnerability OpenSSH before 9.6 (CVE-2023-48795) has exposed a serious flaw in the protocol itself. This flaw, dubbed the Terrapin attack, can downgrade the security of SSH connections by truncating cryptographic information. In this article, we will explain what the Terrapin attack is, how it works, and how you can protect yourself from it.

Why you should care about the Terrapin attack

The Terrapin attack is not just a theoretical threat. It is a real and dangerous attack that can compromise the security of your SSH connections and expose your sensitive data. The consequences of a successful Terrapin attack can be severe, such as:

  • Data breaches: The attacker can access your confidential information, such as passwords, keys, files, or commands, and use them for malicious purposes.
  • Financial losses: The attacker can cause damage to your systems, services, or assets, and demand ransom or extort money from you.
  • Reputation damage: The attacker can leak your data to the public or to your competitors, and harm your credibility or trustworthiness.

Therefore, it is important to be aware of the Terrapin attack and take the necessary measures to prevent it. In the following sections, we will show you how the Terrapin attack works, how to protect yourself from it, and how to use PassCypher HSM PGP and EviKey NFC HSM to enhance the security of your SSH keys.

A prefix truncation attack on the SSH protocol

The Terrapin attack is a prefix truncation attack that targets the SSH protocol. It exploits a deficiency in the protocol specification, namely not resetting sequence numbers and not authenticating certain parts of the handshake transcript. By carefully adjusting the sequence numbers during the handshake, an attacker can remove an arbitrary amount of messages sent by the client or server at the beginning of the secure channel without the client or server noticing it.

This manipulation allows the attacker to perform several malicious actions, such as:

  • Downgrade the connection’s security by forcing it to use less secure client authentication algorithms
  • Bypass the keystroke timing obfuscation feature in OpenSSH, which may allow the attacker to brute-force SSH passwords by inspecting the network packets
  • Exploit vulnerabilities in SSH implementations, such as AsyncSSH, which may allow the attacker to sign a victim’s client into another account without the victim noticing

To pull off a Terrapin attack, the attacker must already be able to intercept and modify the data sent from the client or server to the remote peer. This makes the attack more feasible to be performed on the local network.

Unveiling the SSH Handshake: Exposing the Terrapin Attack’s Weakness

The SSH Handshake Process

The SSH handshake is a crucial process that establishes a secure channel between a client and server. It consists of the following steps:

  1. TCP connection establishment: The client initiates a TCP connection to the server.
  2. Protocol version exchange: The client and server exchange their protocol versions and agree on a common one. Then, the algorithm negotiation takes place.
  3. Algorithm negotiation: The client and server exchange lists of supported algorithms for key exchange, encryption, MAC, and compression. Then, they select the first matching algorithm.
  4. Key exchange: The client and server use the agreed-upon key exchange algorithm to generate a shared secret key. They also exchange and verify each other’s public keys. Then, the service request is sent.
  5. Service request: The client requests a service from the server, such as ssh-userauth or ssh-connection. Then, the client authenticates itself to the server using a supported method, such as password, public key, or keyboard-interactive.
  6. User authentication: The client authenticates itself to the server using a supported method, such as password, public key, or keyboard-interactive. Then, the channel request is sent.
  7. Channel request: The client requests a channel from the server, such as a shell, a command, or a subsystem. Thus, encrypted communication is enabled.

The Terrapin Attack

The Terrapin attack exploits a vulnerability in the SSH handshake by manipulating the sequence numbers and removing specific messages without compromising the secure channel integrity. This stealthy attack is difficult to detect because it doesn’t alter the overall structure or cryptographic integrity of the handshake.

For example, the attacker can eliminate the service request message sent by the client, which contains the list of supported client authentication methods. This forces the server to resort to the default method, typically password-based authentication. The attacker can then employ keystroke timing analysis to crack the password.

Alternatively, the attacker can target the algorithm negotiation message sent by the server, which lists the supported server authentication algorithms. By removing this message, the attacker forces the client to use the default algorithm, usually ssh-rsa. This opens the door for the attacker to forge a fake public key for the server and deceive the client into accepting it.

To illustrate the process of a Terrapin attack, we have created the following diagram:

Hackers exploit OAuth2 flaw to bypass 2FA on google accounts google account security flaw
Hackers exploit OAuth2 flaw to bypass 2FA on google accounts google account security flaw

As you can see, the diagram shows the steps from the interception of the communication by the attacker to the injection of malicious packets. It also highlights the stealthiness and the difficulty of detection of the attack.

Summery

The Terrapin attack is a serious threat to SSH security. By understanding how it works, you can take steps to protect yourself from it. Here are some tips:

  1. Make sure your SSH server is up to date with the latest security patches.
  2. Use strong passwords or public key authentication.
  3. Enable SSH key fingerprint verification.

How to protect yourself from the Terrapin attack: Best practices and tools

The Terrapin attack is a serious threat to SSH security, and it affects many SSH client and server implementations, such as OpenSSH, PuTTY, FileZilla, and more. Here are some steps you can take to protect yourself from it:

  • Update your SSH client and server to the latest versions. Many vendors have released patches that fix the vulnerability or introduce a strict key exchange option that prevents the attack. You can check if your SSH software is vulnerable by using the Terrapin vulnerability scanner.
  • Use strong passwords and public key authentication. Avoid using weak or default passwords that can be easily guessed by the attacker. Use public key authentication instead of password authentication, and make sure your public keys are verified and trusted.
  • Use secure encryption modes. Avoid using vulnerable encryption modes, such as ChaCha20-Poly1305 or AES-CBC with default MACs. Use encryption modes that use authenticated encryption with associated data (AEAD), such as AES-GCM or Chacha20-Poly1305@openssh.com.
  • Use a VPN or a firewall. If possible, use a VPN or a firewall to encrypt and protect your SSH traffic from being intercepted and modified by the attacker. This will also prevent the attacker from performing other types of attacks, such as DNS spoofing or TCP hijacking.
  • Implement a strict security policy on your local networks. Limit the access to your SSH servers to authorized users and devices, and monitor the network activity for any anomalies or intrusions.

How to use PassCypher HSM PGP and EviKey NFC HSM to protect your SSH keys: A secure and convenient solution

A good way to enhance the security of your SSH keys is to use PassCypher HSM PGP and EviKey NFC HSM. These are products from PassCypher), a company specialized in data security. They offer a secure and convenient solution for generating and storing your SSH keys.

PassCypher HSM PGP is a system that embeds a SSH key generator, allowing you to choose the type of algorithm – RSA (2048, 3072, 4096) or ECDSA (256,384, 521), and ED25519. The private key is generated and stored in a secure location, making it inaccessible to attackers.

EviKey NFC HSM is a contactless USB drive that integrates with PassCypher HSM PGP. It provides an additional layer of security and convenience for users who can easily unlock their private SSH key with their smartphone.

To show how PassCypher HSM PGP and EviKey NFC HSM can protect your SSH keys from the Terrapin attack, we have created the following diagram:

SSH handshake process with Terrapin attack illustration
This image illustrates the Terrapin attack, a stealthy attack that exploits a vulnerability in the SSH handshake. The attacker can manipulate the sequence numbers and remove specific messages without compromising the secure channel integrity. This can lead to a variety of security risks, including password cracking and man-in-the-middle attacks.

As you can see, the diagram shows how this solution effectively protects your SSH keys from the Terrapin attack. It also shows the benefits of using a contactless USB drive, such as:

  • Enhanced security: The private key is physically externalized and protected with a contactless authentication mechanism.
  • Convenience: Easy unlocking with a smartphone.
  • Ease of use: No additional software required.
  • Industrial-grade security: Equivalent to SL4 according to the standard IEC 62443-3-3.

Safeguarding Your SSH Keys with a Contactless USB Drive: A Comprehensive Guide

If you’re seeking a comprehensive guide to securely store your SSH keys using a contactless USB drive, look no further than this detailed resource: [Link to the article ([https://freemindtronic.com/how-to-create-an-ssh-key-and-use-a-nfc-hsm-usb-drive-to-store-it-securely/])]

This guide meticulously walks you through the process of:

  1. Generating an SSH key pair leveraging PassCypher HSM PGP
  2. Protecting the private SSH key within the EviKey NFC HSM USB drive
  3. Unlocking the private SSH key employing your smartphone
  4. Establishing a secure connection to an SSH server using the EviKey NFC HSM USB drive

Alongside step-by-step instructions, the guide also includes illustrative screenshots. By adhering to these guidelines, you’ll effectively safeguard and conveniently manage your SSH keys using a contactless USB drive.

Statistics on the Terrapin attack: Facts and figures

Statistics on the Terrapin attack: Facts and figures

The Terrapin attack is a serious cybersecurity threat that affects SSH connections. We have collected some statistics from various sources to show you the scale and impact of this attack. Here are some key facts and figures:

  • The Shadowserver Foundation reports that nearly 11 million SSH servers exposed on the internet are vulnerable to the Terrapin attack. This is about 52% of all IPv4 and IPv6 addresses scanned by their monitoring system.
  • The most affected countries are the United States (3.3 million), China (1.3 million), Germany (1 million), Russia (704,000), Singapore (392,000), Japan (383,000), and France (379,000).
  • The Terrapin attack affects many SSH client and server implementations, such as OpenSSH, PuTTY, FileZilla, Dropbear, libssh, and more. You can see the complete list of known affected implementations here).
  • You can prevent the Terrapin attack by updating your SSH software to the latest version, using secure encryption modes, and enabling strict key exchange. You can also use the Terrapin vulnerability scanner, available on GitHub, to check your SSH client or server for vulnerability.
  • A team of researchers from the Horst Görtz Institute for IT Security at Ruhr University Bochum in Germany discovered and disclosed the Terrapin attack. They published a detailed paper and a website with the technical details and the implications of the attack. Conclusion: How to stay safe from the Terrapin attack

The Terrapin attack is a serious threat to SSH security. It lets hackers break into SSH servers by exploiting a vulnerability in the protocol. To protect yourself effectively, you need to do the following:

  • Update your SSH software to the latest version
  • Use two-factor authentication
  • Store your SSH keys securely
  • Use PassCypher HSM PGP and EviKey NFC HSM

Conclusion: How to stay safe from the Terrapin attack

The Terrapin attack is a serious threat to SSH security. It allows hackers to break into SSH servers by exploiting a vulnerability in the protocol. To protect yourself effectively, you need to update your SSH software, use two-factor authentication, store your SSH keys securely, and use PassCypher HSM PGP and EviKey NFC HSM. If you found this article useful, please feel free to share it with your contacts or leave us a comment.

Telegram and the Information War in Ukraine

Telegram and the information war in Ukraine
Telegram and the Information War in Ukraine written by Jacques Gascuel, inventor of sensitive data safety and security systems, for Freemindtronic. This article may be updated on this subject.

How Telegram Shapes the Information War in Ukraine

In this article, we explore how Telegram and Ukraine’s information warfare are intertwined. We look at how the messaging app is influencing the Russia-Ukraine conflict, and how it can be used for good or evil. We also discuss the benefits and risks of using Telegram, as well as how security and freedom of expression can be enhanced with EviCypher NFC HSM technology.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

How Telegram Influences the Conflict between Russia and Ukraine

Telegram and the information war in Ukraine are closely related. Telegram is a messaging app that offers users a secure and confidential way to communicate, thanks to its end-to-end encryption system. It has a large user base around the world, especially in Eastern Europe, where it plays a vital role in the information war between Russia and Ukraine.

Telegram’s Usage in Ukraine: Updated Statistics

Popularity and Download Trends

According to the report of the research company SimilarWeb, Telegram is the second most downloaded messaging app in Ukraine, after Viber, with 3.8 million downloads in 2021. It is also the fourth most used app in terms of time spent, with an average of 16 minutes per day. Telegram has about 10 million active users in Ukraine, which is almost a quarter of the country’s population.

Telegram’s Role in Ukrainian Media Landscape

Telegram is particularly appreciated by Ukrainians for its channel functionality, which allows to broadcast messages to a large audience. Some of these channels have become influential but controversial sources of information, as their owners and sources are often unknown. Among the most popular channels in Ukraine, we can mention:

  • @Zelenskyi, the official channel of President Volodymyr Zelensky, which has more than 2 million subscribers. It publishes announcements, speeches, interviews and videos of the head of state. It was created in 2019, during Zelensky’s election campaign, who was then an actor and a comedian.
  • @NashyGroshi, the channel of the journalistic project “Our Money”, which has more than 1.5 million subscribers. It publishes investigations, reports and analyses on corruption, abuse of power, political scandals and judicial cases in Ukraine. It was created in 2008, by journalist Denys Bihus, who received several awards for his work.
  • @Resident, the channel of blogger and activist Anatoliy Shariy, which has more than 1.3 million subscribers. It publishes comments, criticisms and sarcasms on the political and social news in Ukraine. He is known for his pro-Russian, anti-European and anti-government positions. He is currently in exile in Spain, where he is wanted by the Ukrainian justice for high treason and incitement to hatred.

These channels illustrate the diversity and complexity of the Ukrainian media landscape, which is marked by the conflict with Russia, the democratic transition, the fight against corruption and the polarization of society. They are also a reflection of the issues and challenges related to the use of Telegram, which can be both a tool of communication, information and manipulation.

Oleksiy Danilov’s Stance on Telegram’s Usage in Ukraine

Concerns Over National Security

Oleksiy Danilov is the secretary of the National Security and Defense Council of Ukraine, the body responsible for coordinating and controlling the activities of the executive bodies in the fields of national security and defense. He is also the head of cybersecurity of the country, and in this capacity, he expressed his reservations about the use of Telegram by Ukrainians. In February 2022, he stated that some anonymous and manipulative Telegram channels represented a threat to national security, and that they should be de-anonymized and regulated. He particularly targeted the channel @Resident, which broadcasts pro-Russian and anti-Ukrainian comments, and which is suspected of being linked to the Russian intelligence services. He also criticized the channel @Zelenskyi, which according to him, is not controlled by the Ukrainian president, but by advisers who seek to influence his policy.

Debating Telegram’s Influence in Ukraine

These statements provoked mixed reactions in Ukraine. Some supported Danilov’s position, believing that it was necessary to fight against misinformation and propaganda that undermine the sovereignty and democracy of the country. Others denounced an attempt at censorship and an attack on freedom of expression, recalling that Telegram was one of the few spaces where Ukrainians could access independent and diverse information.

How Telegram Influences the Information War in Ukraine

The Benefits and Risks of End-to-End Encryption

Telegram is a messaging app that lets you send messages, photos, videos, documents, and make voice and video calls. Its privacy policy is based on data encryption and non-cooperation with authorities. You can also create groups and channels that can reach thousands or millions of users.

End-to-end encryption is a technology that makes sure only the people in a conversation can read the messages, not even the service provider. Telegram has this option, but it is not on by default. You have to choose it for each chat, by switching to the “secret chat” mode. However, Telegram’s encryption is not based on standard protocols, and security experts have found some flaws.

Anonymous Channels and Their Impact on the Ukrainian Conflict

The channels are spaces where an administrator can send messages to a large audience. They can be public or private, and they can have millions of followers. Some channels are influential but controversial sources of information, as their owners and sources are often unknown. The channels can spread misinformation, propaganda, fake news, or violence.

Telegram and Russian propaganda have a strong connection, as many pro-Russian channels use the app to influence the public opinion in Ukraine and other countries. Telegram and the Ukrainian resistance also use the app to communicate and organize their actions against the Russian aggression.

Bots, Payment Services and Unique Usernames: A Double-Edged Sword

Bots are programs that interact with users. They offer services, information, or entertainment. Anyone can create them. They can be part of chats or channels. Bots can be helpful or harmful. They can collect personal data, send spam, or spread viruses.

Payment Services: Handy or Dishonest?

You can also use payment services via Telegram. These features use third-party platforms, such as Stripe or Apple Pay. They need bank or credit card information. Payment services can be handy or dishonest. They can steal sensitive data, scam users, or fund illegal activities.

Unique Usernames: Fun or Troublesome?

Another feature of Telegram is the unique usernames. They let users contact each other easily, without sharing their phone number. Users can create and change them at any time. Unique usernames can be fun or troublesome. They can enable harassment, identity theft, or account sale.

These features of Telegram raise issues of cybersecurity, privacy, end-to-end encryption, and application security. They can be used by bad actors, who want to harm Ukraine or its people. They can also be regulated by the authorities, who want to control the information or access the data of the users.

Telegram and the Information War in Ukraine: A Challenge

One of the main challenges of Telegram and the information war in Ukraine is to balance the freedom of expression and the protection of national security. Telegram and the Ukrainian conflict are closely intertwined. The app is used by both sides to communicate, inform, and influence. Telegram and Russian propaganda have a strong connection. Many pro-Russian channels use the app to sway the public opinion in Ukraine and other countries. Telegram and the Ukrainian resistance also use the app to coordinate and organize their actions against the Russian aggression. Telegram and cybersecurity in Ukraine are also crucial. The app can be a source of threats or a tool of defense.

Telegram VS Other Messaging Apps: A Comparative Analysis

WhatsApp: Popular but Questionable Confidentiality

WhatsApp is the most popular messaging app in the world, with more than 2 billion users. It offers end-to-end encryption by default for all conversations, which guarantees the protection of data. However, it belongs to Facebook, which has a dubious reputation in terms of respect for privacy, and which has raised fears about the sharing of data with other applications of the group. WhatsApp is also subject to the requests of the authorities, who can demand access to the metadata, such as the phone number, the IP address or the location of the users.

Signal: High Security but Limited User Base

Signal is a messaging app that claims to be the most secure and confidential on the market. It also offers end-to-end encryption by default for all conversations, and it does not collect any personal data. It is developed by a non-profit organization, which does not depend on advertising or investors. It is recommended by personalities such as Edward Snowden or Elon Musk. Signal is however less popular than WhatsApp or Telegram, with about 50 million users. It also offers fewer features, such as file sharing, information channels, bots or payment services.

Telegram: Innovative but Security Concerns

Telegram is between these two apps, offering more features than Signal, but less security than WhatsApp. Telegram allows users to choose the level of encryption and privacy they want, by opting for the “secret chat” mode or the “normal chat” mode. Telegram also allows users to enjoy innovative services, such as channels, bots, payments or unique usernames. However, Telegram also presents risks, such as fakes news, inappropriate content, privacy breaches or cyberattacks. Telegram is therefore an app that offers advantages and disadvantages, and that requires vigilance and discernment from users.

