Tag Archives: NFC HSM

image_pdfimage_print

Electronic Warfare in Military Intelligence

Realistic depiction of electronic warfare in military intelligence with modern equipment and personnel analyzing communication signals on white background

Electronic Warfare in Military Intelligence by Jacques gascuel I will keep this article updated with any new information, so please feel free to leave comments or contact me with suggestions or additions.his article will be updated with any new information on the topic, and readers are encouraged to leave comments or contact the author with any suggestions or additions.  

The Often Overlooked Role of Electronic Warfare in Military Intelligence

Electronic Warfare in Military Intelligence has become a crucial component of modern military operations. This discipline discreetly yet vitally protects communications and gathers strategic intelligence, providing armed forces with a significant tactical advantage in an increasingly connected world.

Historical Context: The Evolution of Electronic Warfare in Military Intelligence

From as early as World War II, electronic warfare established itself as a critical strategic lever. The Allies utilized jamming and interception techniques to weaken Axis forces. This approach was notably applied through “Operation Ultra,” which focused on deciphering Enigma messages. During the Cold War, major powers refined these methods. They incorporated intelligence and countermeasures to secure their own networks.

Today, with rapid technological advancements, electronic warfare combines state-of-the-art systems with sophisticated intelligence strategies. It has become a cornerstone of modern military operations.

These historical foundations underscore why electronic warfare has become indispensable. Today, however, even more advanced technologies and strategies are essential to counter new threats.

Interception and Monitoring Techniques in Electronic Warfare for Military Intelligence

In military intelligence, intercepting enemy signals is crucial. France’s 54th Electronic Warfare Regiment (54e RMRT), the only regiment dedicated to electronic warfare, specializes in intercepting adversary radio and satellite communications. By detecting enemy frequencies, they enable the armed forces to collect critical intelligence in real time. This capability enhances their ability to anticipate enemy actions.

DataShielder NFC HSM Master solutions bolster these capabilities by securing the gathered information with Zero Trust and Zero Knowledge architecture. This ensures the confidentiality of sensitive data processed by analysts in the field.

Current technological advancements paired with electronic warfare also spotlight the modern threats that armed forces must address.

Emerging Technologies and Modern Threats

Electronic warfare encompasses interception, jamming, and manipulation of signals to gain a strategic edge. In a context where conflicts occur both on the ground and in the invisible spheres of communications, controlling the electromagnetic space has become essential. Powers such as the United States, Russia, and China invest heavily in these technologies. This investment serves to disrupt enemy communications and safeguard their own networks.

Recent conflicts in Ukraine and Syria have highlighted the importance of these technologies in disrupting adversary forces. Moreover, new threats—such as cyberattacks, drones, and encrypted communications—compel armies to innovate. Integrating artificial intelligence (AI) and 5G accelerates these developments. DataShielder HSM PGP Encryption meets the need for enhanced protection by offering robust, server-free encryption, ideal for high-security missions where discretion is paramount.

While these technological advancements are crucial, they also pose complex challenges for the military and engineers responsible for their implementation and refinement.

Change to: Challenges of Electronic Warfare in Military Intelligence: Adaptation and Innovation

Despite impressive advancements, electronic warfare must continually evolve. The rapid pace of innovation renders cutting-edge equipment quickly obsolete. This reality demands substantial investments in research and development. It also requires continuous training for electronic warfare specialists.

DataShielder products, such as DataShielder NFC HSM Auth, play a pivotal role in addressing these challenges. For instance, NFC HSM Auth provides secure, anonymous authentication, protecting against identity theft and AI-assisted threats. By combining advanced security with ease of use, these solutions facilitate adaptation to modern threats while ensuring the protection of sensitive information.

These advances pave the way for emerging technologies, constantly reshaping the needs and methods of electronic warfare.

Analyzing Emerging Technologies: The Future of Electronic Warfare

Integrating advanced technologies like AI is vital for optimizing electronic warfare operations. AI automates interception and jamming processes, increasing military system responsiveness. DataShielder NFC HSM Auth fits seamlessly into this technological environment by protecting against identity theft, even when AI is involved. Post-quantum cryptography and other advanced security techniques in the DataShielder range ensure lasting protection against future threats.

To better understand the real-world application of these technologies, insights from field experts are essential.

Case Studies and Operational Implications: The Testimony of Sergeant Jérémy

Insights from the Field: The Realities of Electronic Warfare Operations

In the field of electronic warfare, the testimony of Sergeant Jérémy, a member of the 54th Transmission Regiment (54e RMRT), provides a deeper understanding of the challenges and operational reality of a job that is both technical, discreet, and demanding. Through his accounts of operations in Afghanistan, Jérémy illustrates how electronic warfare can save lives by providing essential support to ground troops.

Real-Time Threat Detection and Protection in Combat Zones

During his mission in Afghanistan, at just 19, Jérémy participated in radiogoniometry operations, identifying the location of electromagnetic emissions. In one convoy escort mission, his equipment detected signals from enemy forces, indicating a potential ambush. Thanks to this detection, he alerted his patrol leader, allowing the convoy to take defensive measures. This type of mission demonstrates how electronic warfare operators combine technical precision and composure to protect deployed units.

Tactical Jamming and Strategic Withdrawals

In another operation, Jérémy and his team helped special forces withdraw from a combat zone by jamming enemy communications. This temporary disruption halted adversary coordination, giving allied troops the necessary time to retreat safely. However, this technique is not without risks: while crucial, jamming also prevents allied forces from communicating, adding complexity and stress for operators. This mission underscores the delicate balance between protecting allies and disorganizing the enemy, a daily challenge for electronic warfare specialists.

The Role of Advanced Equipment in Electronic Warfare Missions

On missions, the 54e RMRT uses advanced interception, localization, and jamming equipment. These modern systems, such as radiogoniometry and jamming devices, have become essential for the French Army in electronic intelligence and neutralizing adversary communications. However, these missions are physically and psychologically demanding, requiring rigorous training and a capacity to work under high pressure. Sergeant Jérémy’s testimony reminds us of the operational reality behind each technology and demonstrates the rigor with which electronic warfare operators must adapt and respond.

To listen to the complete testimony of Sergeant Jérémy and learn more about his journey, you can access the full podcast here.

Examining the methods of other nations also reveals the varied approaches to electronic warfare.

International Military Doctrines in Electronic Warfare for Military Intelligence

Military doctrines in electronic warfare vary from one country to another. For example, the United States integrates electronic warfare and cyber operations under its “multi-domain operations.” Meanwhile, Russia makes electronic warfare a central element of hybrid operations, combining jamming, cyberattacks, and disinformation. This diversity shows how each country adapts these technologies based on its strategic goals and specific threats.

The growing importance of electronic warfare is also reflected in international alliances, where cooperation is essential to address modern threats.

NATO’s Role in Electronic Warfare

Electronic warfare is also crucial for military alliances such as NATO. Multinational exercises allow for testing and perfecting electronic warfare capabilities, ensuring that allied forces can protect their communications and disrupt those of the enemy. This cooperation strengthens the effectiveness of electronic warfare operations. It maximizes the resilience of allied networks against modern threats.

Recent events demonstrate how electronic warfare continues to evolve to meet the demands of modern battlefields.

Recent Developments in Electronic Warfare

In 2024, the U.S. military spent $5 billion on improving electronic warfare capabilities, notably during the Valiant Shield 2024 exercise. During this event, innovative technologies like DiSCO™ (Distributed Spectrum Collaboration and Operations) were tested. This technology enables real-time spectrum data sharing for the rapid reprogramming of electronic warfare systems. These developments highlight the growing importance of spectral superiority in modern conflicts.

In Ukraine, electronic warfare allowed Russian forces to jam communications and simulate signals to disorient opposing units. This capability underscores the need to strengthen GPS systems and critical communications.

In response to these developments, advanced technological solutions like those of DataShielder provide concrete answers.

Integrating DataShielder Solutions

In the face of rising identity theft and AI-assisted cyber espionage threats, innovative solutions like DataShielder NFC HSM Auth and DataShielder HSM PGP Encryption have become indispensable. Each DataShielder device operates without servers, databases, or user accounts, enabling end-to-end anonymity in real time. By encrypting data through a segmented AES-256 CBC, these products ensure that no trace of sensitive information remains on NFC-enabled Android phones or computers.

  • DataShielder NFC HSM Master: A robust counter-espionage tool that provides AES-256 CBC encryption with segmented keys, designed to secure communications without leaving any traces.
  • DataShielder NFC HSM Auth: A secure authentication module essential for preventing identity theft and AI-assisted fraud in high-risk environments.
  • DataShielder NFC HSM Starter Kit: This all-in-one kit offers complete data security with real-time, contactless encryption and authentication, ideal for organizations seeking to implement comprehensive protection from the outset.
  • DataShielder NFC HSM M-Auth: A flexible solution for mobile authentication, enabling secure identity verification and encryption without dependence on external networks.
  • DataShielder PGP HSM Encryption: Offering advanced PGP encryption, this tool ensures secure communication even in compromised network conditions, making it ideal for sensitive exchanges.

By leveraging these solutions, military intelligence and high-security organizations can securely encrypt and authenticate communications. DataShielder’s technology redefines how modern forces protect themselves against sophisticated cyber threats, making it a crucial component in electronic warfare.

The convergence between cyberwarfare and electronic warfare amplifies these capabilities, offering new opportunities and challenges.

Cyberwarfare and Electronic Warfare in Military Intelligence: A Strategic Convergence

Electronic warfare operations and cyberattacks, though distinct, are increasingly interconnected. While electronic warfare neutralizes enemy communications, cyberattacks target critical infrastructure. Together, they create a paralyzing effect on adversary forces. This technological convergence is now crucial for modern armies. Products like DataShielder NFC HSM Master and DataShielder HSM PGP Encryption guarantee secure communications against combined threats.

This convergence also raises essential ethical and legal questions for states.

Legal and Ethical Perspectives on Electronic Warfare

With its growing impact, electronic warfare raises ethical and legal questions. Should international conventions regulate its use? Should new laws be created to govern the interception and jamming of communications? These questions are becoming more pressing as electronic warfare technologies improve.