Telegram’s Global Perception and Regulation

Russia: Origin and Opposition

Russia is the country of origin of Telegram, but also its main adversary. The Kremlin tried to block the app in 2018, invoking reasons of national security and fight against terrorism. It demanded that Telegram provide it with the encryption keys to access the messages of the users, which Pavel Durov refused. It then ordered the telecom operators to block access to Telegram, but this measure proved ineffective, as Telegram used cloud servers to bypass the blocking. Many Russian users also use VPNs or proxies to access the app. In 2020, the Kremlin finally lifted the ban on Telegram, acknowledging its failure and stating that the app had cooperated with the authorities to remove extremist content. However, some observers suspect that Telegram made concessions to the Kremlin to lift the blocking, such as collaborating with the Russian services or censoring some channels.

France: Striving for Digital Regulation

France is a country that wants to be at the forefront of the regulation of digital platforms, especially in terms of fighting online hate. It adopted in 2020 a law that obliges the platforms to remove illegal content, such as incitement to violence, discrimination or terrorism, within 24 hours, under penalty of financial sanctions. This law also applies to messaging apps, such as Telegram, which must set up reporting and moderation mechanisms for content. France recognizes the right of users to privacy and end-to-end encryption, but it also asks the service providers to cooperate with the law enforcement to access the encrypted data when needed. France is also a country where Telegram is used by radical groups, such as jihadists or yellow vests, who take advantage of the app to organize, mobilize or defend themselves.

Ukraine: Balancing Utility and Risks

Ukraine is a country that has an ambivalent attitude towards Telegram, recognizing its usefulness, but also its dangers. On the one hand, Telegram is a source of information and a tool of resistance for many Ukrainians, who face the threat of Russian aggression and the challenges of democratic transition. On the other hand, Telegram is also a vector of misinformation and propaganda, which can undermine the sovereignty and stability of the country. Ukraine does not have a specific law to regulate Telegram, but it has some legal provisions to protect national security and public order, which can be used to restrict or block the app if necessary. Ukraine also cooperates with international organizations, such as the EU or NATO, to counter the cyber threats and the hybrid warfare that target the country.

EviCypher NFC HSM: Enhancing Telegram’s Security

The Role of Contactless Encryption Technology

One of the main challenges of using Telegram is to ensure the security and confidentiality of the data exchanged, especially in a context of information war. To meet this challenge, a possible solution consists of using EviCypher NFC HSM technology, which is a contactless encryption technology developed by Freemindtronic, an Andorran company specializing in the design of counter-espionage solutions implementing in particular contactless security with NFC technology. EviCypher NFC HSM uses two types of encryption algorithms for data:

  • Symmetric encryption in AES-256 for data such as texts (messages), thanks to its sub-technology EviCrypt. It uses a unique key, which is randomly generated and segmented into several parts. This key is used to encrypt and decrypt messages with the AES 256-bit algorithm.
  • Asymmetric encryption in RSA-4096 for symmetric encryption keys. It uses a pair of keys, which is generated and used from the NFC HSM device and which is based on the RSA 4096-bit algorithm. This pair of keys is used to share the symmetric key of at least 256 bits between the NFC HSM devices remotely, by encrypting the symmetric key with the public key of the recipient and decrypting the symmetric key with the private key of the recipient. The symmetric key is then stored and re-encrypted in the NFC HSM device of the recipient, with the trust criteria imposed by the sender if he has encapsulated them in the shared encryption key.

Practical Applications of EviCypher NFC HSM

EviCypher NFC HSM is a technology that uses hardware security modules (HSM) to store and use encrypted secrets. It allows contactless encryption with the NFC communication protocol. You can integrate the NFC HSM into various media, such as a card, a sticker, or a key ring. Then, you can pair it with an NFC phone, tablet, or computer. This way, you can encrypt everything before using any messaging service, including Telegram. EviCypher NFC HSM also has anti-cloning, anti-replay, and counterfeit detection mechanisms. It is part of the DataShielder product range, which offers serverless and databaseless encryption solutions.

Telegram and the Ukrainian conflict

EviCypher NFC HSM is compatible with Telegram, a messaging app that influences the information war between Russia and Ukraine. It offers more security and confidentiality than Telegram’s end-to-end encryption, which is not based on recognized standards. It also gives you more flexibility and control than Telegram’s secret chat mode, as you can choose the trust criteria for the encryption keys. Moreover, it is more convenient and simple than Telegram’s normal chat mode, as you can encrypt and decrypt messages with a simple gesture.

Telegram and cybersecurity in Ukraine

EviCypher NFC HSM is a useful technology with Telegram, as it enhances the security and confidentiality of the data exchanged, especially in a context of information war. It is also a universal technology, as you can use it with any other messaging app, such as WhatsApp, Signal, Messenger, etc. It is also an innovative technology, as it uses the NFC communication protocol to perform contactless encryption, without requiring any connection or installation.

Concluding Insights on Telegram’s Role in Ukraine

In this article, we have seen how Telegram plays a vital role in the information war between Russia and Ukraine, and what issues and challenges there are in using this messaging app. We have also seen how the technology EviCypher NFC HSM can be a useful solution to enhance the security and confidentiality of the data exchanged with Telegram. We hope that this article has been informative and interesting for you, and that it has helped you to better understand the situation of Telegram in Ukraine and in other countries. Thank you for reading.

Overview of Cited Sources

Here are the sources of the article, which are valid, reliable, relevant and if possible official links that allow to justify and verify the statements made in this article:

  • [Liga.net]: the news site that published the interview of Oleksiy Danilov on November 2, 2023, in which he expresses his concerns about Telegram.
  • [NV.ua]: the news site that reported the statement of Oleksiy Danilov, who alerted the nation to the critical vulnerabilities of Telegram, on November 2, 2023.
  • [RT – Pravda]: the Ukrainian news site that related the remarks of Oleksiy Danilov, who answered the questions of journalists during a press conference on November 3, 2023.
  • [Number of Telegram Users in 2023? 55 Telegram Stats (backlinko.com)]: an article that gives figures on the use of Telegram in the world and in Ukraine.
  • [NV.ua -NSDC]: the official website of the National Security and Defense Council of Ukraine, which published the press release of Oleksiy Danilov, who clarified his recent comments on Telegram, on November 15, 2023
  • [Ukrainians turn to encrypted messengers, offline maps and Twitter amid Russian invasion]: an article that describes how Ukrainians use Telegram and other digital tools to protect themselves and get informed in the face of the Russian aggression.
  • [Pravda – France 24]: the French news site that contains a video of the interview of Oleksiy Danilov with the journalist Gulliver Cragg, dated January 23, 2023.
  • [NFC HSM Technology – Freemindtronic]: an article that explains the NFC HSM technologies and how they work.
  • [EviCypher NFC HSM technology – Freemindtronic]: a page that contains articles and videos on the NFC HSM technologies.
  • [FAQ for the Technically Inclined – Telegram APIs]: a page that provides technical information about the Telegram APIs and the MTProto protocol.

DataShielder Defense NFC HSM: Protect Your Sovereign Communications

DataShielder Defense NFC HSM Protect your Sovereign Communications by Freemindtronic Andorra
DataShielder Defense NFC HSM – Jacques Gascuel: This article will be updated with any new information on the topic.

Why You Need DataShielder Defense NFC HSM

DataShielder Defense NFC HSM, a patented solution, ensures maximum confidentiality and anonymization of communications from sovereign entities. Using NFC technology, this HSM manages up to 200 secrets offline, contactless and shareable via any communication method, including email and SMS. A GreenTech innovation, it is interoperable, backward compatible and versatile, designed to immediately respond to various specific needs and customizable for enhanced secret security.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

DataShielder Defense NFC HSM: How to Protect Your Sovereign Communications with a Revolutionary Solution

The protection of sovereign entities and the enhancement of existing defense and intelligence systems are crucial challenges in today’s world. Sovereign communications, such as those between heads of state, diplomats, military personnel, or secret agents, are constantly exposed to threats of interception, hacking, or manipulation. These threats can compromise the security, integrity, and confidentiality of sensitive information, and have serious consequences for national and international security.

To address these challenges, a revolutionary solution has been developed by Freemindtronic, a andorran company specialized in data security and encryption. This solution is called DataShielder Defense NFC HSM, and it is the ultimate solution for protecting all forms of communications of sovereign entities. This innovative and cutting-edge solution, protected by two patents, guarantees an unparalleled level of confidentiality and trust among humans, without compromise. With DataShielder, your secrets and sensitive data remain inaccessible and indecipherable, even in case of compromise of the equipment and information and communication systems.

In this article, we will explain how DataShielder Defense NFC HSM works, what are its features and benefits, and how it can be customized to suit your specific needs. We will also show how this solution could have influenced several major events in the history of communication security, and how it has received international recognition and awards for its excellence.

How DataShielder Defense NFC HSM Works

DataShielder Defense NFC HSM is a device that uses Near Field Communication (NFC) technology to create, store, and use up to 100 different secrets in a single device. A secret can be anything that you want to protect, such as an encryption key, a password, a PIN code, a cryptocurrency key, a bank account information, or a message. DataShielder allows you to share your encrypted secrets via all the means of communication available in the world, such as postal mail, webcam, email, SMS, MMS, RCS, messaging, or directly between two NFC HSM devices.

To use DataShielder, you need an Android NFC phone or tablet, and the DataShielder app, which is available for free on the Google Play Store. You also need a DataShielder Defense NFC HSM device, which is a small and discreet card that can be customized to fit different formats and accessories. The device does not require any battery or external power source, as it uses the energy of the NFC signal of the phone to operate on demand.

To create a secret, you simply need to tap your phone on the device, and choose the type of secret you want to create. You can either generate a random secret, or import an existing one. You can also add specific trust criteria for each secret, such as BSSID, geographical area, password, fingerprint, QR code or barcode scan, and phone UID. The absence of any of these criteria makes the access to the secret impossible, ensuring maximum and personalized security.

To use a secret, you simply need to tap your phone on the device, and choose the secret you want to use. You can either use it directly on your phone, or send it to another device or person. You can also use the secret to unlock secure USB or SSD keys, to log in to your favorite websites, to make secure voice calls and SMS, to manage your banking information, to generate and use cryptocurrency wallets, and more.

To share a secret, you simply need to tap your phone on the device, and choose the secret you want to share. You can either share it directly with another NFC HSM device, or encrypt it with the RSA-4096 public key of the recipient, and send it via any means of communication. The recipient will need to decrypt the secret with their NFC HSM device, using the EviSCP HSM (ZKP) protocol, which is a patented technology that ensures a secure and confidential exchange of secrets.

Differentiating Benefits of DataShielder Defense NFC HSM

DataShielder Defense NFC HSM offers a complete and adaptable solution to your needs, thanks to the set of advanced and efficient features that it incorporates. These features are based on different technologies, each with a specific name and function. Here is a summary of the main features and benefits of DataShielder:

 

Feature Technology Function Benefit
Random generation of symmetric and asymmetric encryption keys EviCypher NFC HSM Encrypt all types of data (texts, images, videos) in post-quantum AES-256. Use the RSA-4096 public key to exchange encrypted secrets between distant NFC devices. Protect your data and secrets from unauthorized access and decryption, even in case of quantum computing attacks.
Random generation of identifiers and passwords EviPass NFC HSM Generate automatically complex and complicated passwords up to 48 characters based on the 95 ASCII characters, or on bases 16, 58, 64 or 85. Import and store manually login identifiers, PIN codes, PUK, lock codes, TPM2.0 passwords, BitLocker… Log in automatically to your favorite websites. Secure your online accounts and devices with strong and unique passwords. Save time and avoid typing errors with automatic login.
Create a segmented key EviAuth NFC HSM Divide your secret into two segments and store them on two different NFC HSM devices. Require the presence of two people to reconstitute the secret. Increase the security and confidentiality of your secret by adding a human factor. Prevent the access to the secret by a single person or device.
Management of secret OTP keys EviOTP NFC HSM Store securely the secret OTP keys whose one-time passwords based on time (TOTP) or HMAC (HOTP) to generate a secondary authentication factor (2FA). Enhance the security of your online accounts and services with a second factor of authentication. Avoid the risk of losing or compromising your OTP keys.
Secure voice calls and SMS EviCall NFC HSM Store your phone contacts and make a voice call from the NFC HSM without leaving any trace in the phone history. Communicate securely and discreetly with your contacts. Avoid the interception and recording of your voice calls and SMS.
Secure management of banking information EviPay NFC HSM Store, manage and use securely the information related to credit cards and bank accounts. Protect your financial information and transactions from fraud and theft. Access and use your banking information easily and securely.
Unlocking of secure USB or SSD keys without contact EviKey NFC HSM Manage the administrator, user and temporary user PIN codes to unlock the secure USB/SSD keys without contact. Secure your external and internal storage with a contactless unlocking system. Manage the access rights and permissions of the USB/SSD keys.
Generation of cryptocurrency wallets EviSeed NFC HSM Automatically and directly create from a blockchain the secret BIP39 key, its derived key, its public key and the public address. The balance verification is done directly on the blockchain. Create and use cryptocurrency wallets securely and conveniently. Store your cryptocurrency keys in an inviolable and encrypted manner. Verify your balance directly on the blockchain.
Automatic import of private keys EviVault NFC HSM Import derived private keys by scanning their QR codes from five blockchain platforms including Bitcoin, Ethereum, Polygon, Binance Smart Chain and IOTA. Create and save also the BIP39 PassPhrases. Import and use private keys from different blockchain platforms easily and securely. Scan the QR codes and store the keys in an encrypted manner. Create and save also the BIP39 PassPhrases.
Management of authentication cards EviCore NFC HSM Scan and store the barcode or QR code of any type of card that uses this type of identification (access cards, loyalty cards sometimes linked to a payment system). Store and use authentication cards securely and conveniently. Scan the barcode or QR code and store it in an encrypted manner.
NFC HSM pairing key manager EviCore NFC HSM Manage the NFC HSM fleet within a sovereign entity. Manage and control the NFC HSM devices within your organization. Assign and revoke pairing keys for the devices.
Data encryption EviCrypt NFC HSM Encrypt your texts and files upstream before sending them to your recipients using your usual messaging services. Encrypt your data before sending it via any means of communication. Ensure that only the intended recipients can decrypt and access your data.
Use on all computer systems EviCore NFC HSM Browser Extension Use your NFC HSM with the free Freemindtronic browser extension based on Chromium and Firefox. Find the DataShielder NFC HSM functions on all your computers. Use your NFC HSM on any computer system.
Use of a virtual USB Bluetooth keyboard EviKeyboard BLE Use a virtual keyboard for secure and discreet input. Extend the use of secrets in HID mode on various computer systems, TPM2.0, BitLocker, Windows, Linux, Apple, proprietary software and web browsers. Don’t touch the keyboard. Enter a free line of code up to 52 characters. Entering BIOS passwords. Easy to use

Stealth Customization Options

The manufacturer Freemindtronic offers a customization service specially designed for sovereign entities, combining discretion and functionality.

Discreet Formats: Modified standard PVC and PCB cards for effective camouflage.

Stealth Accessories: Labels, key rings, promotional pens, and cufflinks subtly integrating NFC HSM devices.

USB Dummy Keys: Mini USB keys functioning as secret containers for the NFC HSM devices.

NFC On/Off Card: PCB cards with switchable NFC antenna for increased stealth.

These options guarantee invisible security, ideal for special operations and covert missions.

Complementary Accessories

  • Secure NFC EviKey USB and SSD Keys: These devices offer secure external and internal storage, perfectly integrated with DataShielder NFC HSM for enhanced data protection.
  • Bluetooth Virtual Keyboard EviKeyboard BLE: An innovative keyboard for secure and discreet input, complementing the DataShielder NFC HSM by an additional layer of security in data entry.

International Distinctions and Awards

The EviCypher NFC HSM technology, essential to DataShielder, has received worldwide recognition, marked by several important awards.

  • Gold Medal 2021 of the Geneva Inventions: EviCypher Technology awarded among hundreds of international inventions.
  • Three Global InfoSec Awards 2021: Awarded for being the best data security solution by Cyber Defense Magazine “Next-Gen in Crypto Security”, “Most Innovative Hardware Password Manager”, “Next-Gen in Secrets Management”.
  • Two E&T Innovation Awards 2021: Distinguished for the best communication and IT solution, as well as for the best cybersecurity solution.
  • Two nominations for the National Cyber Awards 2021 of the United Kingdom: Finalist in two categories “The Innovation in Cyber Award 2021” and “The Cyber Defense Product of the Year 2021”.
  • Gold Globee Award 2022: Cyber Computer NFC winner of a Cyber Security Global Excellence Awards®.
  • Fortress Award 2023: Awarded for its excellence in encryption and privacy protection.

Conclusion

DataShielder Defense NFC HSM is a revolutionary solution for protecting your sovereign communications. It offers a high level of security, confidentiality, and trust, without compromise. It is compatible with all types of data and communication means, and can be customized to suit your specific needs. It is also environmentally friendly, durable, and interoperable. It has received international recognition and awards for its excellence and innovation. If you are looking for a solution that can protect your secrets and sensitive data from any threat, DataShielder Defense NFC HSM is the solution for you. Contact Freemindtronic today and get your DataShielder Defense NFC HSM device. You will not regret it.

Dual-Use Encryption Products: a regulated trade for security and human rights

Dual-Use encryption products a regulated trade for security and human rights by Freemindtronic-from Andorra
Dual-use encryption products by Jacques Gascuel: This article will be updated with any new information on the topic.

Dual-use encryption products: a challenge for security and human rights

Encryption is a technique that protects data and communications. Encryption products are dual-use goods, which can have civilian and military uses. The export of these products is controlled by the EU and the international community, to prevent their misuse or diversion. This article explains the EU regime for the export of dual-use encryption products, and how it has been updated.

2024 Cyberculture

Electronic Warfare in Military Intelligence

2024 Articles Cyberculture Legal information

ANSSI Cryptography Authorization: Complete Declaration Guide

2024 Articles Cyberculture

EAN Code Andorra: Why It Shares Spain’s 84 Code

The international regulations on dual-use encryption products

The main international regulations that apply to dual-use encryption products are the Wassenaar Arrangement and the EU regime for the control of exports of dual-use goods.

The Wassenaar Arrangement

The Wassenaar Arrangement is a multilateral export control regime that aims to contribute to regional and international security and stability. It promotes transparency and responsibility in the transfers of conventional arms and dual-use goods and technologies. It was established in 1996 and currently has 42 participating states, including the United States, Canada, Japan, Australia, Russia, China and most of the EU member states.