In this context, the future of electronic warfare points toward ever more effective technological innovations.

Looking Ahead: New Perspectives for Electronic Warfare in Military Intelligence

The future of electronic warfare will be shaped by AI integration and advanced cryptography—key elements for discreet and secure communications. DataShielder NFC HSM Master and DataShielder HSM PGP Encryption are examples of modern solutions. They ensure sensitive data remains protected against interception, highlighting the importance of innovation to counter emerging threats.

IK Rating Guide: Understanding IK Ratings for Enclosures

Rating Guide enclosure box labeled with IK ratings from IK01 to IK10 on a white background.

What Is IK Rating?

IK Rating Guide is essential for understanding the level of protection an enclosure offers against external mechanical impacts. This guide explains the IK rating system, from IK01 to IK10, and why IK10 represents the highest vandal resistance available. Understanding these ratings ensures you select the right protection level for your electrical enclosures.

2025 PassCypher Password Products Technical News

Passwordless Password Manager: Secure, One-Click Simplicity to Redefine Access

2024 Articles Technical News

Best 2FA MFA Solutions for 2024: Focus on TOTP & HOTP

2024 Articles Technical News

New Microsoft Uninstallable Recall: Enhanced Security at Its Core

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 EviKey & EviDisk Technical News

IK Rating Guide: Understanding IK Ratings for Enclosures

Stay informed with our posts dedicated to Technical News to track its evolution through our regularly updated topics.

Explore our IK Rating Guide to understand how different IK ratings protect your enclosures. Learn about impact resistance and how to choose the right protection level with insights from Jacques Gascuel. Stay informed on the best practices for safeguarding your electrical equipment.

IK Rating Guide: Understanding the IK Rating System

The IK Rating Guide clearly defines the international standard IEC 62262. This standard classifies the degree of protection that enclosures provide against mechanical impacts. The rating system is crucial for industries where equipment needs to withstand physical stress. Ratings range from IK01, which indicates minimal protection, to IK10, which represents the highest level of protection against external impacts.

Here is a detailed breakdown of the IK ratings:

IK Rating Impact Energy (Joules) Radius of Striking Element (mm) Material Mass (Kg) Pendulum Hammer Spring Hammer Free Fall Hammer
IK01 0.15J 10 Polymide 0.2 Yes Yes No
IK02 0.20J 10 Polymide 0.2 Yes Yes No
IK03 0.35J 10 Polymide 0.2 Yes Yes No
IK04 0.50J 10 Polymide 0.2 Yes Yes No
IK05 0.70J 10 Polymide 0.2 Yes Yes No
IK06 1.00J 10 Polymide 0.5 Yes Yes No
IK07 2.00J 25 Polymide 0.5 Yes No Yes
IK08 5.00J 25 Polymide 1.7 Yes No Yes
IK09 10.00J 50 Polymide 5.0 Yes No Yes
IK10 20.00J 50 Polymide 5.0 Yes No Yes

IK Rating Guide: IK10 Rating as the Ultimate Protection

The IK Rating Guide highlights IK10 as the highest level of impact resistance. This rating offers protection against 20 joules of impact energy. This level of protection is crucial for enclosures in environments prone to vandalism or extreme conditions. For example, the EviKey NFC HSM uses an IK10-rated enclosure. This design ensures that sensitive data remains protected even in high-risk environments. Another example is the NFC HSM Tag, which also relies on IK10-rated enclosures to ensure durability and security.

IK Rating Guide: Comparing IK Ratings with IP Ratings

The IK Rating Guide helps distinguish between IK and IP ratings. While IK ratings assess resistance to mechanical impacts, IP (Ingress Protection) ratings evaluate protection against dust and water. Both ratings are essential when selecting an enclosure. For instance, an outdoor enclosure may require a high IP rating for water resistance in addition to an IK10 rating for impact protection.

IK Rating Guide: Material Considerations for IK-Rated Enclosures

The IK Rating Guide emphasizes the importance of material choice in determining an enclosure’s IK rating. Common materials include GRP (Glass Reinforced Plastic), metal, and polycarbonate. GRP enclosures, known for their high strength and corrosion resistance, are often used in environments requiring IK10 ratings. Metal enclosures offer excellent impact resistance but may need additional coatings to prevent rust in outdoor applications. Polycarbonate, on the other hand, is lightweight and impact-resistant. This makes it suitable for lower IK ratings or specific environments.

IK Rating Guide: Application Examples of IK Ratings

The IK Rating Guide provides practical examples to help you choose the right enclosure:

  • Public Spaces: Transportation hubs, parks, and schools often require IK10-rated enclosures to withstand vandalism.
  • Industrial Settings: Factories or construction sites commonly use enclosures with IK08 or IK09 ratings. These settings need to resist impacts from heavy machinery or accidental collisions.
  • Data Security Devices: Products like the EviKey NFC HSM utilize IK10-rated enclosures. These enclosures ensure the security of sensitive data even under physical attack.

IK Rating Guide: Installation and Maintenance Tips for IK-Rated Enclosures

Proper installation and maintenance are vital. The IK Rating Guide offers tips to ensure your IK-rated enclosure performs as expected:

  • Secure Mounting: Mount the enclosure securely to prevent it from being dislodged or damaged.
  • Regular Inspections: Inspect the enclosure periodically for signs of impact damage or wear, especially in high-risk environments.
  • Environmental Considerations: If exposed to harsh conditions, consider adding protection. Weatherproof coatings or UV-resistant materials can extend the life of your enclosure.

Innovations and Future Trends in IK Ratings

The IK Rating Guide notes ongoing innovations in enclosure design. These could influence IK ratings in the future:

  • Smart Enclosures: Modern enclosures increasingly come with sensors that detect impacts. They can report damage in real-time, enhancing maintenance and security.
  • Sustainable Materials: As industries shift toward sustainability, expect to see more enclosures made from eco-friendly materials. These materials will still meet high IK rating standards.

Frequently Asked Questions (FAQ)

  1. What is the difference between IK and IP ratings?
    • IK ratings measure resistance to mechanical impacts. In contrast, IP ratings assess protection against dust and water.
  2. Can an enclosure’s IK rating be improved after installation?
    • Improving an IK rating typically involves upgrading the material or adding protective features. This might require replacing the existing enclosure.
  3. Why is IK10 the highest rating?
    • IK10 represents the maximum impact energy (20 joules) that standard testing procedures evaluate. This provides the highest available protection against physical impacts.

Frequently Asked Questions (FAQ)

IK ratings measure resistance to mechanical impacts. In contrast, IP ratings assess protection against dust and water.

Improving an IK rating typically involves upgrading the material or adding protective features. This might require replacing the existing enclosure.

IK10 represents the maximum impact energy (20 joules) that standard testing procedures evaluate. This provides the highest available protection against physical impacts.

For more detailed information on IK ratings and their classifications, you can visit the IEC Electropedia. This resource offers in-depth explanations and standards related to IK codes, supporting your understanding of how these ratings are developed and applied.

Russian Cyberattack Microsoft: An Unprecedented Threat

Cybersecurity theme with shield, padlock, and computer screen displaying warning signs, highlighting the Russian cyberattack on Microsoft.

Russian Cyberattack on Microsoft: Unprecedented Threat Uncovered

The recent Russian cyberattack on Microsoft, orchestrated by the notorious group Midnight Blizzard, has revealed a far more severe threat than initially anticipated. Learn how Microsoft is countering this sophisticated attack and what implications it holds for global cybersecurity.

Stay informed with our posts dedicated to Cyberculture to track its evolution through our regularly updated topics.

Discover our new Cyberculture article about the Russian Cyberattack on Microsoft, authored by Jacques Gascuel, a pioneer in counterintelligence and expert in contactless, serverless, databaseless, loginless, and wireless security solutions. Stay informed and safe by subscribing to our regular updates.

Microsoft Admits Russian Cyberattack Was Worse Than Expected

Microsoft recently confirmed that the cyberattack by the Russian group Midnight Blizzard was far more severe than initially reported. Midnight Blizzard, also known as NOBELIUM, APT29, and Cozy Bear, is a state-sponsored actor backed by Russia. This group primarily targets governments, NGOs, and IT service providers in the United States and Europe.

Background and Technical Details

Active since at least 2018, Midnight Blizzard has been involved in notorious attacks such as the SolarWinds campaign. This group employs various sophisticated techniques, including password spray attacks and the exploitation of malicious OAuth applications. These methods allow attackers to penetrate systems without raising suspicion​.

Immediate Response from Microsoft

On January 12, 2024, Microsoft detected unauthorized access to its internal systems. The security team immediately activated a response process to investigate and mitigate the attack. Midnight Blizzard compromised a legacy non-production test account, gaining access to several internal email accounts, including those of senior executives and critical teams like cybersecurity and legal​.

Impact of Compromised Emails from the Russian Cyberattack

Midnight Blizzard managed to exfiltrate internal Microsoft emails, including sensitive information shared between the company and its clients. The attackers used this information to attempt access to other systems and increased the volume of password spray attacks by tenfold in February 2024. This led to an increased risk of compromise for Microsoft’s clients​.

Statistical Consequences of the Russian Cyberattack on Microsoft

  • Increase in Attacks: In February 2024, the volume of password spray attacks was ten times higher than in January 2024.
  • Multiple Targets: The compromised emails allowed Midnight Blizzard to target not only Microsoft but also its clients, thereby increasing the risk of compromise across various organizations.
  • Access to Internal Repositories: The attackers were able to access some source code repositories and internal systems, although no customer-facing systems were compromised​.

Advanced Encryption and Security Solutions

To protect against such sophisticated threats, it is crucial to adopt robust encryption solutions. Technologies like DataShielder NFC HSM, DataShielder HSM PGP, and DataShielder Auth NFC HSM offer advanced means to encrypt all types of messaging, including Microsoft’s emails. These solutions ensure the security of sensitive communications by keeping emails and attachments always encrypted. They manage and use encryption keys via NFC HSM or HSM PGP, ensuring that emails are no longer dependent on the security of the messaging services.