The Wassenaar Arrangement maintains a list of dual-use goods and technologies that are subject to export control by the participating states. The list is divided into 10 categories, with subcategories and items. Category 5, part 2, covers information security, including encryption products. The list of encryption products includes, among others, the following items:

  • Cryptographic systems, equipment, components and software, using symmetric or asymmetric algorithms, with a key length exceeding 56 bits for symmetric algorithms or 512 bits for asymmetric algorithms, or specially designed for military or intelligence use.
  • Cryptanalytic systems, equipment, components and software, capable of recovering the plain text from the encrypted text, or of finding cryptographic keys or algorithms.
  • Cryptographic development systems, equipment, components and software, capable of generating, testing, modifying or evaluating cryptographic algorithms, keys or systems.
  • Non-cryptographic information security systems, equipment, components and software, using techniques such as steganography, watermarking, tamper resistance or authentication.
  • Technology for the development, production or use of the above items.

The participating states of the Wassenaar Arrangement are required to implement national export controls on the items listed in the arrangement, and to report annually their exports and denials of such items. However, the arrangement does not impose binding obligations on the participating states, and each state is free to decide whether to grant or refuse an export license, based on its own policies and national interests.

The EU regime for the control of exports of dual-use goods

The common legal framework of the EU for dual-use goods

The EU regime for the control of exports of dual-use goods is a common legal framework. It applies to all EU member states, and it has two main goals. First, it aims to ensure a consistent and effective implementation of the international obligations of export control. Second, it aims to protect the security and human rights of the EU and its partners. The regime is based on the Regulation (EU) 2021/821, which was adopted in May 2021 and entered into force in September 2021. This regulation replaces the previous Regulation (EC) No 428/2009.

The Regulation (EU) 2021/821: the principles and criteria of export control

The Regulation (EU) 2021/821 establishes a Union list of dual-use goods. These are goods that can have both civilian and military uses, such as software, equipment and technology. These goods are subject to an export authorization, which means that exporters need to obtain a permission from the competent authorities before exporting them. The Regulation also sets out a set of general principles and criteria for granting or refusing such authorization. The Union list of dual-use goods is based on the international export control regimes, including the Wassenaar Arrangement. It covers the same categories and items as the latter. However, the EU list also includes some additional items that are not covered by the international regimes. These are cyber-surveillance items that can be used for internal repression or human rights violations.

The Union list of dual-use goods: the categories and items subject to an export authorization

The Union list of dual-use goods consists of ten categories, which are:

  • Category 0: Nuclear materials, facilities and equipment
  • Category 1: Materials, chemicals, micro-organisms and toxins
  • Category 2: Materials processing
  • Category 3: Electronics
  • Category 4: Computers
  • Category 5: Telecommunications and information security
  • Category 6: Sensors and lasers
  • Category 7: Navigation and avionics
  • Category 8: Marine
  • Category 9: Aerospace and propulsion

Each category contains a number of items, which are identified by a code and a description. For example, the item 5A002 is “Information security systems, equipment and components”. The items are further divided into sub-items, which are identified by a letter and a number. For example, the sub-item 5A002.a.1 is “Cryptographic activation equipment or software designed or modified to activate cryptographic capability”.

The novelties of the Regulation (EU) 2021/821: the due diligence obligation, the catch-all clause, the human security approach and the transparency and information exchange mechanism

The Regulation (EU) 2021/821 also provides for different types of export authorizations. These are individual, global, general or ad hoc authorizations, depending on the nature, destination and end-use of the items. Moreover, the Regulation introduces some novelties, such as:

  • A due diligence obligation for exporters. This means that exporters have to verify the end-use and the end-user of the items, and to report any suspicious or irregular transaction.
  • A catch-all clause. This allows the competent authorities to impose an export authorization on items that are not listed, but that can be used for weapons of mass destruction, a military end-use, human rights violations or terrorism.
  • A human security approach. This requires the competent authorities to take into account the potential impact of the items on human rights, international humanitarian law, regional stability and sustainable development, especially for cyber-surveillance items.
  • A transparency and information exchange mechanism. This requires the competent authorities to share information on the authorizations, denials and consultations of export, and to publish annual reports on their export control activities.

The dual-use encryption products: sensitive goods for security and human rights

The dual-use encryption products are a specific type of dual-use goods that fall under the category 5 of the Union list. These are products that use cryptographic techniques to protect the confidentiality, integrity and authenticity of data and communications. These products can have both civilian and military uses, and they raise important issues for security and human rights.

The dual-use encryption products: a definition and examples

The dual-use encryption products are defined by the Regulation (EU) 2021/821 as “information security systems, equipment and components, and ‘software’ and ‘technology’ therefor, which use ‘cryptography’ or cryptanalytic functions”. The Regulation also provides a list of examples of such products, such as:

  • Cryptographic activation equipment or software
  • Cryptographic equipment for mobile cellular systems
  • Cryptographic equipment for radio communication systems
  • Cryptographic equipment for computer and network security
  • Cryptanalytic equipment and software
  • Quantum cryptography equipment and software

The dual-use encryption products: security issues

The dual-use encryption products can have a significant impact on the security of the EU and its partners. On the one hand, these products can enhance the security of the EU and its allies, by protecting their sensitive data and communications from unauthorized access, interception or manipulation. On the other hand, these products can also pose a threat to the security of the EU and its adversaries, by enabling the encryption of malicious or illegal activities, such as terrorism, espionage or cyberattacks. Therefore, the export of these products needs to be carefully controlled, to prevent their misuse or diversion to undesirable end-users or end-uses.

The dual-use encryption products: human rights issues

The dual-use encryption products can also have a significant impact on the human rights of the EU and its partners. On the one hand, these products can protect the human rights of the EU and its citizens, by safeguarding their privacy and freedom of expression on the internet. On the other hand, these products can also violate the human rights of the EU and its partners, by enabling the repression or surveillance of dissidents, activists or journalists by authoritarian regimes or non-state actors. Therefore, the export of these products needs to take into account the potential consequences of the items on human rights, international humanitarian law, regional stability and sustainable development, especially for cyber-surveillance items.

The modification of the Union list of dual-use goods by the Delegated Regulation (EU) 2022/1

The Union list of dual-use goods is not static, but dynamic. It is regularly updated to reflect the changes in the technological development and the international security environment. The latest update of the list was made by the Delegated Regulation (EU) 2022/1 of the Commission of 20 October 2021, which modifies the Regulation (EU) 2021/821.

The changes made by the international export control regimes in 2020 and 2021

The Delegated Regulation (EU) 2022/1 reflects the changes made by the international export control regimes in 2020 and 2021. These are the Wassenaar Arrangement, the Nuclear Suppliers Group, the Australia Group and the Missile Technology Control Regime. These regimes are voluntary and informal arrangements of states that coordinate their national export control policies on dual-use goods. The EU is a member of these regimes, and it aligns its Union list of dual-use goods with their lists of controlled items. The changes made by these regimes include the addition, deletion or modification of some items, as well as the clarification or simplification of some definitions or technical parameters.

The new items added to the Union list of dual-use goods: the quantum technologies, the drones and the facial recognition systems or biometric identification systems

The Delegated Regulation (EU) 2022/1 also adds some new items to the Union list of dual-use goods. These are items that are not covered by the international export control regimes, but that are considered to be sensitive for the security and human rights of the EU and its partners. These items include:

  • Certain types of software and technology for the development, production or use of quantum computers or quantum cryptography. These are devices or techniques that use the principles of quantum physics to perform computations or communications that are faster or more secure than conventional methods.
  • Certain types of equipment, software and technology for the development, production or use of unmanned aerial vehicles (UAVs) or drones. These are aircraft or systems that can fly without a human pilot on board, and that can be used for various purposes, such as surveillance, reconnaissance, delivery or attack.
  • Certain types of equipment, software and technology for the development, production or use of facial recognition systems or biometric identification systems. These are systems or techniques that can identify or verify the identity of a person based on their facial features or other biological characteristics, such as fingerprints, iris or voice.

The entry into force and application of the Delegated Regulation (EU) 2022/1

The Delegated Regulation (EU) 2022/1 entered into force on 7 January 2022. It applies to all exports of dual-use goods from the EU from that date. The exporters of dual-use goods need to be aware of the changes and updates to the Union list of dual-use goods, and to comply with the export control rules and procedures established by the Regulation (EU) 2021/821. The competent authorities of the member states need to implement and enforce the new Union list of dual-use goods, and to cooperate and coordinate with each other and with the Commission. The Commission needs to monitor and evaluate the impact and effectiveness of the new Union list of dual-use goods, and to report to the European Parliament and the Council.

The national regulations on dual-use encryption products

How some countries have their own rules on dual-use encryption products

The case of the United States

Some countries have their own national regulations on dual-use encryption products, which may differ or complement the existing regimes. For example, the United States has a complex and strict export control system, based on the Export Administration Regulations (EAR). The EAR classify encryption products under category 5, part 2, of the Commerce Control List (CCL). The EAR require an export license for most encryption products, except for some exceptions, such as mass market products, publicly available products, or products intended for certain countries or end-users. The EAR also require that exporters submit annual self-classification reports, semi-annual sales reports, and encryption review requests for certain products.

The case of Andorra

Andorra is a small country between France and Spain. It is not an EU member, but it has a customs union with it. However, this customs union does not cover all products. It only covers those belonging to chapters 25 to 97 of the Harmonized System (HS), which are mainly industrial products. Agricultural products and products belonging to chapters 1 to 24 of the HS are free of import duties in the EU. But they are subject to the most-favored-nation (MFN) treatment in Andorra.

Andorra has adopted the EU list of dual-use goods. It requires an export or transfer authorization for these goods, according to the Regulation (EU) 2021/821. This regulation came into force on 9 September 2021 and replaced the previous Regulation (EC) No 428/2009. Andorra has also adopted the necessary customs provisions for the proper functioning of the customs union with the EU. These provisions are based on the Community Customs Code and its implementing provisions, by the Decision No 1/2003 of the Customs Cooperation Committee.

Andorra applies the EU regulation, as it is part of the internal market. Moreover, Andorra has adopted the Delegated Regulation (EU) 2022/1 of the Commission of 20 October 2021, which modifies the EU list of dual-use goods. This modification reflects the changes made by the international export control regimes in 2020 and 2021. It also adds some new items, such as software and technologies for quantum computing, drones or facial recognition. The Delegated Regulation (EU) 2022/1 came into force on 7 January 2022, and applies to all exports of dual-use goods from the EU from that date.

Andorra entered the security and defense sector for the first time by participating in Eurosatory 2022. This is the international reference exhibition for land and airland defense and security. Andorra became the 96th country with a security and defense industry on its territory. Among the exhibitors, an Andorran company, Freemindtronic, specialized in counter-espionage solutions, presented innovative products. For example, DataShielder Defense NFC HSM, a device to protect sensitive data against physical and logical attacks. It uses technologies such as EviCypher NFC HSM and EviCore NFC HSM, contactless hardware security modules (NFC HSM). The president of Coges events, a subsidiary of GICAT, identified these products as dual-use and military products. They need an export or transfer authorization, according to the Regulation (EU) 2021/821. Freemindtronic also showed its other security solutions, such as EviKey NFC HSM, a secure USB key, a security token. These products were displayed in the Discover Village, a space for start-ups and SMEs innovations.

Switzerland

Switzerland is not an EU member, but it has a free trade agreement with it. Switzerland has adopted the Regulation (EU) 2021/821 by the Ordinance of 5 May 2021 on the control of dual-use goods. Switzerland applies the EU list of dual-use goods and requires an export or transfer authorization for these goods, according to the Regulation (EU) 2021/821. Switzerland has also adopted the Delegated Regulation (EU) 2022/1 of the Commission of 20 October 2021, which modifies the EU list of dual-use goods.

Turkey

Turkey is not an EU member, but it has a customs union with it. Turkey has adopted the Regulation (EU) 2021/821 by the Presidential Decree No 3990 of 9 September 2021 on the control of exports of dual-use goods. Turkey applies the EU list of dual-use goods and requires an export or transfer authorization for these goods, according to the Regulation (EU) 2021/821. Turkey has also adopted the Delegated Regulation (EU) 2022/1 of the Commission of 20 October 2021, which modifies the EU list of dual-use goods.

United Kingdom

The United Kingdom left the EU on 31 January 2020. It has adopted the Regulation (EU) 2021/821 by the Dual-Use Items (Export Control) Regulations 2021, which came into force on 9 September 2021. The United Kingdom applies the EU list of dual-use goods and requires an export or transfer authorization for these goods, according to the Regulation (EU) 2021/821. The United Kingdom has also adopted the Delegated Regulation (EU) 2022/1 of the Commission of 20 October 2021, which modifies the EU list of dual-use goods.

The challenges and opportunities for the exporters of dual-use encryption products

The exporters of dual-use encryption products face several challenges and opportunities in the current context of export control regulations. Among the challenges, we can mention:

  • The complexity and diversity of the regulations, which may vary depending on the countries, the products, the destinations and the end-uses, and which require a deep knowledge and a constant monitoring from the exporters.
  • The costs and delays related to the administrative procedures, which can be high and unpredictable, and which can affect the competitiveness and profitability of the exporters, especially for small and medium enterprises (SMEs).
  • The legal and reputational risks, which can result from an involuntary or intentional violation of the regulations, or from a misuse or diversion of the products by the end-users, and which can lead to sanctions, prosecutions or damages to the image of the exporters.

Among the opportunities, we can mention:

  • The growing demand and innovation for encryption products, which are increasingly used in many sectors and domains, such as finance, health, education, defense, security, human rights, etc.
  • The contribution to the security and human rights of the exporters, their customers and the general public, by enabling the protection of data, privacy, freedom of expression, access to information and democratic participation, thanks to encryption products.
  • The cooperation with the competent authorities, the civil society and the international community, to ensure the compliance and accountability of the exporters, and to support the development and implementation of effective and balanced encryption policies and regulations, that respect the security and human rights of all stakeholders.

Conclusion

Dual-use encryption products can have both civil and military uses. They are subject to export control regulations at different levels: international, regional and national. These regulations aim to prevent the risks that these products can pose for security and human rights. At the same time, they allow the development and trade of these products. Therefore, the exporters of dual-use encryption products must comply with the regulations that apply to their products. They must also assess the impact of their products on security and human rights. The exporters of dual-use encryption products can benefit from the demand and innovation for these products. These products are essential for the digital economy and society. They can also enhance the security and human rights of the exporters, their customers and the public.

Freemindtronic Andorra is a company that specializes in dual-use encryption products. It offers secure and innovative solutions for data, communication and transaction protection. Freemindtronic Andorra respects the export control regulations that apply to its products. It is also committed to promoting and supporting the responsible and lawful use of its products. It follows the principles of security and human rights. Freemindtronic Andorra cooperates with the authorities, the civil society and the international community. It ensures the transparency and accountability of its activities. It also participates in the development and implementation of effective and balanced encryption policies and regulations. It respects the interests and needs of all stakeholders.

Brute Force Attacks: What They Are and How to Protect Yourself

Brute Force Attacks Cyber Attack Guide
brute force attacks by Jacques Gascuel: This article will be updated with any new information on the topic.

Everything You Need to Know About Brute-force Attacks

80% of cyberattacks are brute force attacks. This technique tests all combinations to find a system’s password, key, or URL. These attacks threaten the security of your data. How to protect yourself? What tools and practices should be adopted? This article explains.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

Brute-force Attacks: A Comprehensive Guide to Understand and Prevent Them

Brute Force: danger and protection 80% of cyberattacks are brute force attacks. This technique tests all combinations to find the password, key, URL or hash of a system. These attacks threaten the security of your data. How to protect yourself? What tools and practices to adopt? This article explains:

  • Brute force types and methods : they vary according to the hackers’ method, the intrusion level and the application domain.
  • Brute force on electronic components : physical or electrical techniques are used to target chips or boards.
  • Brute force on passwords, keys, URLs and hashes : software or network techniques are used to access websites, online accounts, encrypted files, etc.
  • Brute force on phone systems : code or key techniques are used to hack landlines, mobiles or VoIP services.
  • Protection from brute force on devices and domains : encryption, authentication, masking, verification or correction techniques can help you strengthen your security.
  • Resistance evaluation of products or services to brute force : a scoring model based on the attack type and severity can help you assess the risk.

Types and Methods of Brute-force Attacks

There are several types and methods of brute force attacks, depending on the hackers’ method, the level of intrusion, and the domain of application.

Hackers’ Method

Hackers can use different methods to perform brute force attacks, depending on the type of data they want to obtain or modify. Here are the most common ones:

  • Simple brute force attacks: hackers try to guess the password of a user without using software, based on personal information or common passwords. These attacks work against users who have weak and easy-to-guess passwords, such as “password”, “1234567890”, or “qwerty”.
  • Dictionary attacks: hackers use software that tries passwords from a predefined list of common words, such as those from a dictionary or a database. These attacks are faster than simple ones but less effective against complex and random passwords.
  • Hybrid brute force attacks: hackers combine the previous two methods by adding variations to the dictionary words, such as numbers, symbols, or capital letters. These attacks are more sophisticated and can crack more robust passwords but they take more time and resources.
  • Reverse brute force attacks: hackers target the username rather than the password, assuming that the password is easier to guess or obtain by other means. These attacks are useful to access accounts that use the same username on multiple sites or services.
  • Distributed brute force attacks: hackers use multiple computers or devices connected to the Internet to perform brute force attacks simultaneously on the same target. These attacks are more powerful and harder to detect because they distribute the load and avoid security measures such as attempt limits or IP blocks.
  • Non-invasive faster than brute force attacks: hackers exploit weaknesses in the design or implementation of a system to reduce the number of combinations to test to find a secret information. For example, they can use a technique called “side-channel cube attack” to break AES encryption in less than 10 minutes with a laptop.
  • Analogous attacks: hackers use methods similar to brute force attacks but that do not test all possible combinations. For example, they can use a technique called “binary search attack” to guess a PIN code in less than 20 tries by exploiting the system’s response (correct/incorrect).

Level of Intrusion

Brute force attacks can also be classified according to the level of intrusion they involve:

  • Invasive attacks: hackers access physically the system or device they want to hack, using for example a keyboard, a USB stick, or a cable. These attacks are more dangerous because they can bypass software or network protections but they require proximity with the target and a risk of being caught.
  • Non-invasive attacks: hackers do not need to access physically the system or device they want to hack; they do it remotely via Internet or wireless network. These attacks are more discreet and easier to perform but they can be blocked by firewalls, antivirus software or secure protocols.

Domain of Application

Hackers’ objectives and motivations determine the domains where they apply brute force attacks. Here are some examples:

  • The civil domain: Hackers use brute force attacks to access personal or professional accounts such as emails, social networks, online banks or cloud services. They can steal sensitive information, impersonate identities, extort money or harm the reputation of the victims.
  • The defense domain: Hackers compromise national or international security by targeting military, governmental or diplomatic systems with brute force attacks. They can spy, sabotage, destabilize or provoke conflicts between countries.
  • The ethical hacking domain: Hackers test the security of systems or devices with brute force attacks by putting themselves in the attackers’ shoes. They can identify and report flaws, improve protections or train users.
  • The research domain: Hackers advance science and technology by exploring the limits of systems or devices with brute force attacks. They can discover new possibilities, innovate or create new products.

Brute-force Attacks on Electronic Components

Brute force attacks are not limited to passwords or encryption keys. They can also target electronic components that store or process data such as chips or integrated circuit boards. These attacks aim to access encrypted or protected information that is in the hardware using physical or electrical techniques.

Invasive Attacks

Invasive attacks are attacks that require direct access to the hardware and that involve modifying or destroying it. These attacks are often used to reverse engineer or extract data from chips or smart cards. Here are some examples:

  • Decapsulation: this technique consists of removing the outer layer of protection of a chip to expose the silicon and the internal layers. This can be done mechanically or chemically for example with nitric acid.
  • Deprocessing: this technique consists of removing progressively the internal layers of a chip to access the transistors and the connections. This can be done with chemicals lasers or focused ion beams (FIB).
  • Removal of the passivation layer: this technique consists of removing the insulating layer that covers the surface of a chip to allow electrical contact with the bonding wires (the thin connections between the chip and the package).
  • Reverse engineering: this technique consists of analyzing the structure and the functioning of a chip or an integrated circuit board to extract the source code the algorithms or the vulnerabilities.
  • Micro-probing: this technique consists of using micro-probes (metal needles) to connect directly to the internal components of a chip or an integrated circuit board and interfere with the signals or extract data.
  • Instantaneous memory attack: this technique consists of freezing a chip or an integrated circuit board to preserve the data that is in the volatile memory (RAM) after cutting off the power supply. This technique allows bypassing the mechanisms of automatic erasure of sensitive data in case of intrusion attempt.
  • Securing pairing algorithms against physical attacks: this technique consists of protecting pairing algorithms which are used for identity-based encryption against physical attacks that aim to modify the behavior of the hardware. This technique uses mathematical methods to detect and correct errors induced by physical disturbances.

Non-invasive Attacks

Non-invasive attacks are attacks that do not need direct access to the hardware but that use auxiliary or hidden channels to obtain or modify data on chips or integrated circuit boards. These attacks exploit the physical characteristics of the hardware such as power consumption electromagnetic field acoustic noise or temperature. Here are some examples:

  • Side-channel attack: this technique consists of measuring a physical parameter related to the functioning of a chip or an integrated circuit board to deduce information about the operations it performs or the data it processes. For example it is possible to guess an encryption key by analyzing the power consumption of a chip while it encrypts or decrypts a message.
  • Fault injection attack: this technique consists of provoking an error in the functioning of a chip or an integrated circuit board by sending it an abnormal signal such as an electric pulse a light wave or ionizing radiation. This technique allows modifying the behavior of the hardware revealing hidden information or bypassing protections.
  • Software flaw attack: this technique consists of exploiting a vulnerability in the software that controls the functioning of a chip or an integrated circuit board to access or modify sensitive data. For example it is possible to take control of a router by using a flaw in its firmware (the internal software that controls the functioning of the hardware).
  • Hidden channel attack: this technique consists of exploiting information that is not directly related to the functioning of the targeted system such as noise temperature or time. For example it is possible to guess the PIN code of a phone by listening to the sound produced by the keys when entering it.

Brute-force Attacks on Passwords Encryption Keys Hidden URLs and Hashes

Passwords encryption keys hidden URLs and hashes are data that serve to protect access or confidentiality of information on Internet. Hackers can try to guess them using brute force attacks which consist in testing all possible combinations until they find the right one. These attacks can have serious consequences such as identity theft account hijacking message decryption or website hacking.

Attacks on Passwords

Passwords are secret codes that users enter to authenticate on a website or an online service. Hackers can try to guess them using brute force attacks simple dictionary hybrid reverse or distributed as we have seen previously. These attacks can allow hackers to access users’ accounts and steal their personal financial or

professional information. To protect themselves from these attacks, users should choose strong and unique passwords, use a password manager, enable two-factor authentication, and avoid phishing emails.

Attacks on Encryption Keys

Encryption keys are data that are used to encrypt or decrypt messages or files. They can be symmetric (the same key is used for encryption and decryption) or asymmetric (two different keys are used: a public key for encryption and a private key for decryption). Hackers can try to guess them using brute force attacks simple or distributed, by testing all possible combinations until they find the right one. These attacks can allow hackers to read or modify confidential messages or files.

To protect themselves from these attacks, users should choose long and random encryption keys, use secure encryption algorithms, do not disclose or store their encryption keys in insecure places, and use secure protocols to exchange their encryption keys with their correspondents, such as the Diffie-Hellman protocol or the SSL/TLS protocol.

Another type of brute force attack targets the data stored in the volatile memory of devices, such as computers and phones. Volatile memory is a type of memory that loses its content when the power supply is cut off. This makes it vulnerable to brute force attacks that aim to extract sensitive data from it, using physical or software techniques. In this section, we will explain what are brute force attacks on volatile memory, how they work, what are the risks and how to prevent them.

Tools for brute force attacks

There are many tools available for brute force attacks on different protocols or services. Some are used for malicious purposes, others for penetration testing or security audit. Here is a non-exhaustive list of tools for brute force attacks:

  • Hashcat: Hashcat claims to be the world’s fastest and most advanced password recovery tool based on CPU. It supports five unique modes of attack for over 300 optimized hashing algorithms.
  • Flipper Zero: a multifunctional device that allows you to perform brute force attacks on RFID, NFC, Bluetooth systems, etc.
  • Gobuster: a tool written in Go that allows you to perform brute force attacks on web directories, DNS subdomains, S3 buckets or virtual hosts.
  • BruteX: a shell-based tool that allows you to perform brute force attacks on different services such as FTP, SSH, Telnet, RDP, VNC, etc.
  • Dirsearch: a tool written in Python that allows you to perform brute force attacks on web directories and files.
  • Callow: a tool written in C# that allows you to perform brute force attacks on web forms.
  • SSB: a tool written in Perl that allows you to perform brute force attacks on SMTP servers.
  • THC-Hydra: a popular tool that allows you to perform brute force attacks on more than 50 protocols such as HTTP, HTTPS, FTP, SSH, Telnet, SMB, etc.
  • Burp Suite: a suite of tools that allows you to perform penetration testing on web applications, including brute force attacks on web forms or HTTP parameters.
  • Patator: a tool written in Python that allows you to perform modular brute force attacks on different services such as HTTP, FTP, SSH, SMTP, etc.
  • Pydictor: a tool written in Python that allows you to generate custom lists for brute force or dictionary attacks.
  • Ncrack: a tool that allows you to perform fast and flexible brute force attacks on different services such as RDP, SSH, Telnet, HTTP(S), POP3(S), etc.

Brute force attacks on volatile memory: a data security risk

Volatile memory is a type of memory that loses its content when the power supply is cut off. This is the case for the random access memory (RAM) of computers and phones, which temporarily stores data and programs that are running. Volatile memory has an advantage: it erases the traces of computer activity in case of power outage or system shutdown. But it also has a drawback: it can be targeted by brute force attacks aiming to recover the sensitive data it contains.

A brute force attack is a method that consists of testing all possible combinations of a password, an encryption key or an access code, until finding the right one. Brute force attacks can be performed using specialized software, which exploits the computing power of computers or networks of machines. Brute force attacks can take a lot of time, depending on the complexity and length of the password, key or code to guess.

Brute force attacks on volatile memory are attacks that aim to extract data stored in the RAM of a computer or a phone, using physical or software techniques. For example, it is possible to cool down the RAM with liquid nitrogen, which allows to preserve its content for a few minutes after the system shutdown. It is then possible to transfer the RAM to another device, and use a brute force software to decrypt the data it contains. It is also possible to use malicious software that infiltrates the system and accesses the RAM, bypassing software or hardware protections.

Brute force attacks on volatile memory pose a risk for data security, because they can allow hackers to access confidential information, such as passwords, encryption keys, personal or professional data, etc. These information can then be used to compromise other systems or services, or to extort the victims. To protect against these attacks, it is recommended to use passwords or keys that are long and complex enough, to encrypt data stored in the RAM, and to update software and hardware to benefit from the latest security measures.

To sum up, brute force attacks on volatile memory are a serious threat for data security, as they can allow hackers to access confidential information, such as passwords, encryption keys, personal or professional data, etc. These information can then be used to compromise other systems or services, or to extort the victims. To protect against these attacks, it is recommended to use passwords or keys that are long and complex enough, to encrypt data stored in the RAM, and to update software and hardware to benefit from the latest security measures.

Attacks on Hidden URLs

Hidden URLs are web addresses that are hidden or modified to avoid being easily accessible or identifiable. They can be used to protect the privacy or security of a website or an online service. For example, a website may use a hidden URL to prevent being indexed by search engines or targeted by hackers. Hackers can try to guess them using brute force attacks simple or distributed, by testing all possible combinations until they find the right one. These attacks can allow hackers to access hidden or forbidden websites, such as illegal, malicious, or sensitive websites.

To protect themselves from these attacks, users should choose long, complex, and random hidden URLs, do not use predictable or easy-to-guess hidden URLs, do not share or publish their hidden URLs with other people or on other websites, and use encryption or authentication techniques to enhance the security of their hidden URLs.

Attacks on Hashes

Hashes are data that result from applying a mathematical function to a message or a file. They are used to verify the integrity or authenticity of a message or a file, by comparing it to the original hash. They can also be used to store passwords securely, by transforming them into irreversible hashes. Hackers can try to guess them using brute force attacks simple, dictionary, or hybrid, by testing all possible combinations until they find the right hash. These attacks can allow hackers to falsify or reveal messages or files.

To protect themselves from these attacks, users should choose secure hashing functions that do not have collisions (two different messages that produce the same hash) or preimages (a message that produces a given hash), use salting (adding a random data to the message before hashing) or peppering (adding a secret data to the message before hashing) techniques to make hashes more resistant to brute force attacks, do not store or transmit their hashes in insecure places, and use secure protocols to exchange their hashes with their correspondents, such as the HMAC protocol or the SSL/TLS protocol.

Brute-force Attacks on Phone Systems

Phone systems are devices that allow communication by voice or text, such as landlines, mobile phones (smartphones), or VoIP services. Hackers can try to hack them using brute-force attacks that consist of guessing codes or keys. These attacks can allow hackers to access data or services of a phone system, such as contacts, messages, calls, payments, or subscriptions.

Attacks on PIN Codes

PIN codes are secret codes of four digits that are used to unlock a mobile phone or a SIM card. Hackers can try to guess them using brute force attacks simple or analogous by testing all possible combinations until they find the right one. These attacks can allow hackers to access data or services of the mobile phone or the SIM card.

To protect themselves from these attacks users should choose random and unpredictable PIN codes that do not contain numerical sequences easy to guess such as “0000” “1234” or “4321”. They should not write or share their PIN codes with other people. They should activate the function of automatic locking of the mobile phone or the SIM card after a certain number of unsuccessful attempts. They should activate the function of automatic reset of the mobile phone or the SIM card after a certain number of unsuccessful attempts.

Attacks on IMEI Codes

IMEI codes are unique codes of 15 digits that identify a mobile phone. They are used to block a mobile phone in case of theft or loss. Hackers can try to guess them using brute force attacks simple or distributed by testing all possible combinations until they find the right one. These attacks can allow hackers to unlock a stolen or lost mobile phone and use it for malicious purposes such as making fraudulent calls sending unwanted messages or accessing personal data of the owner.

To protect themselves from these attacks users should note their IMEI codes and keep them in a safe place. They should not disclose their IMEI codes to unknown or suspicious people. They should report the loss or theft of their mobile phone to their operator and request the blocking of their IMEI codes. They should use a service of location or remote locking of their mobile phone in case of loss or theft.

Attacks BrutePrint

You will surely be amazed by our discoveries! These systems verify your identity on smartphones and other devices by using the unique patterns of your finger. But is their security level? In this study, we explore the weaknesses of these systems and how various actors, from cybercriminals to sovereign entities, can exploit them. We looked at 25 techniques for corrupting fingerprint authentication systems. We will also introduce an effective dual-use defense solution: DataShielder HSM solutions to protect your secrets and sensitive data even if this biometric authentication system becomes compromised. Click is here for more information Attacks BrutePrint.

Evaluation of Products or Services Resistance to Brute-force Attacks

To evaluate the resistance of products or services to brute force attacks we can use a scoring model based on the type and severity of possible attacks. The scoring model can be as follows:

  • For each product or service we identify the possible types of brute force attacks that can target it such as passwords encryption keys hidden URLs hashes PIN codes or IMEI codes.
  • For each type of brute force attack we assign a score from 1 to 5 according to the severity of the attack. The score can be based on the following criteria: the complexity of the attack the time required to perform the attack the impact of the attack on the confidentiality integrity or availability of the data or service and the likelihood of the attack to succeed.
  • We calculate the average score for each product or service by adding up the scores for each type of brute force attack and dividing by the number of types. The lower the score the more resistant the product or service is to brute force attacks.

For example let’s consider two products: a web application and a smartphone. The possible types of brute force attacks and their scores are as follows:

Type of brute-force attack Web application Smartphone
Passwords 3 2
Encryption keys 4 3
Hidden URLs 2 N/A
Hashes 3 N/A
PIN codes N/A 2
IMEI codes N/A 4

The average score for the web application is (3 + 4 + 2 + 3) / 4 = 3. The average score for the smartphone is (2 + 3 + 2 + 4) / 4 = 2.75. Therefore, according to this scoring model, the smartphone is more resistant to brute force attacks than the web application.

Statistics on brute force attacks

Brute force attacks are common and effective methods used by hackers to access systems protected by passwords or encryption keys. According to the IBM Cost of a Data Breach 2022 report, stolen or compromised credentials are the leading cause of data breaches and cost an average of $4.35 million to businesses worldwide in 2021. Brute force attacks are also increasing with the health crisis, which has encouraged remote work and online services. According to Cloudflare, the number of brute force attacks on RDP and SSH protocols increased by 400% between March and April 2020.

The duration and difficulty of a brute force attack depend on the length and complexity of the password or key to guess. According to Cloudflare, a seven-character password would take, at a rate of 15 million keystrokes per second, 9 minutes to crack. An eight-character password would take 4 hours, a nine-character password would take 8 days, and a ten-character password would take 463 days. It is therefore essential to use passwords or keys that are long and random enough to resist brute force attacks.

Real Cases of Brute-force Attacks

Brute force attacks are not only theoretical methods, but also real threats that have affected various domains, such as finance, health, politics, etc. In this section, we will present some examples of brute force attacks that have taken place in recent years, and show their consequences and lessons.

Brute force attacks on financial institutions

Financial institutions are often targeted by brute force attacks, as they store sensitive data and money. For instance, in 2019, a group of hackers used brute force attacks to access the online banking systems of several banks in Eastern Europe and Central Asia. They stole over $100 million from more than 40,000 accounts. The hackers used a software called Cobalt Strike, which allowed them to remotely control the infected computers and launch brute force attacks on the banks’ servers. They also used a technique called “ATM cash-out”, which enabled them to withdraw money from ATMs without using cards.

This case shows the importance of using strong passwords and encryption keys for online banking systems, as well as updating the software and hardware to prevent malware infections. It also shows the need for monitoring and alerting mechanisms to detect and stop brute force attacks in real time.

Brute force attacks on health systems

Health systems are also vulnerable to brute force attacks, as they store personal and medical data that can be used for identity theft or blackmail. For example, in 2020, a hacker group called Maze used brute force attacks to breach the network of Fresenius, Europe’s largest private hospital operator. They encrypted the data and demanded a ransom for its release. The attack affected the hospital’s operations and patient care, as well as its subsidiaries that produce dialysis products and blood transfusion devices.

This case illustrates the impact of brute force attacks on human lives and health services. It also highlights the need for securing the network and data of health systems, as well as having backup and recovery plans in case of an attack.

Brute force attacks on political systems

Political systems are not immune to brute force attacks, as they can influence the outcome of elections or policies. For instance, in 2016, a hacker group called Fancy Bear used brute force attacks to access the email accounts of several members of the Democratic National Committee (DNC) in the United States. They leaked the emails to WikiLeaks, which published them online. The leaked emails revealed internal conflicts and controversies within the DNC, and damaged the reputation of Hillary Clinton, who was running for president against Donald Trump.

This case demonstrates the power of brute force attacks to manipulate public opinion and interfere with democratic processes. It also underscores the need for protecting the email accounts and communications of political actors, as well as educating the public about cyber threats and misinformation.

How to Prevent Brute-force Attacks

Brute force attacks are a serious threat to the security and privacy of users, systems, and devices. Therefore, it is important to take preventive measures to avoid or mitigate their impact. Here are some general tips to prevent brute force attacks:

  • Use strong and unique passwords, encryption keys, hidden URLs, hashes, PIN codes, and IMEI codes. They should be long, complex, and random, containing letters, numbers, and symbols. They should not be based on personal or predictable information, such as names, dates, or phone numbers.
  • Use secure encryption algorithms and hashing functions. They should not have known or exploitable flaws or weaknesses, such as collisions or preimages. They should have enough entropy (degree of unpredictability) to resist brute force attacks.
  • Use secure protocols and techniques to exchange and store data. They should provide encryption, authentication, verification, correction, masking, or salting features. They should use secure channels and devices to transmit and store data.
  • Use security software and hardware to protect systems and devices. They should include firewalls, antivirus software, sensors, or locks. They should detect and block brute force attacks or trigger self-destruction or data erasure mechanisms.
  • Use ethical hacking and research to test and improve the security of systems and devices. They should identify and report vulnerabilities, flaws, or weaknesses. They should provide solutions, innovations, or products to enhance the security of systems and devices.