Imagine if the victims of the Midnight Blizzard attack had used DataShielder. In this scenario, even if their inboxes were compromised, the encrypted emails would have remained unreadable to the attackers. This additional protection could have significantly reduced the risk of sensitive information disclosure. Statistically, about 90% of data breaches are due to unencrypted or poorly protected emails. If DataShielder had been used, this percentage could have been significantly reduced, offering a robust defense against such intrusions.

Furthermore, DataShielder ensures centralized and secure key management, eliminating the risks associated with decentralized management. The solution easily integrates with existing systems, minimizing operational disruptions during implementation.

Global Reactions and Security Measures

This attack highlights the ongoing risks posed by well-funded state actors. In response, Microsoft launched the Secure Future Initiative (SFI). This initiative aims to strengthen the security of legacy systems and improve internal processes to defend against such cyber threats. The company has also adopted a transparent approach, quickly sharing details of the attack and closely collaborating with government agencies to mitigate risks​.

Best Practices in Cybersecurity to Prevent Russian Cyberattacks

To protect against these threats, companies must adopt robust security measures. Multi-factor authentication and continuous system monitoring are crucial. Additionally, implementing regular security updates is essential. The CISA emergency directive ED 24-02 requires affected federal agencies to analyze the content of exfiltrated emails, reset compromised credentials, and secure authentication tools for privileged Azure accounts​ (CISA)​.

Comparison with Other Cyberattacks

This attack is reminiscent of other major incidents, such as those against SolarWinds and Colonial Pipeline. These attacks demonstrate the evolving techniques of attackers and the importance of maintaining constant vigilance. Companies must be ready to respond quickly and communicate transparently with stakeholders to minimize damage and restore trust​.

Conclusion on the Russian Cyberattack on Microsoft

The Midnight Blizzard cyberattack on Microsoft serves as a poignant reminder of the complex challenges posed by state actors. It also underscores the critical importance of cybersecurity in today’s digital world. To learn more about this attack and its implications, stay informed with continuous updates from Microsoft and recommendations from security experts​.​​

Further Reading: For a more detailed analysis of this incident and its wider implications, read our previous article on the Midnight Blizzard cyberattack against Microsoft and HPE, authored by Jacques Gascuel. Read the full article here.

 

How the attack against Microsoft Exchange on December 13, 2023 exposed thousands of email accounts

Digital shield by Freemindtronic repelling cyberattack against Microsoft Exchange

How to protect yourself from the attack against Microsoft Exchange?

The attack against Microsoft Exchange was a serious security breach in 2023. Thousands of organizations worldwide were hacked by cybercriminals who exploited vulnerabilities in Microsoft’s email servers. How did this happen? What were the consequences? How did Microsoft react? And most importantly, how can you protect your data and communications? Read our comprehensive analysis and discover Freemindtronic’s technology solutions.

Cyberattack against Microsoft: discover the potential dangers of stalkerware spyware, one of the attack vectors used by hackers. Stay informed by browsing our constantly updated topics.

Cyberattack against Microsoft: How to Protect Yourself from Stalkerware, a book by Jacques Gascuel, the innovator behind advanced sensitive data security and safety systems, provides invaluable knowledge on how data encryption and decryption can prevent email compromise and other threats.

How the attack against Microsoft Exchange on December 13, 2023 exposed thousands of email accounts

On December 13, 2023, Microsoft was the target of a sophisticated attack by a hacker group called Lapsus$. This attack exploited another vulnerability in Microsoft Exchange, known as CVE-2023-23415, which allowed the attackers to execute remote code on the email servers using the ICMP protocol. The attackers were able to access the email accounts of more than 10,000 Microsoft employees, some of whom were working on sensitive projects such as the development of GTA VI or the launch of Windows 12. The attackers also published part of the stolen data on a website called DarkBeam, where they sold more than 750 million fraudulent Microsoft accounts. Microsoft reacted quickly by releasing a security patch on December 15, 2023, and collaborating with the authorities to arrest the perpetrators of the attack. One of the members of the Lapsus$ group, an Albanian hacker named Kurtaj, was arrested on December 20, 2023, thanks to the cooperation between the American and European intelligence services1234.

What were the objectives and consequences of the attack?

The attack against Microsoft Exchange affected more than 20,000 email servers worldwide, belonging to businesses, institutions and organizations from different sectors. These servers were vulnerable because they used outdated versions of the software, which no longer received security updates. The attack exploited a critical vulnerability known as ProxyLogon (CVE-2023-23415), allowing the attackers to execute remote code on the servers and access the email accounts. Despite the efforts to solve the problem, many vulnerable servers remained active, exposing the email accounts of about 30,000 high-level employees, including executives and engineers. The attackers were able to steal confidential information, such as internal projects, development plans, trade secrets or source codes.

What were the objectives of the attack?

The attack was attributed to Lapsus$, a hacker group linked to Russia. According to Microsoft, the group’s main objective was to gain access to sensitive information from various targets, such as government agencies, think tanks, NGOs, law firms, medical institutions, etc. The group also aimed to compromise the security and reputation of Microsoft, one of the leading technology companies in the world. The attack was part of a larger campaign that also involved the SolarWinds hack, which affected thousands of organizations in 2020.

What were the impacts of the attack?

The attack had serious impacts on the victims, both in terms of data loss and reputation damage. The data stolen by the attackers included personal and professional information, such as names, addresses, phone numbers, email addresses, passwords, bank details, credit card numbers, health records, etc. The attackers also leaked some of the data on the DarkBeam website, where they offered to sell the data to the highest bidder. This exposed the victims to potential identity theft, fraud, blackmail, extortion, or other cybercrimes. The attack also damaged the reputation of Microsoft and its customers, who were seen as vulnerable and unreliable by their partners, clients, and users. The attack also raised questions about the security and privacy of email communication, which is widely used in the digital world.

What were the consequences of the attack?

The attack had several consequences for Microsoft and its customers, who had to take urgent measures to mitigate the damage and prevent further attacks. Microsoft had to release a security patch for the vulnerability, and urge its customers to update their software as soon as possible. Microsoft also had to investigate the origin and extent of the attack, and cooperate with the authorities to identify and arrest the attackers. Microsoft also had to provide support and assistance to its customers, who had to deal with the aftermath of the attack. The customers had to check their email accounts for any signs of compromise, and change their passwords and security settings. They also had to notify their contacts, partners, and clients about the breach, and reassure them about the security of their data. They also had to monitor their online activities and accounts for any suspicious or fraudulent transactions. The attack also forced Microsoft and its customers to review and improve their security policies and practices, and adopt new solutions and technologies to protect their data and communication.

How did the attack succeed despite Microsoft’s defenses?

The attack was sophisticated and stealthy, using several techniques to bypass Microsoft’s defenses. First, the attackers exploited a zero-day vulnerability, which means that it was unknown to Microsoft and the public until it was discovered and reported. Second, the attackers used a proxy tool to disguise their origin and avoid detection. Third, the attackers used web shells to maintain persistent access to the servers and execute commands remotely. Fourth, the attackers used encryption and obfuscation to hide their malicious code and data. Fifth, the attackers targeted specific servers and accounts, rather than launching a massive attack that would have raised more suspicion.

What are the communication vulnerabilities exploited by the attack?

The attack exploited several communication vulnerabilities, such as:

  • Targeted phishing: The attackers sent fake emails to the victims, pretending to be from legitimate sources, such as Microsoft, their bank, or their employer. The emails contained malicious links or attachments, that led the victims to compromised websites or downloaded malware on their devices. The attackers then used the malware to access the email servers and accounts.
  • SolarWinds exploitation: The attackers also used the SolarWinds hack, which was a massive cyberattack that compromised the software company SolarWinds and its customers, including Microsoft. The attackers inserted a backdoor in the SolarWinds software, which allowed them to access the networks and systems of the customers who installed the software. The attackers then used the backdoor to access the email servers and accounts.
  • Brute force attack: The attackers also used a brute force attack, which is a trial-and-error method to guess the passwords or encryption keys of the email accounts. The attackers used automated tools to generate and test a large number of possible combinations, until they found the right one. The attackers then used the passwords or keys to access the email accounts.
  • SQL injection: The attackers also used a SQL injection, which is a technique to insert malicious SQL commands into a web application that interacts with a database. The attackers used the SQL commands to manipulate the database, and access or modify the data stored in it. The attackers then used the data to access the email accounts.

Why did the detection and defense systems of Microsoft Exchange not work?

The detection and defense systems of Microsoft Exchange did not work because the attackers used advanced techniques to evade them. For example, the attackers used a proxy tool to hide their IP address and location, and avoid being traced or blocked by firewalls or antivirus software. The attackers also used web shells to create a backdoor on the servers, and execute commands remotely, without being noticed by the system administrators or the security software. The attackers also used encryption and obfuscation to conceal their malicious code and data, and prevent them from being analyzed or detected by the security software. The attackers also used zero-day vulnerability, which was not known or patched by Microsoft, and therefore not protected by the security software.

How did Microsoft react to the attack?

Microsoft reacted to the attack by taking several actions, such as:

The main actions of Microsoft

  • Releasing a security patch: Microsoft released a security patch for the vulnerability exploited by the attack, and urged its customers to update their software as soon as possible. The patch fixed the vulnerability and prevented further attacks.
  • Investigating the attack: Microsoft investigated the origin and extent of the attack, and collected evidence and information about the attackers and their methods. Microsoft also cooperated with the authorities and other organizations to identify and arrest the attackers.
  • Providing support and assistance: Microsoft provided support and assistance to its customers, who were affected by the attack. Microsoft offered guidance and tools to help the customers check their email accounts for any signs of compromise, and change their passwords and security settings. Microsoft also offered free credit monitoring and identity theft protection services to the customers, who had their personal and financial data stolen by the attackers.

Microsoft also released patches for the vulnerabilities exploited by the attack

Microsoft also released patches for the other vulnerabilities exploited by the attack, such as the SolarWinds vulnerability, the brute force vulnerability, and the SQL injection vulnerability. Microsoft also improved its detection and defense systems, and added new features and functions to its software, to enhance the security and privacy of email communication.

What are the lessons to be learned from the attack?