In conclusion

In this article, we have explored the topic of brute force attacks, also known as trial-and-error or exhaustive attacks. We have seen that brute force attacks are methods used by hackers to access systems protected by passwords or encryption keys, by testing all possible combinations until finding the right one. We have also seen that there are different types and methods of brute force attacks, depending on the hackers’ method, the level of intrusion, the domain of application and the tools used. We have focused on some specific types of brute force attacks, such as those on electronic components, passwords, encryption keys, hidden URLs, hashes and phone systems. We have also evaluated the resistance of products or services to brute force attacks, by presenting some real cases and some criteria to assess the security level. Finally, we have given some tips on how to prevent brute force attacks, by using long and complex passwords or keys, encrypting data, updating software and hardware, and using security tools.

Brute force attacks are a serious threat for data security and privacy, as they can allow hackers to access confidential information, compromise other systems or services, or extort the victims. Therefore, it is essential to be aware of the risks and the solutions to protect yourself from brute force attacks. If you want to learn more about this topic, you can check the sources that we have cited throughout this article.

Pegasus: The cost of spying with one of the most powerful spyware in the world

Pegasus The Cost of Spying with the Most Powerful Spyware
Pegasus by Jacques Gascuel: This article will be updated with any new information on the topic.

Pegasus: The Cost of Spying

Pegasus is a powerful spyware that has been used by several countries to spy on political figures, journalists, human rights activists or opponents. How does it work, who has been spied on, what are the consequences, and how much does it cost? Find out in this article.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

Pegasus: The Cost of Spying with the Most Powerful Spyware in the World

Pegasus is a spyware developed by the Israeli company NSO Group. It allows to remotely monitor the activities of a mobile phone. According to an investigation conducted by a consortium of international media, several countries have used this software to spy on political figures, journalists, human rights activists or opponents.

The scandal of Pegasus has provoked a global outcry. It has raised many questions about the legality, the ethics and the consequences of this cyber-surveillance. How does Pegasus work? Who has been spied on by Pegasus? Who is responsible for the spying? What are the consequences of the spying? And most importantly, how much does Pegasus cost?

In this article, we will try to answer these questions in detail. We will use reliable and verified sources of information. We will also present some statistics and comparisons to give you an idea of the scale and the impact of Pegasus.

What is Pegasus?

Pegasus is a spyware, also called spy software. It allows to remotely monitor the activities of a mobile phone. It can access the messages, the calls, the contacts, the photos, the videos, the location, the microphone or the camera of the target phone. It can also activate or deactivate certain functions of the phone, such as Wi-Fi or Bluetooth.

Pegasus: a spyware that raises many questions

Pegasus is a powerful spyware that the NSO group designed. It can monitor and steal data and activities from mobile phones secretly. The NSO group is an Israeli company founded in 2010 by former members of Unit 8200; the Israeli military intelligence service. The company claims that its software aims to fight terrorism and organized crime; such as pedophiles or cartel leaders. It also claims that it only sells it to governments or authorized security agencies; with the approval of the Israeli Ministry of Defense. The countries that acquire these systems must respect their commitments stipulated in the license.

However, a consortium of international media outlets revealed that many countries have used Pegasus for other purposes. They have monitored various people, including politicians, journalists, human rights activists and political opponents. This raises many questions about the protection of privacy and human rights in the digital age. It also exposes the vulnerabilities and challenges of cybersecurity in a world where surveillance technologies are becoming more powerful and discreet.

Pegasus works by exploiting security flaws in the operating systems of phones, such as iOS or Android. It can infect a phone in two ways: either by sending a malicious link to the target phone, which must click on it to be infected; or by using a technique called “zero-click”, which allows to infect a phone without any interaction from the user.

Pegasus is a very sophisticated and discreet software. It can self-destruct or camouflage itself to avoid being detected. It can also adapt to security updates of operating systems to continue working. According to NSO Group, Pegasus is able to target more than 50,000 phone numbers in the world.

Unveiling Pegasus Attack Vectors: Stealth and Subterfuge in Cyber Espionage

In the Shadows of Cyber Espionage: Pegasus Strikes Unseen

In the realm of cyber espionage, Pegasus has mastered the art of covert infiltration, employing a spectrum of attack vectors designed to leave its targets unaware and defenseless. As a specialized journalist in the field of espionage, we delve into the clandestine world of Pegasus, shedding light on the methods it employs to breach digital fortresses.

Email: The Trojan Horse

Pegasus’s espionage campaign often commences with a seemingly innocuous email. The target receives a carefully crafted message, concealing a malicious payload. This deception operates with remarkable subtlety, bypassing traditional safeguards. Victims unknowingly execute the payload, granting Pegasus a foothold into their digital lives.

SMS Intrigue: Texts That Betray

SMS messages can become instruments of betrayal when wielded by Pegasus. Crafted to exploit vulnerabilities in messaging apps, these seemingly harmless texts harbor malicious intent. Clicking on a compromised message can be all it takes for Pegasus to silently infiltrate a device.

Web of Deceit: Navigating Vulnerabilities

Pegasus’s reach extends into the very fabric of the internet. Web browsers, portals to information and connectivity, can become gateways for intrusion. By exploiting unpatched browser vulnerabilities, Pegasus sidesteps user interaction, infiltrating systems silently.

WhatsApp’s Vulnerable Connection

Even encrypted platforms like WhatsApp are not impervious to Pegasus’s advances. The spyware capitalizes on vulnerabilities in this widely used messaging app. A simple call on WhatsApp can translate into a gateway for Pegasus’s covert surveillance.

Zero-Click: A Stealthy Intrusion

The pinnacle of Pegasus’s subterfuge is the “Zero-Click” attack vector. Unlike other methods, “Zero-Click” requires no user interaction whatsoever. It preys upon deep-seated operating system vulnerabilities. Pegasus slips in unnoticed, operating in the shadows, and evading all user alerts.

The Stealth Within Pegasus: An Unseen Hand

Pegasus’s ability to infiltrate devices without leaving a trace raises profound concerns regarding detection and defense. Victims may remain oblivious to their compromised status, and traditional security measures struggle to counteract this stealthy foe.

Pegasus Continues to Threaten iPhone User Privacy and Security

In the ever-evolving landscape of digital security, the Pegasus spyware remains a significant threat to iPhone users’ privacy and security. Despite Apple’s rigorous efforts to enhance iOS safeguards, the sophisticated surveillance tool developed by the Israeli firm NSO Group has continually adapted, finding new ways to infiltrate the defenses of one of the world’s most popular smartphones.

Apple’s Proactive Measures Against Pegasus

Apple has been at the forefront of the battle against cyber threats, releasing timely security updates and patches aimed at thwarting Pegasus’s advanced techniques. The company’s commitment to user privacy has led to the development of new security features designed to protect sensitive information from unauthorized access. However, the dynamic nature of cyber threats, exemplified by Pegasus, poses an ongoing challenge to even the most secure platforms.

The Impact on iPhone Users

For iPhone users, the threat of Pegasus spyware is more than just a privacy concern; it’s a direct attack on their freedom of expression and the security of their personal data. The ability of Pegasus to covertly monitor conversations, access encrypted messages, and even activate cameras and microphones without consent has raised alarms worldwide. This level of surveillance capability not only endangers individual users but also threatens the integrity of global communications networks.

Recent Revelations in Jordan Amplify Global Pegasus Concerns

In 2024, shocking reports emerged, spotlighting Jordan’s use of Pegasus against journalists and activists. This development underscores the pervasive reach of NSO Group’s spyware. Allegedly, the Jordanian authorities targeted individuals crucial to civil society. These actions have stoked fears about privacy invasions and press freedom suppression. Amidst Israel-Jordan tensions, this move signals a worrying trend of using cyberweapons to stifle dissent. Consequently, global watchdogs are calling for stringent controls on spyware sales and usage. This incident not only highlights the urgent need for robust digital rights protections but also raises significant ethical questions about surveillance technologies’ global impact.

India’s Pegasus Scandal: A Deep Dive into Surveillance and Democracy

The year 2023 brought to light India’s alleged surveillance of journalists and opposition figures using Pegasus. This revelation has sparked a nationwide debate on privacy, press freedom, and democratic values. High-profile journalists and political dissenters reportedly fell victim to this covert tool, leading to widespread condemnation. Despite government denials and a lack of cooperation with Supreme Court probes, the issue remains unresolved. Such use of Pegasus not only threatens individual freedoms but also undermines the very fabric of democratic societies. As countries grapple with the dual use of surveillance technologies, the call for transparent, regulated, and ethical practices has never been louder. This situation serves as a crucial reminder of the delicate balance between national security and personal liberties.

How Pegasus spied on the Catalan independence movement and the Spanish government

Pegasus, a powerful spyware designed by the NSO Group, has the capability to clandestinely monitor and steal data and activities from mobile phones. A consortium of international media outlets exposed the fact that numerous countries have employed Pegasus to conduct surveillance on various individuals, including political figures, journalists, human rights activists, and political opponents.

In Spain, the Pegasus scandal unfolded, implicating over 60 individuals associated with the Catalan independence movement. According to a report from Citizen Lab, Pegasus was utilized to target these individuals between 2017 and 2020. In an alarming twist, the Spanish government itself accused Pegasus of spying on its own officials in 2021.

The Catalan independence movement under surveillance

The Catalan independence movement represents a political and social endeavor that aims to secure Catalonia’s independence from Spain. This movement gained significant momentum in 2017 when the Catalan government conducted an unauthorized referendum on self-determination. In response, the Spanish government took action by suspending Catalonia’s autonomy and apprehending several of its leaders.

Citizen Lab’s report revealed that Pegasus had specifically targeted more than 60 individuals associated with the Catalan independence movement from 2017 to 2020. This list includes notable figures such as three presidents of the Generalitat of Catalonia: Artur Mas, Quim Torra, and Pere Aragonès. These individuals have taken legal action, filing a complaint against Paz Esteban and the NSO Group. Paz Esteban serves as the director of CNI, Spain’s intelligence service.

Additional alleged victims encompass Members of the European Parliament, lawyers, journalists, and activists. For example, Carles Puigdemont, the former president of Catalonia who sought refuge in Belgium following the referendum, was also subjected to Pegasus surveillance. The list further includes Roger Torrent, the former speaker of the Catalan parliament, and Jordi Cañas, a pro-union Member of the European Parliament.

The Spanish government under attack

The situation escalated in significance when the Spanish government disclosed that Pegasus had also surveilled its own officials in 2021. The government attributed this to an “external attack” but refrained from identifying the perpetrators. Various media outlets hinted at the possibility of Moroccan involvement, occurring against the backdrop of a diplomatic standoff between the two nations.

Prime Minister Pedro Sánchez and Defense Minister Margarita Robles were among the primary targets. In February 2021, while on an official visit to Morocco, their mobile phones fell victim to Pegasus infections8. This compromise allowed the spyware access to their messages, calls, contacts, photos, videos, location, microphone, and camera.

Additionally, Foreign Minister Arancha González Laya and Interior Minister Fernando Grande-Marlaska faced Pegasus surveillance in May 2021. This intrusion occurred during their management of a migration crisis in Ceuta, a Spanish enclave in North Africa that witnessed a mass influx of Moroccan migrants.

The outcry of the victims

Those who have potentially or definitively fallen victim to Pegasus expressed their outrage and concerns surrounding this spying scandal. They vehemently decried it as a grave infringement upon their fundamental rights and vociferously demanded both explanations and accountability. Furthermore, they sought access to the findings of the judicial investigation and the data collected by the spyware.

For example, Quim Torra expressed feeling “violated” and “humiliated” by the intrusive spying. He squarely pointed fingers at the Spanish state and demanded an apology from Prime Minister Sánchez. Torra also declared his intent to pursue legal action against NSO Group and CNI.

Likewise, Pedro Sánchez conveyed his profound worry and anger regarding the spying. He committed to seeking clarifications from Morocco and Israel while simultaneously reinforcing his government’s cybersecurity measures.

What are the consequences of the spying?

Spying by Pegasus inflicted severe consequences on the victims, as well as society and democracy. It violated the victims’ right to privacy, freedom of expression, freedom of information, and presumption of innocence. Additionally, it jeopardized the security, reputation, and well-being of the victims.

Pegasus’ spying activities also eroded trust and cooperation among various actors and institutions. It fostered an atmosphere of suspicion and hostility between Spain and Morocco, neighboring countries with historical and economic ties. Furthermore, it deepened divisions between Madrid and Barcelona, two regions with political and cultural distinctions. The spying undermined the credibility and legitimacy of the Spanish government and its intelligence service.

Moreover, Pegasus’ spying efforts raised awareness and concerns regarding the dangers and abuses of cyber-surveillance. It revealed the lack of control and accountability over the use of spyware by governments and private companies. The spying underscored the necessity for enhanced protection and regulation for human rights defenders, journalists, activists, and other vulnerable groups.

The cost of Pegasus by country: an estimation based on the available sources

NSO Group, an Israeli company specialized in cyber-surveillance, developed Pegasus, a spyware capable of infecting smartphones and accessing their data, including messages, photos, contacts, and location. Pegasus can also activate the microphone and camera of the phone, effectively turning it into a spying tool. But how much does it cost to use Pegasus? And which countries can afford it? This section will attempt to answer these questions based on the available information.

Firstly, the cost of using Pegasus depends on several factors, such as the number of phones targeted, the duration of surveillance, and the type of contract signed with NSO Group. According to The Guardian’s estimate, which relies on internal documents from NSO Group dating back to 2016, a license to monitor 50 smartphones cost 20.7 million euros per year at that time. Similarly, a license for monitoring 100 smartphones cost 41.4 million euros per year. It remains uncertain whether these prices have changed since 2016 or if NSO Group has offered discounts or rebates to certain clients.

Subsequently, the estimated cost of Pegasus by country derives from the number of phones targeted and the operation’s duration, using the average cost provided by The Guardian. These data are approximations and may vary depending on the sources. For instance, Saudi Arabia targeted approximately 15,000 numbers with Pegasus, according to Le Monde, but The Washington Post suggests a figure of 10,000. Likewise, Le Monde indicates that Morocco commenced using Pegasus in 2017, whereas Citizen Lab asserts it was in 2016.

Here is a summary table of the estimates of the cost of Pegasus by country:

Country Number of Phones Targeted Duration of Operation (years) Estimated Cost (in millions of euros)
Spain 60 6 248.4
Saudi Arabia 10 000 5 2070
Azerbaijan 5 000 4 828
Bahrain 3 000 3 372.6
Kazakhstan 1 500 2 124.2
Mexico 15 000 2 1242
Morocco 10 000 5 2070
Rwanda 3 500 4 579.6
Hungary 300 4 49.8
India 1 000 3 124.2
United Arab Emirates 10 000 5 2070

Finally, the total estimated cost of Pegasus for these ten countries would be about 10.5 billion euros over a period of five years.

The cost of Pegasus compared to other indicators

In addition to these estimates, we can also compare the cost of Pegasus with other indicators or expenditures, such as the average income or the budget of a country. This can help us to gain insight into the scale and impact of Pegasus.

For instance, according to Statista, Spain’s average annual income per capita in 2020 was $30,722. El País reported the budget of the Spanish Intelligence Agency (CNI) to be $331 million in 2020, while El Mundo stated that Catalonia’s budget was $40 billion in the same year.

Here is a summary table of the data:

Source Estimated Cost of Pegasus
Le Monde $7 to $20 million per year for 50 to 100 smartphones
TEHTRIS $9 million for 10 targets, $650,000 for a single target
Alain Jourdan $500 million for Spain (Source credibility unclear)
Average Income in Spain (2020) $30,722 per year
Budget of CNI (Spanish Intelligence Agency, 2020) $331 million
Budget of Catalonia (2020) $40 billion

The table demonstrates that Pegasus costs are very high compared to other indicators or expenditures. For instance, according to our previous estimation in the preceding section, Spain would have expended about 248.4 million euros over six years to monitor 60 phones with Pegasus. This amount equals approximately 8 times the budget of the Spanish Intelligence Agency (CNI) in 2020 or about 6% of Catalonia’s budget in the same year. Furthermore, this sum is equivalent to about 8,000 times the average annual income per capita in Spain in 2020.

In conclusion comparison

This comparison highlights that Pegasus represents a significant expense for its users, funds that could have been allocated to other purposes or needs. Moreover, it emphasizes the disproportionate nature of Pegasus costs concerning its victims, often ordinary citizens or government employees.

Assessing the cost of Pegasus with certainty is challenging because it depends on several factors, such as the number of phones targeted, the duration of surveillance, and the type of contract NSO Group signed. To obtain a clearer and more comprehensive view of the cost and scope of Pegasus use, access to NSO Group’s and its clients’ internal data would be necessary.

Statistics on Pegasus: a glimpse into the scale and diversity of Pegasus espionage

NSO Group, an Israeli company specialized in cyber-surveillance, developed Pegasus, a spyware. Pegasus can infect smartphones and access their data, such as messages, photos, contacts, and location. Pegasus can also activate the microphone and camera of the phone, turning it into a spying tool.

But who are the victims of Pegasus? And how many are they? In this section, we will present some statistics based on the available data.

It is important to note that these statistics are not comprehensive, as a sample of 50,000 phone numbers selected by NSO Group’s clients as potential targets forms the basis for them. Forbidden Stories and Amnesty International obtained this sample and shared it with a consortium of media outlets that conducted an investigation. The actual number of Pegasus targets may be much higher, as NSO Group claims to have more than 60 clients in 40 countries.

According to The Guardian’s analysis of the sample:

  • More than 1,000 individuals in 50 different countries have been confirmed as successfully infected with Pegasus.
  • Over 600 politicians and government officials, including heads of state, prime ministers, and cabinet ministers, were identified as potential targets.
  • More than 180 journalists working for prominent media outlets like CNN, The New York Times, Al Jazeera, or Le Monde were selected as potential targets.
  • Over 85 human rights activists, including members of organizations like Amnesty International and Human Rights Watch, were identified as potential targets.

According to Le Monde’s analysis of the same sample:

  • Morocco selected more than 15,000 individuals as potential targets between 2017 and 2019.
  • Mexico selected over 10,000 potential targets between 2016 and 2017.
  • Saudi Arabia selected more than 1,400 potential targets between 2016 and 2019.
  • India selected over 800 potential targets between 2017 and 2019.