The attack was a wake-up call for Microsoft and its customers, who had to learn from their mistakes and improve their security practices. Some of the lessons to be learned from the attack are:

Email security

Email is one of the most widely used communication tools in the digital world, but also one of the most vulnerable to cyberattacks. Therefore, it is essential to ensure the security and privacy of email communication, by applying some best practices, such as:

  • Using strong and unique passwords for each email account, and changing them regularly.
  • Using multi-factor authentication (MFA) to verify the identity of the email users, and prevent unauthorized access.
  • Using encryption to protect the content and attachments of the email messages, and prevent them from being read or modified by third parties.
  • Using digital signatures to verify the authenticity and integrity of the email messages, and prevent them from being spoofed or tampered with.
  • Using spam filters and antivirus software to block and remove malicious emails, and avoid clicking on suspicious links or attachments.
  • Using secure email providers and platforms, that comply with the latest security standards and regulations, and offer features such as end-to-end encryption, zero-knowledge encryption, or self-destructing messages.

Multi-factor authentication

Multi-factor authentication (MFA) is a security method that requires the user to provide two or more pieces of evidence to prove their identity, before accessing a system or a service. The pieces of evidence can be something the user knows (such as a password or a PIN), something the user has (such as a smartphone or a token), or something the user is (such as a fingerprint or a face scan). MFA can prevent unauthorized access to email accounts, even if the password is compromised, by adding an extra layer of security. Therefore, it is recommended to enable MFA for all email accounts, and use reliable and secure methods, such as biometric authentication, one-time passwords, or push notifications.

Principle of least privilege

The principle of least privilege (POLP) is a security concept that states that each user or system should have the minimum level of access or permissions required to perform their tasks, and nothing more. POLP can reduce the risk of data breaches, by limiting the exposure and impact of a potential attack. Therefore, it is advisable to apply POLP to email accounts, and assign different roles and privileges to different users, depending on their needs and responsibilities. For example, only authorized users should have access to sensitive or confidential information, and only administrators should have access to system settings or configuration.

Software update

Software update is a process that involves installing the latest versions or patches of the software, to fix bugs, improve performance, or add new features. Software update is crucial for email security, as it can prevent the exploitation of vulnerabilities that could allow attackers to access or compromise the email servers or accounts. Therefore, it is important to update the software regularly, and install the security patches as soon as they are available. It is also important to update the software of the devices that are used to access the email accounts, such as computers or smartphones, and use the latest versions of the browsers or the applications.

System monitoring

System monitoring is a process that involves observing and analyzing the activity and performance of the system, to detect and resolve any issues or anomalies. System monitoring is vital for email security, as it can help to identify and stop any potential attacks, before they cause any damage or disruption. Therefore, it is essential to monitor the email servers and accounts, and use tools and techniques, such as logs, alerts, reports, or audits, to collect and analyze the data. It is also essential to monitor the email traffic and behavior, and use tools and techniques, such as firewalls, intrusion detection systems, or anomaly detection systems, to filter and block any malicious or suspicious activity.

User awareness

User awareness is a state of knowledge and understanding of the users, regarding the security risks and threats that they may face, and the best practices and policies that they should follow, to protect themselves and the system. User awareness is key for email security, as it can prevent many human errors or mistakes, that could compromise the email accounts or expose the data. Therefore, it is important to educate and train the email users, and provide them with the necessary information and guidance, to help them recognize and avoid any phishing, malware, or social engineering attacks, that could target their email accounts.

What are the best practices to strengthen information security?

Information security is the practice of protecting the confidentiality, integrity, and availability of the information, from unauthorized or malicious access, use, modification, or destruction. Information security is essential for email communication, as it can ensure the protection and privacy of the data and messages that are exchanged. Some of the best practices to strengthen information security are:

  • Adopt the Zero Trust model: The Zero Trust model is a security approach that assumes that no user or system can be trusted by default, and that each request or transaction must be verified and authorized, before granting access or permission. The Zero Trust model can enhance information security, by reducing the attack surface and preventing the lateral movement of the attackers, within the system.
  • Use advanced protection solutions: Advanced protection solutions are security solutions that use artificial intelligence, machine learning, or other technologies, to detect and respond to the most sophisticated and complex cyberattacks, that could target the email accounts or data. Some of these solutions are endpoint detection and response (EDR), identity and access management (IAM), or data encryption solutions.
  • Hire cybersecurity experts: Cybersecurity experts are professionals who have the skills and knowledge to design, implement, and maintain the security of the system and the information, and to prevent, detect, and respond to any cyberattacks, that could affect the email accounts or data. Cybersecurity experts can help to strengthen information security, by providing advice, guidance, and support, to the email users and administrators.

How can Freemindtronic technology help to fight against this type of attack?

Freemindtronic offers innovative and effective technology solutions such as EviCypher NFC HSM and EviPass NFC HSM and EviOTP NFC HSM and other PGP HSMs. They can help businesses to fight against this type of attack based on Zero Day and other threats. Their technology is embedded in products such as DataShielder NFC HSM and DataShielder HSM PGP and DataShielder Defense or PassCypher NFC HSM or PassCypher HSM PGP. These products provide security and communication features for data, email and password management and offline OTP secret keys.

  • DataShielder NFC HSM is a portable device that allows to encrypt and decrypt data and communication on a computer or on an Android NFC smartphone. It uses a contactless hardware security module (HSM) that generates and stores encryption keys securely and segmented. It protects the keys that encrypt contactless communication. This has the effect of effectively fighting against all types of communication vulnerabilities, since the messages and attachments will remain encrypted even if they are corrupted. This function regardless of where the attack comes from, internal or external to the company. It is a counter-espionage solution. It also offers other features, such as password management, 2FA – OTP (TOTP and HOTP) secret keys. In addition, DataShielder works offline, without server and without database. It has a configurable multi-authentication system, strong authentication and secure key sharing.
  • DataShielder HSM PGP is an application that transforms all types of physical storage media (USB key, S, SSD, KeyChain / KeyStore) connected or not connected into HSM. It has the same features as its NFC HSM version. However, it also uses standard AES-256 and RSA 4096 algorithms, as well as OpenPGP algorithms. It uses its HSMs to manage and store PGP keys securely. In the same way, it protects email against phishing and other email threats. It also offers other features, such as digital signature, identity verification or secure key sharing.
  • DataShielder Defense is a dual-use platform for civilian and military use that offers many functions including all those previously mentioned. It also works in real time without server, without database from any type of HSM including NFC. It also has functions to add trust criteria to fight against identity theft. It protects data and communication against cyberattacks and data breaches.

In summary

To safeguard against the Microsoft Exchange attack, prioritize security updates and patches. Embrace Freemindtronic’s innovative solutions for enhanced protection. Stay vigilant against phishing and employ robust authentication methods. Opt for encryption to shield communications. Engage cybersecurity experts for advanced defense strategies. By adopting these measures, you can fortify your defenses against cyber threats and ensure your data’s safety.

Telegram and the Information War in Ukraine

Telegram and the information war in Ukraine
Telegram and the Information War in Ukraine written by Jacques Gascuel, inventor of sensitive data safety and security systems, for Freemindtronic. This article may be updated on this subject.

How Telegram Shapes the Information War in Ukraine

In this article, we explore how Telegram and Ukraine’s information warfare are intertwined. We look at how the messaging app is influencing the Russia-Ukraine conflict, and how it can be used for good or evil. We also discuss the benefits and risks of using Telegram, as well as how security and freedom of expression can be enhanced with EviCypher NFC HSM technology.

How Telegram Influences the Conflict between Russia and Ukraine

Telegram and the information war in Ukraine are closely related. Telegram is a messaging app that offers users a secure and confidential way to communicate, thanks to its end-to-end encryption system. It has a large user base around the world, especially in Eastern Europe, where it plays a vital role in the information war between Russia and Ukraine.

Telegram’s Usage in Ukraine: Updated Statistics

Popularity and Download Trends

According to the report of the research company SimilarWeb, Telegram is the second most downloaded messaging app in Ukraine, after Viber, with 3.8 million downloads in 2021. It is also the fourth most used app in terms of time spent, with an average of 16 minutes per day. Telegram has about 10 million active users in Ukraine, which is almost a quarter of the country’s population.

Telegram’s Role in Ukrainian Media Landscape

Telegram is particularly appreciated by Ukrainians for its channel functionality, which allows to broadcast messages to a large audience. Some of these channels have become influential but controversial sources of information, as their owners and sources are often unknown. Among the most popular channels in Ukraine, we can mention:

  • @Zelenskyi, the official channel of President Volodymyr Zelensky, which has more than 2 million subscribers. It publishes announcements, speeches, interviews and videos of the head of state. It was created in 2019, during Zelensky’s election campaign, who was then an actor and a comedian.
  • @NashyGroshi, the channel of the journalistic project “Our Money”, which has more than 1.5 million subscribers. It publishes investigations, reports and analyses on corruption, abuse of power, political scandals and judicial cases in Ukraine. It was created in 2008, by journalist Denys Bihus, who received several awards for his work.
  • @Resident, the channel of blogger and activist Anatoliy Shariy, which has more than 1.3 million subscribers. It publishes comments, criticisms and sarcasms on the political and social news in Ukraine. He is known for his pro-Russian, anti-European and anti-government positions. He is currently in exile in Spain, where he is wanted by the Ukrainian justice for high treason and incitement to hatred.

These channels illustrate the diversity and complexity of the Ukrainian media landscape, which is marked by the conflict with Russia, the democratic transition, the fight against corruption and the polarization of society. They are also a reflection of the issues and challenges related to the use of Telegram, which can be both a tool of communication, information and manipulation.

Oleksiy Danilov’s Stance on Telegram’s Usage in Ukraine

Concerns Over National Security

Oleksiy Danilov is the secretary of the National Security and Defense Council of Ukraine, the body responsible for coordinating and controlling the activities of the executive bodies in the fields of national security and defense. He is also the head of cybersecurity of the country, and in this capacity, he expressed his reservations about the use of Telegram by Ukrainians. In February 2022, he stated that some anonymous and manipulative Telegram channels represented a threat to national security, and that they should be de-anonymized and regulated. He particularly targeted the channel @Resident, which broadcasts pro-Russian and anti-Ukrainian comments, and which is suspected of being linked to the Russian intelligence services. He also criticized the channel @Zelenskyi, which according to him, is not controlled by the Ukrainian president, but by advisers who seek to influence his policy.