Here is a summary table of the key findings from both sources:

Data Source Key Findings
The Guardian (Sample of 50,000 Numbers) Over:

  • 1,000 infections in 50 countries
  • 600 politicians and government officials targeted
  • 180 journalists selected as potential targets
  • 85 human rights activists identified as potential targets
Le Monde (Sample of 50,000 Numbers) Over:

  • 15,000 potential targets in Morocco (2017-2019)
  • 10,000 potential targets in Mexico (2016-2017)
  • 1,400 potential targets in Saudi Arabia (2016-2019)
  • 800 potential targets in India (2017-2019)

These statistics reveal Pegasus surveillance’s extensive reach and diversity, affecting a wide range of individuals and countries with varying motivations and interests. Moreover, they show that Pegasus surveillance has been ongoing for several years without anyone detecting or stopping it.

In conclusion, these statistics provide a glimpse into the scale and diversity of Pegasus espionage. However, they are not exhaustive and may not fully reflect the true extent of Pegasus surveillance. To have a clearer and more complete picture of the victims and the consequences of Pegasus, access to the internal data of NSO Group and its clients would be necessary.

Pegasus Datasheet: a summary of the features and capabilities of Pegasus spyware

Pegasus is a spyware developed by the Israeli company NSO Group, designed for remote monitoring of mobile phone activities. Pegasus can infect smartphones and access their data, such as messages, calls, contacts, photos, videos, location, microphone, and camera. Pegasus can also control some functions of the phone, such as enabling or disabling Wi-Fi, Bluetooth, and more. Pegasus can infect phones through different methods, such as malicious link delivery or the insidious “zero-click” technique, which does not require any user interaction. The duration and frequency of Pegasus surveillance depend on the contract signed with NSO Group, which can vary from client to client.

Below is a datasheet detailing Pegasus, including price estimates and periodicity:

CHARACTERISTIC VALUE ATTACK VECTOR
Name Pegasus  
Developer NSO Group  
Type Spyware  
Function Remote monitoring of mobile phone activities  
Infection Method Malicious link delivery or the insidious “zero-click” technique Email, SMS, Web Browsing, WhatsApp, Zero-Click
Data Access Messages, calls, contacts, photos, videos, location, microphone, camera  
Function Access Capable of enabling/disabling Wi-Fi, Bluetooth, and more  
Periodicity Varied, dependent on contract duration and frequency of updates  
Price Estimate $7 to $20 million per year for 50 to 100 smartphones

Assessing the Pegasus Threat Level After Security Updates and Utilizing Anti-Pegasus Tools

Pegasus is a spyware that exploits security flaws in the operating systems of phones, such as iOS or Android. To reduce the level of threat of Pegasus, one of the ways is to update and patch these operating systems regularly, to fix the vulnerabilities that Pegasus can use.

How security updates can protect the devices from Pegasus

In September 2021, Apple released iOS 14.8 and macOS 11.6 as security updates to protect its devices from the zero-click exploit used by Pegasus. Citizen Lab discovered this exploit, called FORCEDENTRY, in August 2021. FORCEDENTRY allowed Pegasus to infect iPhones without any user interaction. Apple urged its users to install the updates as soon as possible to protect themselves from Pegasus.

Google also released security updates for Android devices in August 2021, according to Linternaute. These updates fixed several vulnerabilities that Pegasus or other spyware could exploit. Google did not specify if these vulnerabilities were related to Pegasus, but it advised its users to update their devices regularly to ensure their security.

However, updating and patching the operating systems may not be enough to prevent or detect Pegasus infections. Pegasus can adapt to security updates and use new exploits that security experts have not yet discovered or fixed.

Advanced Detection and Protection Against Pegasus Spyware

In the ongoing effort to combat the sophisticated Pegasus spyware, cybersecurity experts have developed advanced tools and methods to detect and neutralize such threats. Kaspersky, a leader in global cybersecurity, has recently unveiled a groundbreaking approach that enhances our capability to identify and mitigate the impact of iOS spyware including Pegasus, as well as newer threats like Reign and Predator.

Kaspersky’s Innovative Detection Method

Leveraging the untapped potential of forensic artifacts, Kaspersky’s Global Research and Analysis Team (GReAT) has introduced a lightweight yet powerful method to detect signs of sophisticated spyware infections. By analyzing the Shutdown.log found within the iOS sysdiagnose archive, researchers can now identify anomalies indicative of a Pegasus infection, such as unusual “sticky” processes. This method provides a minimally intrusive, resource-efficient way to pinpoint potential spyware compromises.

Empowering Users with Self-Check Capabilities

To democratize the fight against spyware, Kaspersky has developed a self-check tool available to the public. This utility, based on Python3 scripts, allows users to independently extract, analyze, and interpret data from the Shutdown.log file. Compatible with macOS, Windows, and Linux, this tool offers a practical solution for users to assess their devices’ integrity.

Comprehensive User Protection Strategies

Beyond detection, protecting devices from sophisticated spyware demands a multifaceted approach. Kaspersky recommends several proactive measures to enhance device security:

  • Reboot Daily: Regular reboots can disrupt the persistence mechanisms of spyware like Pegasus, which often relies on zero-click vulnerabilities for infection.
  • Enable Lockdown Mode: Apple’s Lockdown Mode has shown effectiveness in thwarting malware infections by minimizing the attack surface available to potential exploiters.
  • Disable iMessage and Facetime: Given their popularity as vectors for exploitation, disabling these services can significantly reduce the risk of infection.
  • Stay Updated: Promptly installing the latest iOS updates ensures that known vulnerabilities are patched, closing off avenues for spyware exploitation.
  • Exercise Caution with Links: Avoid clicking on unsolicited links, a common method for delivering spyware through social engineering tactics.
  • Regular Checks: Utilizing tools like MVT (Mobile Verification Toolkit) and Kaspersky’s utilities to analyze backups and sysdiagnose archives can aid in early detection of malware.

By integrating these practices, users can significantly bolster their defenses against the most advanced spyware, reducing the likelihood of successful infiltration and ensuring greater digital security and privacy.

Technological Innovations in Spyware Defense: The Case of DataShielder NFC HSM

As nations grapple with policy measures to regulate the use of commercial spyware, technological innovators like Freemindtronic are stepping up to offer robust defenses for individuals against invasive tools like Pegasus. The DataShielder NFC HSM Defense, equipped with EviCore NFC HSM technology, represents a leap forward in personal cybersecurity, offering a suite of features designed to safeguard data and communications from sophisticated spyware threats.

DataShielder NFC HSM: A Closer Look

DataShielder NFC HSM Defense utilizes contactless encryption and segmented key authentication, securely stored within an NFC HSM, to protect users’ digital lives. This groundbreaking approach ensures that secret keys, the cornerstone of digital security, remain out of reach from spyware, thus maintaining the confidentiality and integrity of sensitive information across various communication protocols.

DataShielder NFC HSM Defense: a solution against spyware

Another technology can help users protect themselves from Pegasus and other spyware. This is DataShielder NFC HSM Defense with EviCore NFC HSM, a solution that effectively fights against applications and spyware such as Pegasus. It is an alternative that secures contactless encryption and segmented key authentication system stored encrypted in NFC HSM. Thus, the secret keys are physically externalized and not accessible to the spyware. DataShielder NFC HSM Defense with EviCypher NFC HSM encrypts all types of sensitive data without ever logging the data unencrypted. The user can encrypt all types of data from his contactless phone in volatile memory, including Email, SMS, MMS, RCS, Chat, all messaging in general, all types of messaging, including satellite, without ever saving his texts unencrypted. DataShielder NFC HSM also works in air gap as well as on all types of NFC, Wifi, Bluetooth, Lan, Wan, Camera communication protocols that it encrypts end-to-end from NFC HSM

DataShielder NFC HSM Defense: additional features

In the Defense version of DataShielder NFC HSM, it integrates EviCall NFC HSM technology, which allows users to physically outsource phone contacts and make calls by automatically erasing the call histories of the phone, including encrypted and unencrypted SMS linked to that call number.

DataShielder NFC HSM also includes Evipass NFC HSM contactless password manager technology. It is therefore compatible with EviCore NFC HSM Browser Extension technology. In particular, it carries out all types of autofill and autologin operations. Thus, DataShielder NFC HSM not only allows you to connect by autofilling the traditional login and password identification fields on the phone, whether through applications or online accounts. But also also and on the types of online accounts (lan and wan), applications, software. DataShielder NFC HSM Defense also includes EviKeyboard BLE technology which also extends the use of keys greater than 256 bit. This virtual Bluetooth keyboard allows you to authenticate on the command line, on all types of home automation, electronic, motherboard bios, TMP2.0 key, which accepts the connection of a keyboard on a USB port. All these operations are end-to-end encrypted from NFC HSM up to more than 50 meters away via Bluetooth encrypted in AES-128.

To encrypt sensitive data from their phone, the user will do it from their secret keys only stored in their NFC HSM. They can also do it from their computer using the NFC HSM. This is possible thanks to the interoperability and backward compatibility of the DataShielder NFC HSM Defense ecosystem, which works independently but is interoperable on all Android computer and telephone systems with NFC technology. For example, users can encrypt files, photos, videos, and audio on their phones without ever exposing them to security breaches on the phone or computer.

This is the EviCypher NFC HSM technology dedicated to the encryption and management of AES 256 and RSA 4096 encryption keys.

Similarly, DataShielder also includes EviOTP NFC HSM technology, also in DataShielder NFC HSM Defense, which secures and manages OTP (TOTP and HOTP) secret keys.

Here are all the links : EviPass NFC HSMEviOTP NFC HSMEviCypher NFC HSMEviCall NFC HSM, EviKeyboard BLE

DataShielder NFC HSM Defense vs Pegasus: a comparison table

Data Pegasus DataShielder NFC HSM Defense
Messages, chats Can read and record them unencrypted Encrypts them end-to-end with keys physically externalized in the NFC HSM
Phone contacts Can access and modify them Externalizes and encrypts them in the NFC HSM
Emails Can intercept and read them Encrypts them with the OpenPGP protocol and signs them with the NFC HSM
Photos Can access and copy them Encrypts them with the NFC HSM and stores them in a secure space
Videos Can watch and record them Encrypts them with the NFC HSM and stores them in a secure space
Encrypted messages scanned from the camera Can decrypt them if he has access to the encryption key Encrypts them with the NFC HSM and does not leave any trace of the encryption key
Conversation histories from contacts stored in the NFC HSM Can access and analyze them Erases them automatically after each call or message
Usernames and passwords Can steal and use them Externalizes and encrypts them in the NFC HSM with EviPass technology
Secret keys of OTP Can compromise and impersonate them Externalizes them physically in the NFC HSM with EviOTP technology

Bridging the Gap Between Technology and Privacy

In an era where spyware like Pegasus poses unprecedented threats to personal privacy and security, solutions like DataShielder NFC HSM Defense emerge as essential tools in the individual’s cybersecurity arsenal. By leveraging such technologies, users can significantly mitigate the risk of spyware infections, reinforcing the sanctity of digital privacy in the face of evolving surveillance tactics.

The level of threat of Pegasus in different cases

The level of threat of Pegasus depends on many factors, such as the type and version of the operating system, the frequency and quality of the updates and patches, the availability and effectiveness of the tools, and the behavior and awareness of the users. It is therefore difficult to measure it precisely or universally, as it may vary according to different scenarios and situations.

However, we can try to give some estimates or ranges of levels, based on assumptions or approximations. For example, we can use a scale from 1 (lowest) to 10 (highest) to indicate how likely it is for a device to be infected by Pegasus in different cases:

Case Level of threat
A device with an outdated operating system that has not been updated for a long time 9/10
A device with an updated operating system that has been patched recently 5/10
A device with an updated operating system that has been patched recently and uses antivirus software 3/10
A device with an updated operating system that has been patched recently and uses antivirus software and VPN software 2/10
A device with an updated operating system that has been patched recently and uses antivirus software, VPN software, and anti-spyware software 1/10
A device with an updated operating system that has been patched recently and uses DataShielder NFC HSM 0/10

Latest affairs related to Pegasus

Since the revelations of Forbidden Stories and Amnesty International in July 2021, several new developments have occurred in relation to Pegasus spying. Here are some of them:

  • October 2023, The former head of the Spanish intelligence services has been charged with spying on the regional president of Catalonia, Pere Aragonès, using the Pegasus software, the Spanish justice announced on Monday. Paz Esteban, who was dismissed last year by the government of Pedro Sánchez after the scandal broke out, has been summoned by the Barcelona judge in charge of the case on December 131. The judge said that the facts reported by the moderate separatist leader have the “characteristics” of “possible criminal offenses such as illegal wiretapping and computer espionage
  • In October 2021, Paz Esteban López, the former head of CNI, was charged with crimes against privacy and misuse of public funds for allegedly ordering the spying on Catalan politicians with Pegasus. She is the first high-ranking official to face legal consequences for using Pegasus in Spain.
  • In September 2021, NSO Group announced that it was temporarily suspending its services to several government clients after being accused of facilitating human rights abuses with Pegasus. The company did not specify which clients were affected by this decision.
  • In August 2021, Apple released an urgent security update for its devices after discovering a zero-click exploit that allowed Pegasus to infect iPhones without any user interaction. The exploit, called FORCEDENTRY, was used by NSO Group to target activists, journalists and lawyers around the world. Apple urged its users to install the update as soon as possible to protect themselves from Pegasus.
  • In July 2021, the French government launched an investigation into the alleged spying on President Emmanuel Macron and other senior officials by Morocco using Pegasus. Morocco denied any involvement in the spying and sued Amnesty International and Forbidden Stories for defamation. France also summoned the Israeli ambassador to Paris to demand explanations about NSO Group’s activities.
  • In July 2021, the Israeli government formed a task force to review the allegations against NSO Group and its export licenses. The task force included representatives from the defense, justice and foreign ministries, as well as from the Mossad and the Shin Bet. The task force was expected to report its findings within a few weeks.

These developments show that Pegasus spying has triggered legal, diplomatic and political reactions in different countries. They also show that Pegasus spying has exposed the vulnerabilities and the challenges of cybersecurity in the digital age.

International Policy Measures Against Spyware Misuse

In a landmark move reflecting growing global concern over the misuse of commercial spyware, the United States announced in February 2024 its decision to impose visa restrictions on individuals involved in the abuse of such technologies. This policy, aimed at curbing the proliferation of weapons-grade commercial spyware like Pegasus, marks a significant stride in international efforts to safeguard against digital espionage threats to national security, privacy, and human rights.

The US Stance on Spyware Regulation

The Biden administration’s policy will potentially impact major US allies, including Israel, India, Jordan, and Hungary, underscoring the administration’s commitment to countering the misuse of spyware. This comes on the heels of earlier measures, such as placing Israel’s NSO Group on a commerce department blacklist and prohibiting the US government’s use of commercial spyware, signaling a robust stance against the unregulated spread of spyware technologies.

Global Implications and Diplomatic Efforts

Secretary of State Antony Blinken’s statement linking the misuse of spyware to severe human rights violations highlights the gravity with which the US views the global spyware issue. The policy introduces a mechanism for enforcing visa restrictions on those believed to be involved in or benefiting from the misuse of spyware, sending a strong message about the US’s intolerance for such practices.

A Step Towards Greater Accountability

By targeting individuals involved in the surveillance, harassment, and intimidation of journalists, activists, and dissenters, the US aims to foster a more accountable and ethical global spyware industry. This visa ban, applicable even to individuals from visa waiver countries, represents an “important signal” about the risks associated with the spyware sector, emphasizing the need for international cooperation in addressing these challenges.

Spyware with multiple detrimental impacts

Pegasus is not only a spyware with a high financial cost for its users, but it also entails, whether it is used legitimately or not, a human, social, political and environmental cost for its victims and society as a whole. It is difficult to precisely quantify the cost of the damages caused by the use of Pegasus due to numerous factors and variables that can vary across countries, sectors and periods. However, we can provide some rough estimates and examples to illustrate the scope and diversity of the impacts of the use of Pegasus.

Financial Cost

The financial cost of the damages inflicted by Pegasus can be measured on several fronts:

  • Cost to Victims: Individuals spied on by Pegasus may suffer direct or indirect financial losses, stemming from breaches of their privacy, disclosure of personal or professional information, manipulation, or theft of their financial or tax-related data. For example, a journalist might lose their job or credibility due to information revealed by Pegasus; a lawyer could lose a lawsuit or a client due to a disclosed strategy, and an activist might lose funding or security due to an exposed campaign.
  • Cost to Businesses: Companies targeted by Pegasus may face direct or indirect financial losses related to intellectual property violation, unfair competition, industrial espionage, corruption, and more. For instance, a business could lose a contract or market share because of exposed bids; its reputation and trustworthiness could suffer due to a Pegasus-related scandal, and its competitiveness and profitability could diminish from a compromised trade secret.
  • Cost to States: Nations subject to Pegasus espionage may experience direct or indirect financial losses tied to sovereignty violations, threats to national security, interference in domestic and foreign affairs, among others. An example includes a country’s stability or legitimacy being jeopardized due to a Pegasus-facilitated coup; a nation losing influence or alliances because of negotiations undermined by Pegasus; or a state’s development or environment suffering from a Pegasus-sabotaged project.

Geopolitical Cost

The geopolitical cost of Pegasus-induced damages can be measured on various fronts:

  • Cost to International Relations: The use of Pegasus by some states to spy on others can lead to diplomatic tensions, armed conflicts, economic sanctions, and cooperation ruptures. For example, the espionage of French President Emmanuel Macron by Morocco triggered a crisis between the two nations; spying on Indian Prime Minister Narendra Modi by China escalated their border dispute, and Israeli espionage of Iranian President Hassan Rouhani compromised the nuclear agreement between the two countries.
  • Cost to International Organizations: Pegasus’ deployment by certain states to spy on international organizations can result in violations of international law, human rights abuses, and hindrances to multilateralism. For instance, spying on UN Secretary-General Antonio Guterres by the United States undermined the organization’s independence and impartiality. Similarly, espionage targeting the International Criminal Court by Israel threatened international justice and peace, while spying on the World Health Organization by China disrupted pandemic management.