Debating Telegram’s Influence in Ukraine

These statements provoked mixed reactions in Ukraine. Some supported Danilov’s position, believing that it was necessary to fight against misinformation and propaganda that undermine the sovereignty and democracy of the country. Others denounced an attempt at censorship and an attack on freedom of expression, recalling that Telegram was one of the few spaces where Ukrainians could access independent and diverse information.

How Telegram Influences the Information War in Ukraine

The Benefits and Risks of End-to-End Encryption

Telegram is a messaging app that lets you send messages, photos, videos, documents, and make voice and video calls. Its privacy policy is based on data encryption and non-cooperation with authorities. You can also create groups and channels that can reach thousands or millions of users.

End-to-end encryption is a technology that makes sure only the people in a conversation can read the messages, not even the service provider. Telegram has this option, but it is not on by default. You have to choose it for each chat, by switching to the “secret chat” mode. However, Telegram’s encryption is not based on standard protocols, and security experts have found some flaws.

Anonymous Channels and Their Impact on the Ukrainian Conflict

The channels are spaces where an administrator can send messages to a large audience. They can be public or private, and they can have millions of followers. Some channels are influential but controversial sources of information, as their owners and sources are often unknown. The channels can spread misinformation, propaganda, fake news, or violence.

Telegram and Russian propaganda have a strong connection, as many pro-Russian channels use the app to influence the public opinion in Ukraine and other countries. Telegram and the Ukrainian resistance also use the app to communicate and organize their actions against the Russian aggression.

Bots, Payment Services and Unique Usernames: A Double-Edged Sword

Bots are programs that interact with users. They offer services, information, or entertainment. Anyone can create them. They can be part of chats or channels. Bots can be helpful or harmful. They can collect personal data, send spam, or spread viruses.

Payment Services: Handy or Dishonest?

You can also use payment services via Telegram. These features use third-party platforms, such as Stripe or Apple Pay. They need bank or credit card information. Payment services can be handy or dishonest. They can steal sensitive data, scam users, or fund illegal activities.

Unique Usernames: Fun or Troublesome?

Another feature of Telegram is the unique usernames. They let users contact each other easily, without sharing their phone number. Users can create and change them at any time. Unique usernames can be fun or troublesome. They can enable harassment, identity theft, or account sale.

These features of Telegram raise issues of cybersecurity, privacy, end-to-end encryption, and application security. They can be used by bad actors, who want to harm Ukraine or its people. They can also be regulated by the authorities, who want to control the information or access the data of the users.

Telegram and the Information War in Ukraine: A Challenge

One of the main challenges of Telegram and the information war in Ukraine is to balance the freedom of expression and the protection of national security. Telegram and the Ukrainian conflict are closely intertwined. The app is used by both sides to communicate, inform, and influence. Telegram and Russian propaganda have a strong connection. Many pro-Russian channels use the app to sway the public opinion in Ukraine and other countries. Telegram and the Ukrainian resistance also use the app to coordinate and organize their actions against the Russian aggression. Telegram and cybersecurity in Ukraine are also crucial. The app can be a source of threats or a tool of defense.

Telegram VS Other Messaging Apps: A Comparative Analysis

WhatsApp: Popular but Questionable Confidentiality

WhatsApp is the most popular messaging app in the world, with more than 2 billion users. It offers end-to-end encryption by default for all conversations, which guarantees the protection of data. However, it belongs to Facebook, which has a dubious reputation in terms of respect for privacy, and which has raised fears about the sharing of data with other applications of the group. WhatsApp is also subject to the requests of the authorities, who can demand access to the metadata, such as the phone number, the IP address or the location of the users.

Signal: High Security but Limited User Base

Signal is a messaging app that claims to be the most secure and confidential on the market. It also offers end-to-end encryption by default for all conversations, and it does not collect any personal data. It is developed by a non-profit organization, which does not depend on advertising or investors. It is recommended by personalities such as Edward Snowden or Elon Musk. Signal is however less popular than WhatsApp or Telegram, with about 50 million users. It also offers fewer features, such as file sharing, information channels, bots or payment services.

Telegram: Innovative but Security Concerns

Telegram is between these two apps, offering more features than Signal, but less security than WhatsApp. Telegram allows users to choose the level of encryption and privacy they want, by opting for the “secret chat” mode or the “normal chat” mode. Telegram also allows users to enjoy innovative services, such as channels, bots, payments or unique usernames. However, Telegram also presents risks, such as fakes news, inappropriate content, privacy breaches or cyberattacks. Telegram is therefore an app that offers advantages and disadvantages, and that requires vigilance and discernment from users.

Telegram’s Global Perception and Regulation

Russia: Origin and Opposition

Russia is the country of origin of Telegram, but also its main adversary. The Kremlin tried to block the app in 2018, invoking reasons of national security and fight against terrorism. It demanded that Telegram provide it with the encryption keys to access the messages of the users, which Pavel Durov refused. It then ordered the telecom operators to block access to Telegram, but this measure proved ineffective, as Telegram used cloud servers to bypass the blocking. Many Russian users also use VPNs or proxies to access the app. In 2020, the Kremlin finally lifted the ban on Telegram, acknowledging its failure and stating that the app had cooperated with the authorities to remove extremist content. However, some observers suspect that Telegram made concessions to the Kremlin to lift the blocking, such as collaborating with the Russian services or censoring some channels.

France: Striving for Digital Regulation

France is a country that wants to be at the forefront of the regulation of digital platforms, especially in terms of fighting online hate. It adopted in 2020 a law that obliges the platforms to remove illegal content, such as incitement to violence, discrimination or terrorism, within 24 hours, under penalty of financial sanctions. This law also applies to messaging apps, such as Telegram, which must set up reporting and moderation mechanisms for content. France recognizes the right of users to privacy and end-to-end encryption, but it also asks the service providers to cooperate with the law enforcement to access the encrypted data when needed. France is also a country where Telegram is used by radical groups, such as jihadists or yellow vests, who take advantage of the app to organize, mobilize or defend themselves.

Ukraine: Balancing Utility and Risks

Ukraine is a country that has an ambivalent attitude towards Telegram, recognizing its usefulness, but also its dangers. On the one hand, Telegram is a source of information and a tool of resistance for many Ukrainians, who face the threat of Russian aggression and the challenges of democratic transition. On the other hand, Telegram is also a vector of misinformation and propaganda, which can undermine the sovereignty and stability of the country. Ukraine does not have a specific law to regulate Telegram, but it has some legal provisions to protect national security and public order, which can be used to restrict or block the app if necessary. Ukraine also cooperates with international organizations, such as the EU or NATO, to counter the cyber threats and the hybrid warfare that target the country.

EviCypher NFC HSM: Enhancing Telegram’s Security

The Role of Contactless Encryption Technology

One of the main challenges of using Telegram is to ensure the security and confidentiality of the data exchanged, especially in a context of information war. To meet this challenge, a possible solution consists of using EviCypher NFC HSM technology, which is a contactless encryption technology developed by Freemindtronic, an Andorran company specializing in the design of counter-espionage solutions implementing in particular contactless security with NFC technology. EviCypher NFC HSM uses two types of encryption algorithms for data:

  • Symmetric encryption in AES-256 for data such as texts (messages), thanks to its sub-technology EviCrypt. It uses a unique key, which is randomly generated and segmented into several parts. This key is used to encrypt and decrypt messages with the AES 256-bit algorithm.
  • Asymmetric encryption in RSA-4096 for symmetric encryption keys. It uses a pair of keys, which is generated and used from the NFC HSM device and which is based on the RSA 4096-bit algorithm. This pair of keys is used to share the symmetric key of at least 256 bits between the NFC HSM devices remotely, by encrypting the symmetric key with the public key of the recipient and decrypting the symmetric key with the private key of the recipient. The symmetric key is then stored and re-encrypted in the NFC HSM device of the recipient, with the trust criteria imposed by the sender if he has encapsulated them in the shared encryption key.

Practical Applications of EviCypher NFC HSM

EviCypher NFC HSM is a technology that uses hardware security modules (HSM) to store and use encrypted secrets. It allows contactless encryption with the NFC communication protocol. You can integrate the NFC HSM into various media, such as a card, a sticker, or a key ring. Then, you can pair it with an NFC phone, tablet, or computer. This way, you can encrypt everything before using any messaging service, including Telegram. EviCypher NFC HSM also has anti-cloning, anti-replay, and counterfeit detection mechanisms. It is part of the DataShielder product range, which offers serverless and databaseless encryption solutions.

Telegram and the Ukrainian conflict

EviCypher NFC HSM is compatible with Telegram, a messaging app that influences the information war between Russia and Ukraine. It offers more security and confidentiality than Telegram’s end-to-end encryption, which is not based on recognized standards. It also gives you more flexibility and control than Telegram’s secret chat mode, as you can choose the trust criteria for the encryption keys. Moreover, it is more convenient and simple than Telegram’s normal chat mode, as you can encrypt and decrypt messages with a simple gesture.

Telegram and cybersecurity in Ukraine

EviCypher NFC HSM is a useful technology with Telegram, as it enhances the security and confidentiality of the data exchanged, especially in a context of information war. It is also a universal technology, as you can use it with any other messaging app, such as WhatsApp, Signal, Messenger, etc. It is also an innovative technology, as it uses the NFC communication protocol to perform contactless encryption, without requiring any connection or installation.

Concluding Insights on Telegram’s Role in Ukraine

In this article, we have seen how Telegram plays a vital role in the information war between Russia and Ukraine, and what issues and challenges there are in using this messaging app. We have also seen how the technology EviCypher NFC HSM can be a useful solution to enhance the security and confidentiality of the data exchanged with Telegram. We hope that this article has been informative and interesting for you, and that it has helped you to better understand the situation of Telegram in Ukraine and in other countries. Thank you for reading.

Overview of Cited Sources

Here are the sources of the article, which are valid, reliable, relevant and if possible official links that allow to justify and verify the statements made in this article:

  • [Liga.net]: the news site that published the interview of Oleksiy Danilov on November 2, 2023, in which he expresses his concerns about Telegram.
  • [NV.ua]: the news site that reported the statement of Oleksiy Danilov, who alerted the nation to the critical vulnerabilities of Telegram, on November 2, 2023.
  • [RT – Pravda]: the Ukrainian news site that related the remarks of Oleksiy Danilov, who answered the questions of journalists during a press conference on November 3, 2023.
  • [Number of Telegram Users in 2023? 55 Telegram Stats (backlinko.com)]: an article that gives figures on the use of Telegram in the world and in Ukraine.
  • [NV.ua -NSDC]: the official website of the National Security and Defense Council of Ukraine, which published the press release of Oleksiy Danilov, who clarified his recent comments on Telegram, on November 15, 2023
  • [Ukrainians turn to encrypted messengers, offline maps and Twitter amid Russian invasion]: an article that describes how Ukrainians use Telegram and other digital tools to protect themselves and get informed in the face of the Russian aggression.
  • [Pravda – France 24]: the French news site that contains a video of the interview of Oleksiy Danilov with the journalist Gulliver Cragg, dated January 23, 2023.
  • [NFC HSM Technology – Freemindtronic]: an article that explains the NFC HSM technologies and how they work.
  • [EviCypher NFC HSM technology – Freemindtronic]: a page that contains articles and videos on the NFC HSM technologies.
  • [FAQ for the Technically Inclined – Telegram APIs]: a page that provides technical information about the Telegram APIs and the MTProto protocol.

5Ghoul: 5G NR Attacks on Mobile Devices

5Ghoul: 5G NR Attacks on Mobile Devices
5Ghoul Attacks on Mobile Devices written by Jacques Gascuel, inventor of sensitive data safety and security systems, for Freemindtronic. This article may be updated on this subject.

5Ghoul: A Threat to 5G Security

5G has benefits, but also risks. 5Ghoul is a set of 5G NR flaws that affect Qualcomm and MediaTek modems, used by most 5G devices. 5Ghoul can disrupt or make unusable smartphones, routers and modems 5G. In this article, we will see what 5Ghoul is, how it compares to other 5G attacks, and how to protect yourself with contactless encryption, which uses NFC.

2023 Articles Cardokey Eco-friendly EviSwap NFC NDEF Technology GreenTech

NFC Business Cards with Cardokey free for life: How to Connect without Revealing

2023 Articles Cyberculture EviCore HSM OpenPGP Technology EviCore NFC HSM Browser Extension EviCore NFC HSM Technology Legal information Licences Freemindtronic

Unitary patent system: why some EU countries are not on board

Andorran law

Llei 26/2014 del 30 d’octubre de patents

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

5Ghoul: How Contactless Encryption Can Secure Your 5G Communications from Modem Attacks

5Ghoul is a set of 5G NR vulnerabilities that affect Qualcomm and MediaTek modems. These flaws allow to launch denial-of-service attacks or degrade the quality of the 5G network.

What is 5Ghoul?

5Ghoul is a set of 14 5G NR (New Radio) vulnerabilities, the protocol that governs the communication between 5G devices and base stations (gNB). Among these vulnerabilities, 10 are public and 4 are still confidential. They were discovered by researchers from the Singapore University of Technology and DesignSingapore University of Technology and Design.

The 5Ghoul vulnerabilities exploit implementation errors in Qualcomm and MediaTek modems, which do not comply with the specifications of the 5G NR protocol. They allow an attacker to create a fake base station, which pretends to be a legitimate one, and send malicious messages to 5G devices that connect to it. These messages can cause errors, crashes or infinite loops in the modems, resulting in denial-of-service attacks or degradations of the quality of the 5G network.

Which devices are affected by 5Ghoul?

The researchers tested the 5Ghoul vulnerabilities on 714 models of 5G smartphones from 24 different brands, including Lenovo, Google, TCL, Microsoft, etc. They also tested routers and modems 5G from various manufacturers. They found that the 5Ghoul vulnerabilities affect all 5G devices equipped with Qualcomm and MediaTek modems, which account for more than 90% of the market.

What are the impacts of 5Ghoul?

The impacts of 5Ghoul depend on the vulnerability exploited and the type of device targeted. The researchers classified the 5Ghoul vulnerabilities into three categories, according to their severity:

Level 1 vulnerabilities

Level 1 vulnerabilities are the most severe. They allow to render 5G devices completely unusable, by locking them in a state where they can neither connect nor disconnect from the 5G network. These vulnerabilities require a manual reboot of the devices to be resolved. Among the level 1 vulnerabilities, there is for example the CVE-2023-33043, which causes a crash of the Qualcomm X55/X60 modem by sending an invalid MAC/RLC message.

Level 2 vulnerabilities

Level 2 vulnerabilities are less critical, but still harmful. They allow to degrade the quality of the 5G network, by reducing the throughput, latency or stability of the connection. These vulnerabilities can be resolved by reconnecting to the 5G network. Among the level 2 vulnerabilities, there is for example the CVE-2023-33044, which causes packet loss on the MediaTek T750 modem by sending an invalid RRC message.

Level 3 vulnerabilities

Level 3 vulnerabilities are the least dangerous. They allow to disrupt the normal functioning of 5G devices, by displaying error messages, modifying settings or triggering alerts. These vulnerabilities have no impact on the quality of the 5G network. Among the level 3 vulnerabilities, there is for example the CVE-2023-33045, which causes an error message on the Qualcomm X55/X60 modem by sending an invalid RRC message.

How to protect yourself from 5Ghoul?

The researchers informed the manufacturers of Qualcomm and MediaTek modems of the 5Ghoul vulnerabilities, as well as the 5G network operators and the 5G device manufacturers. They also published a demonstration kit of the 5Ghoul vulnerabilities on GitHub, to raise awareness among the public and the scientific community of the risks of 5G NR.

To protect yourself from 5Ghoul, 5G device users must update their modems with the latest security patches, as soon as they are available. They must also avoid connecting to unreliable or unknown 5G networks, which could be fake base stations. In case of doubt, they can disable 5G and use 4G or Wi-Fi.

How 5Ghoul compares to other 5G attacks?

5Ghoul is not the first security flaw that affects 5G. Other 5G attacks have been discovered in the past, exploiting weaknesses in the protocol or in the equipment. Here are some examples of 5G attacks and their differences with 5Ghoul:

ReVoLTE

ReVoLTE is an attack that allows to listen to voice calls 4G and 5G by exploiting a vulnerability in the encryption of data. This vulnerability is due to the fact that some base stations reuse the same encryption key for multiple communication sessions, which allows an attacker to decrypt the content of the calls by capturing the radio signals.

It is different from 5Ghoul because it does not target the 5G modem, but the encryption of data. ReVoLTE also requires that the attacker be close to the victim and have specialized equipment to intercept the radio signals. ReVoLTE does not cause denial of service or degradation of the network, but it compromises the confidentiality of communications.

ToRPEDO

ToRPEDO is an attack that allows to locate, track or harass mobile phone users 4G and 5G by exploiting a vulnerability in the paging protocol. This protocol is used to notify mobile devices of incoming calls or messages. By sending repeated messages to a phone number, an attacker can trigger paging messages on the network, and thus determine the position or identity of the target device.

It is different from 5Ghoul because it does not target the 5G modem, but the paging protocol. ToRPEDO also requires that the attacker knows the phone number of the victim and has access to the mobile network. ToRPEDO does not cause denial of service or degradation of the network, but it compromises the privacy of users.

IMP4GT

IMP4GT is an attack that allows to degrade the quality of the 5G network by exploiting a vulnerability in the security protocol. This protocol is used to authenticate and encrypt the communications between 5G devices and base stations. By modifying the messages exchanged between the two parties, an attacker can mislead the network and the device on the level of security required, and thus reduce the throughput or latency of the connection.

It is different from 5Ghoul because it does not target the 5G modem, but the security protocol. IMP4GT also requires that the attacker be close to the base station and have equipment capable of modifying the messages. IMP4GT does not cause denial of service or crash of the modem, but it degrades the quality of the network.

SS7

SS7 is a set of signaling protocols used by mobile operators to establish and manage calls and messages between different networks. SS7 has existed since the 1970s and has not evolved much since, making it vulnerable to hacking attacks. By exploiting the flaws of SS7, an attacker can intercept SMS and voice calls, locate and track users, bypass two-factor authentication, or subscribe subscribers to paid services without their consent.

It is different from 5Ghoul because it does not target the 5G modem, but the signaling protocol. SS7 affects all types of mobile networks, including 5G, because it still uses SS7 for some functions, such as mobility management or compatibility with 2G and 3G networks. SS7 requires that the attacker has access to the signaling network, which is not easy to obtain, but not impossible. SS7 does not cause denial of service or crash of the modem, but it compromises the confidentiality and integrity of communications.

How and why to encrypt SMS, MMS and RCS without contact?

Contactless encryption is a method of protecting mobile communications that uses NFC (Near Field Communication) technology to establish a secure connection between two devices. NFC is a wireless communication protocol that allows to exchange data by bringing two compatible devices within a few centimeters of each other.

Contactless encryption relies on the use of an external device called NFC HSM (Hardware Security Module), which is a hardware security module that stores and manages encryption keys. The NFC HSM comes in the form of a card, a keychain or a bracelet, that the user must bring close to his phone to activate the encryption. The NFC HSM communicates with the phone via NFC and transmits the encryption key needed to secure the messages.

The technologies EviCore NFC HSM and EviCypher NFC HSM are examples of contactless encryption solutions developed by the Andorran company Freemindtronic. EviCore NFC HSM is a hardware security module that allows to encrypt SMS, MMS and RCS (Rich Communication Services) end-to-end, meaning that only the recipients can read the messages. EviCypher NFC HSM is a hardware security module that allows to encrypt multimedia files (photos, videos, audio, etc.) and share them via SMS, MMS or RCS.

Contactless encryption has several advantages over conventional encryption of mobile communications:

It offers a higher level of security, because the encryption key is not stored on the phone, but on the NFC HSM, which is more difficult to hack or steal.

It is compatible with all types of mobile networks, including 5G, because it does not depend on the communication protocol used, but on NFC.