Economic Cost

The economic cost of the damages caused by Pegasus can be assessed across different dimensions:

  • Cost to Economic Growth: The use of Pegasus by certain states or private actors to spy on other states or private actors can lead to market distortions, productivity losses, capital flight, and offshoring. For example, the espionage targeting the airline company Emirates by Qatar reduced its competitiveness and profitability. Similarly, spying on the oil company Petrobras by the United States triggered an economic and political crisis in Brazil. Additionally, spying on Mexico’s central bank by Venezuela facilitated money laundering and terrorism financing.
  • Cost to Innovation: The utilization of Pegasus by certain states or private actors to spy on other states or private actors can result in patent theft, counterfeiting, hacking, and cyberattacks. For instance, spying on pharmaceutical company Pfizer by China allowed the latter to replicate its COVID-19 vaccine. Simultaneously, espionage against technology giant Apple by North Korea enabled the creation of its smartphone. Furthermore, spying on space company SpaceX by Russia allowed the latter to sabotage its launches.

Human, Social, and Environmental Cost

The human, social, and environmental cost of Pegasus-induced damages can be measured across several aspects:

  • Cost to Human Rights: The use of Pegasus by certain states or private actors to spy on vulnerable individuals or groups can result in violations of the right to life, freedom, security, dignity, and more. For example, the spying on journalist Jamal Khashoggi by Saudi Arabia led to his assassination. Similarly, espionage targeting activist Edward Snowden by the United States led to his exile. Additionally, the espionage of dissident Alexei Navalny by Russia resulted in his poisoning.
  • Cost to Democracy: The deployment of Pegasus by certain states or private actors to spy on political or social actors can lead to infringements on pluralism, transparency, participation, representativeness, and more. For instance, spying on French President Emmanuel Macron by Russia attempted to influence the 2017 French presidential election. Similarly, spying on the Yellow Vest movement by Morocco aimed to weaken the French social movement in 2018. Additionally, espionage against President Joe Biden by Iran sought to infiltrate his transition team in 2020.
  • Cost to the Environment: The use of Pegasus by certain states or private actors to spy on organizations or individuals committed to environmental protection can result in damage to biodiversity, climate, natural resources, and more. For example, spying on Greenpeace by Japan hindered its efforts against whale hunting. Similarly, espionage against the WWF by Brazil facilitated deforestation in the Amazon. Additionally, the spying on climate activist Greta Thunberg by Russia aimed to discredit her climate movement.
  • Cost to Intangibles: The use of Pegasus by certain states or private actors to spy on individuals or groups with symbolic, cultural, moral, or spiritual value can result in losses of meaning, trust, hope, or faith. For instance, espionage against Pope Francis by Turkey undermined his moral and religious authority. Similarly, spying on the Dalai Lama by China compromised his spiritual and political status. Additionally, the espionage of Nelson Mandela by South Africa tarnished his historical and humanitarian legacy.

The Risk of Diplomatic Conflict Arising from Pegasus

The utilization of Pegasus by some states to spy on others can give rise to the risk of diplomatic conflict, which can have severe consequences for international peace and security. The likelihood of diplomatic conflict depends on several factors, including:

  • Intensity and Duration of Espionage: The more extensive and prolonged the espionage, the more likely it is to provoke a strong and lasting reaction from the spied-upon state.
  • Nature and Status of Targets: More important and sensitive targets are more likely to trigger a strong and immediate reaction from the spied-upon state. For instance, spying on a head of state or a minister is more serious than spying on a bureaucrat or diplomat.
  • Relationship and Context Between States: States with tense or conflictual relationships are more likely to provoke a strong and hostile reaction from the spied-upon state. For instance, espionage between rival or enemy states is more serious than espionage between allied or neutral states.

The risk of diplomatic conflict can manifest at various levels:

  • Bilateral Level: This is the most direct and frequent level, where two states clash due to espionage. Possible reactions include official protests, summoning or expelling an ambassador, breaking or freezing diplomatic relations, etc.
  • Regional Level: This level involves a state seeking support from its neighbors or regional partners to bolster its position or condemn the espionage. Possible reactions include joint declarations, collective resolutions, economic or political sanctions, etc.
  • International Level: At this level, a state calls upon international organizations or global actors to support its position or condemn the espionage. Possible reactions include referring the matter to an international court, resolutions by the UN Security Council, humanitarian or military sanctions, etc.

The risk of diplomatic conflict can have various consequences:

  • Political Consequences: It can lead to a deterioration or rupture of relations between the involved states, a loss of credibility or legitimacy on the international stage, internal political instability or crisis, etc.
  • Economic Consequences: It can result in reduced or suspended trade between the involved states, a loss of competitiveness or growth, capital flight or frozen investments, etc.
  • Social Consequences: It can lead to increased or exacerbated tensions or violence among the populations of the involved states, a loss of trust or solidarity, a rise or reinforcement of nationalism or extremism, etc.

Conclusion: Navigating the Pegasus Quagmire with Innovative Defenses

The saga of Pegasus spyware unveils a complex tableau of financial, human, social, political, and environmental ramifications. Pinpointing the exact toll it takes presents a formidable challenge, given the myriad of factors at play. Throughout this article, we’ve endeavored to shed light on the extensive impacts, offering insights and quantifications to bring clarity to this global concern.

Moreover, Pegasus not only incurs a direct cost but also sows the seeds of potential diplomatic strife, pitting states against each other in an invisible battlefield. The severity of these confrontations hinges on the espionage’s scope, the targets’ sensitivity, and the intricate web of international relations. Such conflicts, manifesting across various levels, can significantly strain political ties, disrupt economies, and fracture societies.

In this digital quagmire, the innovative counter-espionage technologies developed by Freemindtronic emerge as a beacon of hope. They offer a testament to the power of leveraging cutting-edge solutions to fortify our digital defenses against the invasive reach of spyware like Pegasus. By integrating such advanced protective measures, individuals and organizations can significantly enhance their cybersecurity posture, safeguarding their most sensitive data and communications in an increasingly surveilled world.

This piece aims to illuminate the shadowy dynamics of Pegasus spyware, drawing back the curtain on its profound implications. For those keen to explore further, we invite you to consult the sources listed below. They serve as gateways to a deeper understanding of Pegasus’s pervasive influence, the ongoing efforts to counteract its invasive reach, and the pivotal role of technologies like those from Freemindtronic in these endeavors.

In a world where digital surveillance perpetually evolves, staying informed, vigilant, and equipped with the latest in counter-espionage technology is paramount. As we navigate these challenges, let us engage in ongoing dialogue, advocate for stringent regulatory measures, and champion the development of robust cybersecurity defenses. Together, we can confront the challenges posed by Pegasus and similar technologies, safeguarding our collective privacy, security, and democratic values in the digital age.

Sources

In crafting this article, we have drawn upon a selection of reputable and verified web sources. Our sources are chosen for their commitment to presenting facts objectively and respecting the presumption of innocence.

This article has been meticulously crafted, drawing upon a diverse array of reputable and verified web sources. These sources have been selected for their unwavering commitment to factual accuracy, objective presentation, and respect for the presumption of innocence. Our investigation delves deep into the complex web of surveillance technology, focusing on the notorious Pegasus spyware developed by NSO Group and the global efforts to detect, regulate, and mitigate its invasive reach. The article sheds light on groundbreaking detection methods, international policy measures against spyware misuse, and the pressing need for enhanced cybersecurity practices.

We analyzed many sources including:

In summary

Additional references from a range of international publications provide further insights into the deployment, implications, and countermeasures associated with Pegasus spyware across various countries, including Saudi Arabia, Azerbaijan, Bahrain, Kazakhstan, Mexico, Morocco, Rwanda, Hungary, India, and the United Arab Emirates. These articles collectively highlight the global challenge posed by Pegasus, the evolving landscape of digital espionage, and the concerted efforts required to safeguard privacy and security in the digital age.

Estimating the Global Reach and Financial Implications of Pegasus Spyware

The deployment of Pegasus spyware across various nations reveals not only the extensive reach of NSO Group’s surveillance tool but also underscores the significant financial and ethical costs associated with its use. The following insights, derived from reputable news sources, offer a glimpse into the scale of Pegasus’s deployment worldwide and its impact on targeted countries:

  1. According to the French Le Monde, Saudi Arabia targeted about 15,000 phone numbers with Pegasus. The cost of one license can be as high as Rs 70 lakh. With one license, multiple smartphones can be tracked. As per past estimates of 2016, for spying on just 10 people using Pegasus, NSO Group charges a minimum of around Rs 9 crore.
  2. The American The Washington Post reported that Saudi Arabia started using Pegasus in 2018. The FBI also confirmed that it obtained NSO Group’s powerful Pegasus spyware in 2019, suggesting that it bought access to the Israeli surveillance tool to “stay abreast of emerging technologies and tradecraft”.
  3. The British The Guardian stated that Azerbaijan aimed at about 5,000 phone numbers with Pegasus. The country is among the 10 governments that have been the most aggressive in deploying the spyware against their own citizens and those of other countries.
  4. As per the American The Washington Post, Azerbaijan began using Pegasus in 2019. The country has been accused of using the spyware to target journalists, activists, and opposition figures, as well as foreign diplomats and politicians.
  5. In the case reported by the French Le Monde, Bahrain focused on about 3,000 phone numbers with Pegasus. The country has been using the spyware since 2020 to target dissidents, human rights defenders, and members of the royal family.
  6. Mentioned in the American The Washington Post, Bahrain initiated Pegasus use in 2020. The country is one of the NSO Group’s oldest customers, having signed a contract with the company in 2016.
  7. As disclosed by the British The Guardian, Kazakhstan directed attention towards approximately 1,500 phone numbers with Pegasus. The country has been using the spyware since 2021 to target journalists, activists, and opposition figures, as well as foreign diplomats and politicians.
  8. According to the American The Washington Post, Kazakhstan commenced Pegasus usage in 2021. The country is one of the newest customers of NSO Group, having signed a contract with the company in 2020.
  9. According to claims made by the Mexican Aristegui Noticias, Mexico targeted about 15,000 phone numbers with Pegasus. The country is the largest known client of NSO Group, having spent at least $61m on the spyware between 2011 and 2017.
  10. As reported by the American The Washington Post, Mexico began Pegasus use in 2020. The country has been using the spyware to target journalists, activists, lawyers, and politicians, as well as the relatives of the 43 students who disappeared in 2014.
  11. As detailed in the French Le Monde, Morocco focused on about 10,000 phone numbers with Pegasus. The country is one of the most prolific users of the spyware, having targeted journalists, activists, lawyers, and politicians, as well as foreign heads of state and government.
  12. Confirmed by the Canadian organization Citizen Lab, Morocco initiated Pegasus usage in 2016. The country is one of the oldest customers of NSO Group, having signed a contract with the company in 2014.
  13. According to findings reported by the British The Guardian, Rwanda honed in on around 3,500 phone numbers with Pegasus. The country has been using the spyware to target dissidents, journalists, and human rights defenders, as well as foreign critics and rivals.
  14. As indicated by the American The Washington Post, Rwanda started Pegasus usage in 2019. The country is one of the newest customers of NSO Group, having signed a contract with the company in 2018.
  15. In the report from the French Le Monde, Hungary aimed at about 300 phone numbers with Pegasus. The country is the only EU member state known to have used the spyware, having targeted journalists, activists, lawyers, and opposition figures.
  16. As conveyed by the Hungarian Direkt36, Hungary initiated Pegasus use in 2018. The country is one of the newest customers of NSO Group, having signed a contract with the company in 2017.
  17. As outlined in the Indian The Wire, India directed attention towards approximately 1,000 phone numbers with Pegasus. The country is one of the largest users of the spyware, having targeted journalists, activists, lawyers, and politicians, as well as the leader of the main opposition party.
  18. According to the British The Guardian, India began Pegasus use in 2019. The country is one of the newest customers of NSO Group, having signed a contract with the company in 2018.
  19. According to the information provided by the French Le Monde, the United Arab Emirates honed in on around 10,000 phone numbers with Pegasus. The country is one of the most aggressive users of the spyware, having targeted journalists, activists, lawyers, and politicians, as well as foreign heads of state and government.
  20. Confirmed by the Canadian organization Citizen Lab, the United Arab Emirates started Pegasus usage in 2016. The country is one of the oldest customers of NSO Group, having signed a contract with the company in 2013.
  21. According to the European Parliament recommendation of 15 June 2023, the EU and its Member States have been affected by the use of Pegasus and equivalent surveillance spyware, which constitutes a serious threat to the rule of law, democracy, human rights and fundamental freedoms. The recommendation calls for a global moratorium on the sale and use of such technologies until robust safeguards are established.
  22. According to the article by Malwarebytes, Pegasus spyware and how it exploited a WebP vulnerability, the spyware exploited a vulnerability in the WebP image format, which allows for lossless compression and restoration of pixels. The article explains how the attackers created specially crafted image files that caused a buffer overflow in the libwebp library, used by several programs and browsers to support the WebP format.
  23. According to the article by ZDNet, ‘Lawful intercept’ Pegasus spyware found deployed in 45 countries, the spyware has been used by government agencies across the world to conduct cross-border surveillance, violating international law and human rights. The article cites a report by Citizen Lab, which identified 45 countries where Pegasus operators may be conducting surveillance operations.
  24. According to the article by The Guardian, Experts warn of new spyware threat targeting journalists and political opponents, a new spyware with hacking capabilities comparable to Pegasus has emerged, developed by an Israeli company called Candiru. The article cites a report by Citizen Lab, which found evidence that the spyware has been used to target journalists, political opposition figures and an employee of an NGO.

DataShielder HSM Fortress Award 2023 from FullSecure: the Andorran serverless and databaseless encryption solution

DataShielder HSM, FullSecure's Andorran solution featuring Freemindtronic technologies, wins the 2023 Fortress Award

DataShielder HSM, FullSecure’s Andorran solution featuring Freemindtronic technologies, wins the 2023 Fortress Award

We are proud to announce that our Andorran DataShielder HSM solution from FullSecure, developed by Freemindtronic, has won the Fortress 2023 Cyber Security Award in encryption in the product and service category. This award, awarded by the Business Intelligence Group, recognizes the excellence and innovation of companies around the world, products and people in the field of cybersecurity. DataShielder HSM from FullSecure is a serverless encryption solution that uses EviCore HSM OpenPGP technology from Freemindtronic. This technology enables to create HSM (Hardware Security Module) on any type of device (computer, phone, cloud, HD, SSD, SD, USB media) to encrypt and sign any data.

DataShielder HSM is an innovative solution that allows managing and generating many types of tokens (identifiers, passwords, certificates, encryption keys, etc.) on any available medium, whether connected or not. It offers a high level of security and performance, by encrypting, signing and authenticating data with keys stored in self-created secure hardware modules. Thus, DataShielder HSM is designed to transform any device into a HSM (Hardware Security Module), without server, without database, totally anonymous, untraceable and undetectable. The DataShielder HSM range is a complete ecosystem that meets many needs in terms of safety, cybersecurity, especially in mobility.

DataShielder HSM also incorporates the EviSign technology developed by Freemindtronic, which allows electronically signing documents with a legally recognized value. EviSign uses the OpenPGP protocol to ensure the integrity, authenticity and non-repudiation of signatures. EviSign is compatible with all document formats (PDF, Word, Excel, etc.) and can be used with any NFC reader or smartphone.

The Fortress 2023 Cyber Security Award acknowledges the work and expertise of Freemindtronic, who offers innovative and adapted solutions to the current and future challenges of cybersecurity. Freemindtronic is proud of this distinction and thank the jury of the contest as well as their customers and partners for their trust and support.

DataShielder HSM was presented in a Dual-Use version in June 2022 at Coges Eurosatory (https://www.eurosatory.com), the international defense and security exhibition. This version allows DataShielder HSM to be used for both civil and military applications, offering a level of protection adapted to each context. The Dual-Use version of DataShielder HSM will soon be available in a civilian version by the end of October 2023, to meet the growing demand from individuals and professionals keen to protect their sensitive data.

We are very proud that DataShielder HSM from FullSecure has been awarded the Fortress Cyber Security Award 2023”, said Christine Bernard, director of FullSecure. “Our solution provides an innovative and adapted response to the current and future challenges of cybersecurity. We thank the Business Intelligence Group for this distinction, as well as our customers and partners for their trust and support.

“We are also very happy to be the first Andorran company to have applied for the Fortress Cyber ​​​​Security Award created in 2018 by the Business Intelligence Group. The Business Intelligence Group is an organization that recognizes true talent and superior performance in the business world. Its Fortress Cyber ​​Security Award aims to identify and recognize the world’s leading companies and products working to protect our data and electronic assets against a growing threat from hackers.”

Fortress Cyber security Award 2023 logo
Dylan DA COSTA FERNANDES gerent programador de DataShielder HSM a Freemindtronic premi Fortress Cybersecurity award 2023
Eric Casanova programador de DataShielder HSM a Freemindtronic premi Fortress Cybersecurity award 2023
Hugo Goncalves Oliveira co-gerent programador de DataShielder HSM a Freemindtronic premi Fortress Cybersecurity award 2023
Alex Garcia Sanchez programador de DataShielder HSM a Freemindtronic premi Fortress Cybersecurity award 2023
Adrian Serrano Gómez programador de DataShielder HSM a Freemindtronic premi Fortress Cybersecurity award 2023
Victor Gil Feliu programador de DataShielder HSM a Freemindtronic premi Fortress Cybersecurity award 2023
Jacques Gascuel Inventor de datashielder HSM CEO de Freemindtronic Andorra el Premi Fortress 2023 cat

DataShielder HSM OpenPGP: Una solució de xifratge 100% andorrana

En resum, DataShielder HSM OpenPGP és una solució innovadora que permet crear mòduls de seguretat hardware (HSM) en qualsevol tipus de suport (ordinador, telèfon, núvol, HD, SSD, SD, clau USB) per xifrar i signar qualsevol tipus de dada. Aquesta solució utilitza la tecnologia EviCore HSM OpenPGP desenvolupada per Freemindtronic, una empresa andorrana titular de patents internacionals i líder en les tecnologies NFC HSM. Aquesta tecnologia ofereix un alt nivell de seguretat i rendiment.

Es tracta del primer producte dedicat a la gestió de claus de xifratge i de xifratge per HSM 100% andorrà. En efecte, l’equip de desenvolupament de DataShielder HSM OpenPGP és 100% d’una formació de la Universitat d’Andorra, l’única universitat pública del país. La Universitat d’Andorra és reconeguda per la seva excel·lència acadèmica i la seva recerca innovadora en els àmbits de les ciències, l’enginyeria i les tecnologies de la informació. L’equip de desenvolupament de DataShielder HSM OpenPGP va ser coordinat per un enginyer de programari de la Universitat Politècnica de Catalunya (UPC) i professor de la Universitat d’Andorra. Això fa de DataShielder HSM OpenPGP el primer sistema de xifratge d’origen andorrà a haver rebut un premi internacional, el “Fortress Cybersecurity Award”.