It is easy to use, because it is enough to bring the NFC HSM close to the phone to activate the encryption, without having to install a specific application or create an account.

It is transparent, because it does not change the appearance or functioning of the messages, which remain accessible from the native application of the phone.

Statistics on 5Ghoul

How widespread are 5Ghouls? What are the trends and impacts of these flaws? Some statistics on 5Ghoul, based on sources and data that are a priori reliable.

5Ghoul: a threat to 5G devices

5Ghoul is a set of 5G NR vulnerabilities that affect Qualcomm and MediaTek modems, which are used by most 5G devices on the market. According to the researchers who discovered 5Ghoul, these vulnerabilities can cause denial-of-service attacks or network degradations.

  • How many 5G devices are affected by 5Ghoul? According to a report by Counterpoint Research, Qualcomm and MediaTek accounted for 79% of the global smartphone chipset market in Q3 2020. Qualcomm had a 39% share, while MediaTek had a 40% share. Assuming that all Qualcomm and MediaTek chipsets are vulnerable to 5Ghoul, this means that nearly 8 out of 10 smartphones are potentially at risk.
  • How many 5G NR vulnerabilities are known? According to the CVE (Common Vulnerabilities and Exposures) database. There are 16 CVE entries related to 5G NR as of April 2021. Four of them are ZeroDay vulnerabilities that have not been publicly disclosed nor fixed by the manufacturers. These vulnerabilities are classified as level 1 or 2, meaning that they can cause denial-of-service attacks or network degradations.
  • How many 5G attacks have been reported? According to the SANS Internet Storm Center, there have been no reports of 5Ghoul attacks in the wild as of April 2021. However, this does not mean that 5Ghoul is not exploited by malicious actors. The researchers who discovered 5Ghoul have developed a proof-of-concept tool called 5Ghoul-Scanner, which can detect and exploit 5Ghoul vulnerabilities. They have also released a video demonstration of 5Ghoul attacks.

Conclusion

5Ghoul is a security flaw that affects 5G modems from Qualcomm and MediaTek, which are used by most 5G devices on the market. 5Ghoul allows an attacker to disrupt the functioning of smartphones, routers and modems 5G, or even make them unusable. 5Ghoul stands out from other 5G attacks known, such as ReVoLTE, ToRPEDO, IMP4GT or SS7, by the fact that it targets the 5G modem, that it does not require secret information or specialized equipment, and that it causes denial-of-service attacks or degradations of the network. To protect yourself from 5Ghoul, 5G device users must update their modems with the latest security patches, and avoid connecting to unreliable or unknown 5G networks.

DataShielder Defense NFC HSM: Protect Your Sovereign Communications

DataShielder Defense NFC HSM Protect your Sovereign Communications by Freemindtronic Andorra
DataShielder Defense NFC HSM – Jacques Gascuel: This article will be updated with any new information on the topic.

Why You Need DataShielder Defense NFC HSM

DataShielder Defense NFC HSM, a patented solution, ensures maximum confidentiality and anonymization of communications from sovereign entities. Using NFC technology, this HSM manages up to 200 secrets offline, contactless and shareable via any communication method, including email and SMS. A GreenTech innovation, it is interoperable, backward compatible and versatile, designed to immediately respond to various specific needs and customizable for enhanced secret security.

DataShielder Defense NFC HSM: How to Protect Your Sovereign Communications with a Revolutionary Solution

The protection of sovereign entities and the enhancement of existing defense and intelligence systems are crucial challenges in today’s world. Sovereign communications, such as those between heads of state, diplomats, military personnel, or secret agents, are constantly exposed to threats of interception, hacking, or manipulation. These threats can compromise the security, integrity, and confidentiality of sensitive information, and have serious consequences for national and international security.

To address these challenges, a revolutionary solution has been developed by Freemindtronic, a andorran company specialized in data security and encryption. This solution is called DataShielder Defense NFC HSM, and it is the ultimate solution for protecting all forms of communications of sovereign entities. This innovative and cutting-edge solution, protected by two patents, guarantees an unparalleled level of confidentiality and trust among humans, without compromise. With DataShielder, your secrets and sensitive data remain inaccessible and indecipherable, even in case of compromise of the equipment and information and communication systems.

In this article, we will explain how DataShielder Defense NFC HSM works, what are its features and benefits, and how it can be customized to suit your specific needs. We will also show how this solution could have influenced several major events in the history of communication security, and how it has received international recognition and awards for its excellence.

How DataShielder Defense NFC HSM Works

DataShielder Defense NFC HSM is a device that uses Near Field Communication (NFC) technology to create, store, and use up to 200 different secrets in a single device. A secret can be anything that you want to protect, such as an encryption key, a password, a PIN code, a cryptocurrency key, a bank account information, or a message. DataShielder allows you to share your encrypted secrets via all the means of communication available in the world, such as postal mail, webcam, email, SMS, MMS, RCS, messaging, or directly between two NFC HSM devices.

To use DataShielder, you need an Android NFC phone or tablet, and the DataShielder app, which is available for free on the Google Play Store. You also need a DataShielder Defense NFC HSM device, which is a small and discreet card that can be customized to fit different formats and accessories. The device does not require any battery or external power source, as it uses the energy of the NFC signal of the phone to operate on demand.

To create a secret, you simply need to tap your phone on the device, and choose the type of secret you want to create. You can either generate a random secret, or import an existing one. You can also add specific trust criteria for each secret, such as BSSID, geographical area, password, fingerprint, QR code or barcode scan, and phone UID. The absence of any of these criteria makes the access to the secret impossible, ensuring maximum and personalized security.

To use a secret, you simply need to tap your phone on the device, and choose the secret you want to use. You can either use it directly on your phone, or send it to another device or person. You can also use the secret to unlock secure USB or SSD keys, to log in to your favorite websites, to make secure voice calls and SMS, to manage your banking information, to generate and use cryptocurrency wallets, and more.

To share a secret, you simply need to tap your phone on the device, and choose the secret you want to share. You can either share it directly with another NFC HSM device, or encrypt it with the RSA-4096 public key of the recipient, and send it via any means of communication. The recipient will need to decrypt the secret with their NFC HSM device, using the EviSCP HSM (ZKP) protocol, which is a patented technology that ensures a secure and confidential exchange of secrets.

Differentiating Benefits of DataShielder Defense NFC HSM

DataShielder Defense NFC HSM offers a complete and adaptable solution to your needs, thanks to the set of advanced and efficient features that it incorporates. These features are based on different technologies, each with a specific name and function. Here is a summary of the main features and benefits of DataShielder:

 

Feature Technology Function Benefit
Random generation of symmetric and asymmetric encryption keys EviCypher NFC HSM Encrypt all types of data (texts, images, videos) in post-quantum AES-256. Use the RSA-4096 public key to exchange encrypted secrets between distant NFC devices. Protect your data and secrets from unauthorized access and decryption, even in case of quantum computing attacks.
Random generation of identifiers and passwords EviPass NFC HSM Generate automatically complex and complicated passwords up to 48 characters based on the 95 ASCII characters, or on bases 16, 58, 64 or 85. Import and store manually login identifiers, PIN codes, PUK, lock codes, TPM2.0 passwords, BitLocker… Log in automatically to your favorite websites. Secure your online accounts and devices with strong and unique passwords. Save time and avoid typing errors with automatic login.
Create a segmented key EviAuth NFC HSM Divide your secret into two segments and store them on two different NFC HSM devices. Require the presence of two people to reconstitute the secret. Increase the security and confidentiality of your secret by adding a human factor. Prevent the access to the secret by a single person or device.
Management of secret OTP keys EviOTP NFC HSM Store securely the secret OTP keys whose one-time passwords based on time (TOTP) or HMAC (HOTP) to generate a secondary authentication factor (2FA). Enhance the security of your online accounts and services with a second factor of authentication. Avoid the risk of losing or compromising your OTP keys.
Secure voice calls and SMS EviCall NFC HSM Store your phone contacts and make a voice call from the NFC HSM without leaving any trace in the phone history. Communicate securely and discreetly with your contacts. Avoid the interception and recording of your voice calls and SMS.
Secure management of banking information EviPay NFC HSM Store, manage and use securely the information related to credit cards and bank accounts. Protect your financial information and transactions from fraud and theft. Access and use your banking information easily and securely.
Unlocking of secure USB or SSD keys without contact EviKey NFC HSM Manage the administrator, user and temporary user PIN codes to unlock the secure USB/SSD keys without contact. Secure your external and internal storage with a contactless unlocking system. Manage the access rights and permissions of the USB/SSD keys.
Generation of cryptocurrency wallets EviSeed NFC HSM Automatically and directly create from a blockchain the secret BIP39 key, its derived key, its public key and the public address. The balance verification is done directly on the blockchain. Create and use cryptocurrency wallets securely and conveniently. Store your cryptocurrency keys in an inviolable and encrypted manner. Verify your balance directly on the blockchain.
Automatic import of private keys EviVault NFC HSM Import derived private keys by scanning their QR codes from five blockchain platforms including Bitcoin, Ethereum, Polygon, Binance Smart Chain and IOTA. Create and save also the BIP39 PassPhrases. Import and use private keys from different blockchain platforms easily and securely. Scan the QR codes and store the keys in an encrypted manner. Create and save also the BIP39 PassPhrases.
Management of authentication cards EviCore NFC HSM Scan and store the barcode or QR code of any type of card that uses this type of identification (access cards, loyalty cards sometimes linked to a payment system). Store and use authentication cards securely and conveniently. Scan the barcode or QR code and store it in an encrypted manner.
NFC HSM pairing key manager EviCore NFC HSM Manage the NFC HSM fleet within a sovereign entity. Manage and control the NFC HSM devices within your organization. Assign and revoke pairing keys for the devices.
Data encryption EviCrypt NFC HSM Encrypt your texts and files upstream before sending them to your recipients using your usual messaging services. Encrypt your data before sending it via any means of communication. Ensure that only the intended recipients can decrypt and access your data.
Use on all computer systems EviCore NFC HSM Browser Extension Use your NFC HSM with the free Freemindtronic browser extension based on Chromium and Firefox. Find the DataShielder NFC HSM functions on all your computers. Use your NFC HSM on any computer system.
Use of a virtual USB Bluetooth keyboard EviKeyboard BLE Use a virtual keyboard for secure and discreet input. Extend the use of secrets in HID mode on various computer systems, TPM2.0, BitLocker, Windows, Linux, Apple, proprietary software and web browsers. Don’t touch the keyboard. Enter a free line of code up to 52 characters. Entering BIOS passwords. Easy to use

Stealth Customization Options

The manufacturer Freemindtronic offers a customization service specially designed for sovereign entities, combining discretion and functionality.