Aquesta solució testimonia el saber fer i el potencial d’Andorra en el camp de la ciberseguretat i el xifratge de les dades. DataShielder HSM OpenPGP és una solució que respon a les necessitats actuals i futures de les empreses i els particulars que volen protegir les seves dades sensibles al núvol o als sistemes informàtics, oferint una nova solució en el camp de la sobirania de les dades.

You will soon be able to learn more about the DataShielder HSM product line at FullSecure. Without waiting you can already learn more about the Freemindtronic technologies embedded in DataShielder HSM, by clicking on the following links:

To learn more about the Fortress 2023 Cyber Security Award and other winners, you can visit the following sites:

Premsa Nacional d’Andorra:

DataShielder HSM de la revista de tecnologia Freemindtronic Fullsecure i incrustada Bondia 29 de setembre de 2023
Diari Andorra dijous 5 octubre del 2023: Fullsecure Guanya el Premi Fortress Andorra national press

News provided by Fortress® Cybersecurity Award 2023 from Business Intelligence Group

The Business Intelligence Group was founded with the mission of recognizing true talent and superior performance in the business world. Unlike other industry award programs, these programs are judged by business executives having experience and knowledge. The organization’s proprietary and unique scoring system selectively measures performance across multiple business domains and rewards those companies whose achievements stand above those of their peers.

May 31, 2023 Related Link: https://www.bintelligence.com/posts/105-people-companies-and-products-named-in-2023-fortress-cyber-security-awards

2022 Awards Cybersecurity EviCypher Technology

Gold Globee Winner 2022 Cyber Computer NFC

Awards CES Awards Distinction Excellence

Keepser Group Award CES 2022

2022 Events EviCypher NFC HSM Exhibitions Licences Freemindtronic NFC Contactless

Secure Card CES 2022

2021 Cybersecurity Distinction Excellence EviCypher Technology finalists

E&T Innovation Awards Cybersecurity

2021 Awards Communications Distinction Excellence EviCypher Technology finalists IT

E&T Innovation Awards Communications & IT

2021 Distinction Excellence The National Cyber Awards

Highly Commended at National Cyber Awards: Freemindtronic’s 2021 Success

2021 Awards Distinction Excellence finalists

Finalists The National Cyber Awards 2021

Awards Cyberculture EviCypher Technology International Inventions Geneva NFC HSM technology

Geneva International Exhibition of Inventions 2021

Awards Global Infosec Awards News Press

List of Winners Global Infosec Awards 2021

2021 Awards International Inventions Geneva

EviCypher Gold Medal 2021 of the Geneva International Inventions

2017 Awards Embedded System Awards IoT

Award 2017 MtoM & Embedded System & IoT

2017 Cybersecurity finalists

Award FIC 2017 10th Most innovative international startup

2015 finalists NFC Contactless

Finalist Contactless Services Challenge

2015 Awards Distinction Excellence EviKey & EviDisk

FIC 2015 Distinction Excellence 19th Most innovative international startup

2014 Awards Embedded System Awards EviKey & EviDisk News

The story of the first NFC hardened USB stick EviKey

2014 Awards Electronics Embedded System Awards EviKey & EviDisk

Embedded Trophy 2014 Freemindtronic

To improve in English: If you want to download images, Freemindtronic logo, you can access the Freemindtronic media kit, which contains various files and information related to the company and its products or awards. You will find the link to the media kit at the end of this article. In addition, if you prefer to read this article in another language, or download the press release, you can choose from the following options:

  • Download the press release in English by clicking here
  • Llegeix aquest article en català clica aquí

We hope you enjoyed this article and that you learned something interesting about Freemindtronic and its innovative technology.

[Kit de mitjans de Freemindtronic]

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Protect yourself from Pegasus Spyware with EviCypher NFC HSM and EviCore NFC HSM by Freemindtronic technology from Andorra

Pegasus Spyware Protection by Jacques Gascuel: This article will be updated with any new information on the topic.  

Pegasus spyware protection

Pegasus is a spyware that can hack your phone and spy on your confidential information. It has been used to attack sensitive people like journalists or politicians. Freemindtronic, an Andorran company specialized in NFC security, anti-spy and counter-espionage, offers you EviCypher NFC HSM, a device that allows you to store and manage your keys and secrets securely. With EviCypher NFC HSM, you can encrypt and decrypt your data, sign and verify your documents, authenticate and control your access, without fear of Pegasus or any other spyware accessing your data.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

How to protect yourself from Pegasus spyware with EviCypher NFC HSM

Pegasus Spyware: what it is, how it works, and how to protect yourself with EviCypher NFC HSM. In this article, we will tell you about Pegasus spyware. A global investigation revealed its misuse by governments and intelligence agencies. They target and spy on personalities around the world. We will explain what Pegasus is, how it works, who developed and sold it, and how it violated human rights, free speech, and democracy. We will also give you tips to protect yourself from this malware with EviCypher NFC HSM technology. It uses a contactless hardware security module (NFC HSM). That is, an innovative security device that lets you encrypt your data and communications on your mobile phone with your own keys that you created and stored offline.

What is Pegasus spyware and how does it work?

The features and capabilities of Pegasus spyware

Pegasus spyware is a malware that can hack your phone and access your data, calls, location, camera, and microphone. It can use security flaws in Android and iOS: silent installation. Spyware activation: missed call or hidden message.

Once installed on a phone, Pegasus spyware gains full access to SMS messages, emails, photos, contacts, calendar, GPS data, logs, and any apps and data the phone contains. In fact, the spyware can even gain access to encrypted data and messages by intercepting them prior to the encryption process. Pegasus spyware can transmit all this information to a remote server controlled by the attacker. Pegasus spyware can also self-destruct or hide its traces if it detects any attempt to detect or remove it.

The developer and seller of Pegasus spyware

NSO Group, an Israeli company founded in 2010 by ex-members of Unit 8200, develops Pegasus spyware. The Israeli military’s cyber intelligence unit. NSO Group sells its product only to government and law enforcement agencies: rescue and crime-fighting purposes. However, accusations against NSO Group: spyware sales to authoritarian regimes and human rights abusers.

How Pegasus spyware has been used to target and spy on people around the world

The Pegasus Project: a global investigation into Pegasus spyware

July 2021: seventeen media outlets exposed Pegasus spying on leaders, activists, journalists and dissidents, leading to “global human rights violations.

The Pegasus Project was led by Forbidden Stories, a Paris-based nonprofit journalism organization, and Amnesty International’s Security Lab, which analyzed the phones of the victims. They revealed that NSO Group’s clients selected over 50,000 phone numbers for surveillance since 2016.

The high-profile targets of Pegasus spyware

NSO Group’s clients selected phone numbers of three presidents (Macron, Ramaphosa and Salih), 10 prime ministers (Khan, Madbouly, El Othmani, Modi, Orbán, bin Daghr, Hariri, Bedoui, Sagintayev and Michel) and one king (Mohammed VI).

The investigation also found at least 180 journalists from 20 countries targeted by Pegasus spyware. They included reporters from CNN , NYT , WSJ , Guardian , Al Jazeera , Le Monde , FT , WP , Reuters , Bloomberg , AP.

Furthermore , the investigation showed evidence of Pegasus spyware infections or attempts on at least 37 phones of journalists , activists , and executives from 10 countries. They were from India , Mexico , France , Morocco , Hungary , Azerbaijan , Bahrain , Saudi Arabia , UAE , and Rwanda.

Some of the other countries and people that have been reportedly targeted by Pegasus spyware are:

  • Azerbaijan: to spy on opposition politicians such as Ali Karimli and journalists such as Khadija Ismayilova in 2019
  • Bahrain: to spy on activists such as Nabeel Rajab and Moosa Abd-Ali Ali in 2020
  • Hungary: to spy on journalists such as Szabolcs Panyi and politicians such as Bernadett Szél in 2019
  • Kazakhstan: to spy on journalists such as Aigul Utepova and activists such as Serikzhan Bilash in 2020
  • UAE: to spy on Princess Latifa, the daughter of Dubai’s ruler who tried to escape in 2018
  • USA: to spy on Jeff Bezos, the founder and CEO of Amazon, who had his phone hacked by Pegasus spyware in 2018 after he received a WhatsApp message from Mohammed bin Salman, the crown prince of Saudi Arabia

These cases show that Pegasus spyware has been used to violate human rights, free speech, and democracy around the world. The victims of Pegasus spyware have faced harassment, intimidation, arrest, torture, or assassination because of their work or opinions.

The latest news on Pegasus and its consequences

Since we published our article, there have been several important developments regarding Pegasus and its impact on the security and privacy of mobile phone users. Here is a summary of the latest news on Pegasus, sorted by descending chronological order:

Algeria launches an investigation into allegations related to Pegasus spyware

On July 21, 2023, Hindustan Times reported that Algeria had launched an investigation into allegations related to Pegasus spyware. The Algerian attorney general announced that he would open an investigation into the allegations that Pegasus spyware had been used to spy on Algerian personalities, including President Abdelmadjid Tebboune and Army Chief of Staff Saïd Chengriha. According to an investigation conducted by the Forbidden Stories consortium and Amnesty International, and published by several international media outlets, Algeria was among the 50 countries whose phone numbers had been selected as potential targets by NSO Group’s clients, who are mainly governments and intelligence agencies. The investigation revealed that more than 600 Algerian personalities had been targeted by Pegasus between 2017 and 2021, including ministers, diplomats, journalists, activists, political opponents and civil society members. The investigation also suggested that Morocco was the main user of Pegasus in North Africa, and that it had spied on its Algerian neighbors for geopolitical and security reasons. The Algerian attorney general said that he would conduct a “thorough and serious” investigation into this matter, and that he would cooperate with the judicial authorities of the countries concerned. He also said that Algeria condemned “firmly” any violation of its national sovereignty and the privacy of its citizens.

This case shows that Pegasus poses a threat to the sovereignty and security of African countries, which are often victims of foreign interference. It also shows that Algeria takes seriously the protection of its citizens from illegal spying. We applaud the initiative of the Algerian attorney general to open an investigation on this subject.

The Spanish investigation into Pegasus spyware is closed due to “total lack of cooperation” from Israel

On July 10, 2023, The Times of Israel revealed that the Spanish investigation into Pegasus spyware had been closed due to “total lack of cooperation” from Israel. A Spanish judge was investigating the alleged hacking of phones of Spanish ministers with Pegasus spyware, made by the Israeli company NSO Group. The judge had asked four times the Israeli government to provide him with information on the software and to allow him to interrogate NSO Group’s CEO, but he never received a response. The judge therefore decided to close provisionally the case, citing the “total lack of cooperation” from Israel, which prevented the investigation from progressing. The judge indicated that the only possible recourse was diplomatic pressure, to urge Israel to respect its obligations under international treaties.

This case shows that Pegasus raises a legal and ethical problem, which requires international cooperation to enforce law and justice. It also shows that Israel displays a lack of transparency and accountability on its activities related to Pegasus spyware. We regret Israel’s attitude, which hinders the Spanish investigation and which does not respect its international commitments.

The FBI used Pegasus spyware to spy on iPhones, in violation of the US ban

On August 1st, 2023, Mac4Ever revealed that the FBI had used Pegasus spyware to spy on iPhones, in violation of the ban imposed by the US government in November 2021. According to the information published by The New York Times and The Guardian, the FBI had acquired Pegasus spyware in 2019, under Trump’s administration, for 9 million dollars. The bureau had tried to access data from some iPhones, including those of US officials in Uganda, without their consent or knowledge. The FBI had also used another product from NSO Group, Landmark, which allows locating phones through flaws in cellular networks. This product had been used by a subcontractor of the FBI to track drug traffickers in Mexico, without informing the FBI of the origin of the product. The FBI had terminated the contract with the subcontractor and opened an internal investigation into this matter.

This case shows that Pegasus represents a danger for the privacy and human rights of mobile phone users, including in the US. It also shows that the FBI acted in contradiction with US foreign policy and national security, which placed NSO Group on a blacklist in November 2021. It finally shows that the FBI was deceived by a subcontractor who provided it with an illegal and insecure product. We denounce the use of Pegasus spyware by the FBI and we demand an independent investigation into this case.

By summarizing the latest news on Pegasus and its consequences, we show that the threat is still present and that it is urgent to protect yourself from this spyware with Evicypher NFC HSM.

How to detect and remove Pegasus spyware?

Pegasus is a malicious software that can hack your phone and access your data, calls, location, camera and microphone. It can use security flaws in Android and iOS to install silently and activate by a missed call or a hidden message.

If you suspect that you have Pegasus spyware on your phone, you can use a tool called MVT (Mobile Verification Toolkit) to scan your phone and check for traces of infection. MVT is a free tool developed by Amnesty International’s Security Lab. It works for both iOS and Android phones, but it requires some technical skills and a computer to run it.

To use MVT, you need to follow these steps:

  • Back up your phone to a computer using iTunes (for iOS) or ADB (for Android)
  • Download and install MVT on your computer using Python
  • Download the Indicators of Compromise (IOC) file from Amnesty International’s GitHub repository
  • Run MVT on your computer and point it to the backup of your phone and the IOC file
  • Read the analysis report and look for signs of infection
  • If MVT finds evidence of Pegasus spyware on your phone, you should take immediate action to remove it and protect yourself. Here are some recommendations:
    • Erase your phone and restore it to factory settings
    • Change all your passwords and enable two-factor authentication
    • Contact a trusted expert or organization for further assistance
    • Report the incident to the authorities or the media

You can find more detailed instructions on how to use MVT and what to do if you are infected on Amnesty International’s website or on The Verge’s guide. You can also use iMazing’s spyware detection tool for iOS devices, which is easier to use than MVT but less comprehensive.

Pegasus is a serious threat to your privacy and security. You should be aware of the risks and take precautions to protect yourself. EviCypher NFC HSM is a powerful solution that can help you encrypt your data and your communications on your mobile phone with your own keys. You can also use MVT or iMazing’s tool to detect and remove Pegasus spyware if you think you are infected. Stay safe and vigilant!

How EviCypher NFC HSM can protect you from Pegasus spyware

EviCypher NFC HSM: features and capabilities

EviCypher NFC HSM Technology: encryption via a Contactless Hardware Security Module (NFC HSM) designed and manufactured by Freemindtronic, an Andorrane R&D company in cyber, safety, security and anti spy.

EviCypher NFC HSM: store your keys and secrets in a contactless NFC device, like a card, sticker, or keychain. The Android phone’s NFC signal powers the device and serves as the terminal and UI. The device can store up to 200 secrets in its EEPROM memory.

The device: patented wireless access control system for two access profiles: administrator and users. Share your secrets without compromising your privacy. Patented authentication system by segmented key for up to 9 trust criteria to encrypt your secrets, such as geolocation, BSSID, password, or fingerprint.

Evicypher NFC HSM: Use your secrets without constraint with different Android NFC phone and all types of computers via extensions for web browser and web courier and open source Thunderbird. Share your secrets safely and with confidence offline and in Gap air. That is to say physically isolated from networks. In addition, you can share your secrets proximity by Bluetooth ADHOC or via a simple QR code encrypted in RSA 4096. You can thus encrypt or oversee all your favorite email types from your NFC HSM. It is contactless encryption between human being, without leaving any traces of your secrets in your phones or computers.

Products and services based on EviCypher NFC HSM technology

EviCypher NFC HSM: based on EviCore NFC HSM Technology, one of Freemindtronic’s white label products and services with patented technologies. Only available under patent license for white label products integration.

Evicypher NFC HSM: double-use version for civil and defense purposes , with reinforced security for your secrets , using more hidden and/or shared trust criteria , unknown to the user , preventing physical or legal threats from obtaining them . This version: for sovereign entities , like armed forces or secret services , needing more protection against espionage threats like PEGASUS spy software.

How to get and use EviCypher NFC HSM

Anonymously, with Freemindtronic Install on your NFC Android phone, create and store your secrets in an NFC HSM. Define your access profiles and trust criteria for each secret. Use your unlimited secrets with different NFC Android phones. Use your usual communications without changing your habits, email, webmail, chat, SMS, instant messaging, to encrypt them without contact just by passing the NFC HSM from Freemindtronic under the NFC antenna of your phone. Share your secrets with others who also have NFC HSM compatible with EviCypher NFC HSM technology.

To use EviCypher NFC HSM: Android phone with NFC and Freemindtronic app [here]. NFC device compatible with EviCore NFC HSM technology, such as Datashielder product with EviCypher NFC HSM and EviPass NFC HSM technologies. You will have the choice of different models and designs manufactured by Freemindtroic the Freemindtronic website click [here] to find out more.

EviCypher NFC HSM is a technology that allows you to fight against Pegasus spyware by securing your keys and secrets with hardware encryption and NFC. With EviCypher NFC HSM, you benefit from an innovative, practical and flexible solution for your personal or professional needs.

If you are interested in obtaining Evicypher NFC HSM technology and using it for your personal or professional needs, you can contact Freemindtronic by clicking [here]. You can also consult on the site how Evicypher NFC HSM technology works by clicking [here].

Conclusion and recommendations

Pegasus spyware: a privacy and human rights threat needing urgent action and regulation. Amnesty International calls for a global moratorium on surveillance technology sales and use until a human rights-compliant framework exists.

Evicypher NFC HSM: A technology to help you protect yourself from spyware like Pegasus with contactless encryption from a NFC HSM device without ever keeping clear data in the phone and/or computer with the possibility of deciphering the encrypted messages in AES256 Post quantum in GPA air via an QR code encrypted in RSA-4096 from the NFC HSM. Freemindtronic, a research and development company of safety, security, cyber security and andorran spying solution, which develops and offers various NFC HSM format and services available under white brand license with patented technologies.

Evicypher NFC HSM: Use your secrets without constraint with various NFC Android phones and all types of computers via extensions for web browser and web mail and Thunderbird source. Share your secrets safely and with confidence offline and in Gap Air. That is to say physically isolated from networks. In addition, you can share your secrets by Bluetooth Adhoc proximity or via a simple QR code encrypted in RSA 4096. You can quantify in seconds all your texts and parts attached for all your favorite messaging from your NFC HSM. It is contactless encryption between humans, without leaving traces of your secrets in your phones or computers.

This site uses cookies to offer you a better browsing experience. By browsing this website, you agree to our use of cookies.