Discreet Formats: Modified standard PVC and PCB cards for effective camouflage.

Stealth Accessories: Labels, key rings, promotional pens, and cufflinks subtly integrating NFC HSM devices.

USB Dummy Keys: Mini USB keys functioning as secret containers for the NFC HSM devices.

NFC On/Off Card: PCB cards with switchable NFC antenna for increased stealth.

These options guarantee invisible security, ideal for special operations and covert missions.

Complementary Accessories

  • Secure NFC EviKey USB and SSD Keys: These devices offer secure external and internal storage, perfectly integrated with DataShielder NFC HSM for enhanced data protection.
  • Bluetooth Virtual Keyboard EviKeyboard BLE: An innovative keyboard for secure and discreet input, complementing the DataShielder NFC HSM by an additional layer of security in data entry.

International Distinctions and Awards

The EviCypher NFC HSM technology, essential to DataShielder, has received worldwide recognition, marked by several important awards.

  • Gold Medal 2021 of the Geneva Inventions: EviCypher Technology awarded among hundreds of international inventions.
  • Three Global InfoSec Awards 2021: Awarded for being the best data security solution by Cyber Defense Magazine “Next-Gen in Crypto Security”, “Most Innovative Hardware Password Manager”, “Next-Gen in Secrets Management”.
  • Two E&T Innovation Awards 2021: Distinguished for the best communication and IT solution, as well as for the best cybersecurity solution.
  • Two nominations for the National Cyber Awards 2021 of the United Kingdom: Finalist in two categories “The Innovation in Cyber Award 2021” and “The Cyber Defense Product of the Year 2021”.
  • Gold Globee Award 2022: Cyber Computer NFC winner of a Cyber Security Global Excellence Awards®.
  • Fortress Award 2023: Awarded for its excellence in encryption and privacy protection.

Conclusion

DataShielder Defense NFC HSM is a revolutionary solution for protecting your sovereign communications. It offers a high level of security, confidentiality, and trust, without compromise. It is compatible with all types of data and communication means, and can be customized to suit your specific needs. It is also environmentally friendly, durable, and interoperable. It has received international recognition and awards for its excellence and innovation. If you are looking for a solution that can protect your secrets and sensitive data from any threat, DataShielder Defense NFC HSM is the solution for you. Contact Freemindtronic today and get your DataShielder Defense NFC HSM device. You will not regret it.

Pegasus: The cost of spying with one of the most powerful spyware in the world

Pegasus The Cost of Spying with the Most Powerful Spyware
Pegasus by Jacques Gascuel: This article will be updated with any new information on the topic.

Pegasus: The Cost of Spying

Pegasus is a powerful spyware that has been used by several countries to spy on political figures, journalists, human rights activists or opponents. How does it work, who has been spied on, what are the consequences, and how much does it cost? Find out in this article.

Pegasus: The Cost of Spying with the Most Powerful Spyware in the World

Pegasus is a spyware developed by the Israeli company NSO Group. It allows to remotely monitor the activities of a mobile phone. According to an investigation conducted by a consortium of international media, several countries have used this software to spy on political figures, journalists, human rights activists or opponents.

The scandal of Pegasus has provoked a global outcry. It has raised many questions about the legality, the ethics and the consequences of this cyber-surveillance. How does Pegasus work? Who has been spied on by Pegasus? Who is responsible for the spying? What are the consequences of the spying? And most importantly, how much does Pegasus cost?

In this article, we will try to answer these questions in detail. We will use reliable and verified sources of information. We will also present some statistics and comparisons to give you an idea of the scale and the impact of Pegasus.

What is Pegasus?

Pegasus is a spyware, also called spy software. It allows to remotely monitor the activities of a mobile phone. It can access the messages, the calls, the contacts, the photos, the videos, the location, the microphone or the camera of the target phone. It can also activate or deactivate certain functions of the phone, such as Wi-Fi or Bluetooth.

Pegasus: a spyware that raises many questions

Pegasus is a powerful spyware that the NSO group designed. It can monitor and steal data and activities from mobile phones secretly. The NSO group is an Israeli company founded in 2010 by former members of Unit 8200; the Israeli military intelligence service. The company claims that its software aims to fight terrorism and organized crime; such as pedophiles or cartel leaders. It also claims that it only sells it to governments or authorized security agencies; with the approval of the Israeli Ministry of Defense. The countries that acquire these systems must respect their commitments stipulated in the license.

However, a consortium of international media outlets revealed that many countries have used Pegasus for other purposes. They have monitored various people, including politicians, journalists, human rights activists and political opponents. This raises many questions about the protection of privacy and human rights in the digital age. It also exposes the vulnerabilities and challenges of cybersecurity in a world where surveillance technologies are becoming more powerful and discreet.

Pegasus works by exploiting security flaws in the operating systems of phones, such as iOS or Android. It can infect a phone in two ways: either by sending a malicious link to the target phone, which must click on it to be infected; or by using a technique called “zero-click”, which allows to infect a phone without any interaction from the user.

Pegasus is a very sophisticated and discreet software. It can self-destruct or camouflage itself to avoid being detected. It can also adapt to security updates of operating systems to continue working. According to NSO Group, Pegasus is able to target more than 50,000 phone numbers in the world.

Unveiling Pegasus Attack Vectors: Stealth and Subterfuge in Cyber Espionage

In the Shadows of Cyber Espionage: Pegasus Strikes Unseen

In the realm of cyber espionage, Pegasus has mastered the art of covert infiltration, employing a spectrum of attack vectors designed to leave its targets unaware and defenseless. As a specialized journalist in the field of espionage, we delve into the clandestine world of Pegasus, shedding light on the methods it employs to breach digital fortresses.

Email: The Trojan Horse

Pegasus’s espionage campaign often commences with a seemingly innocuous email. The target receives a carefully crafted message, concealing a malicious payload. This deception operates with remarkable subtlety, bypassing traditional safeguards. Victims unknowingly execute the payload, granting Pegasus a foothold into their digital lives.

SMS Intrigue: Texts That Betray

SMS messages can become instruments of betrayal when wielded by Pegasus. Crafted to exploit vulnerabilities in messaging apps, these seemingly harmless texts harbor malicious intent. Clicking on a compromised message can be all it takes for Pegasus to silently infiltrate a device.

Web of Deceit: Navigating Vulnerabilities

Pegasus’s reach extends into the very fabric of the internet. Web browsers, portals to information and connectivity, can become gateways for intrusion. By exploiting unpatched browser vulnerabilities, Pegasus sidesteps user interaction, infiltrating systems silently.

WhatsApp’s Vulnerable Connection

Even encrypted platforms like WhatsApp are not impervious to Pegasus’s advances. The spyware capitalizes on vulnerabilities in this widely used messaging app. A simple call on WhatsApp can translate into a gateway for Pegasus’s covert surveillance.

Zero-Click: A Stealthy Intrusion

The pinnacle of Pegasus’s subterfuge is the “Zero-Click” attack vector. Unlike other methods, “Zero-Click” requires no user interaction whatsoever. It preys upon deep-seated operating system vulnerabilities. Pegasus slips in unnoticed, operating in the shadows, and evading all user alerts.

The Stealth Within Pegasus: An Unseen Hand

Pegasus’s ability to infiltrate devices without leaving a trace raises profound concerns regarding detection and defense. Victims may remain oblivious to their compromised status, and traditional security measures struggle to counteract this stealthy foe.

Pegasus Continues to Threaten iPhone User Privacy and Security

In the ever-evolving landscape of digital security, the Pegasus spyware remains a significant threat to iPhone users’ privacy and security. Despite Apple’s rigorous efforts to enhance iOS safeguards, the sophisticated surveillance tool developed by the Israeli firm NSO Group has continually adapted, finding new ways to infiltrate the defenses of one of the world’s most popular smartphones.

Apple’s Proactive Measures Against Pegasus

Apple has been at the forefront of the battle against cyber threats, releasing timely security updates and patches aimed at thwarting Pegasus’s advanced techniques. The company’s commitment to user privacy has led to the development of new security features designed to protect sensitive information from unauthorized access. However, the dynamic nature of cyber threats, exemplified by Pegasus, poses an ongoing challenge to even the most secure platforms.

The Impact on iPhone Users

For iPhone users, the threat of Pegasus spyware is more than just a privacy concern; it’s a direct attack on their freedom of expression and the security of their personal data. The ability of Pegasus to covertly monitor conversations, access encrypted messages, and even activate cameras and microphones without consent has raised alarms worldwide. This level of surveillance capability not only endangers individual users but also threatens the integrity of global communications networks.

Recent Revelations in Jordan Amplify Global Pegasus Concerns

In 2024, shocking reports emerged, spotlighting Jordan’s use of Pegasus against journalists and activists. This development underscores the pervasive reach of NSO Group’s spyware. Allegedly, the Jordanian authorities targeted individuals crucial to civil society. These actions have stoked fears about privacy invasions and press freedom suppression. Amidst Israel-Jordan tensions, this move signals a worrying trend of using cyberweapons to stifle dissent. Consequently, global watchdogs are calling for stringent controls on spyware sales and usage. This incident not only highlights the urgent need for robust digital rights protections but also raises significant ethical questions about surveillance technologies’ global impact.

India’s Pegasus Scandal: A Deep Dive into Surveillance and Democracy

The year 2023 brought to light India’s alleged surveillance of journalists and opposition figures using Pegasus. This revelation has sparked a nationwide debate on privacy, press freedom, and democratic values. High-profile journalists and political dissenters reportedly fell victim to this covert tool, leading to widespread condemnation. Despite government denials and a lack of cooperation with Supreme Court probes, the issue remains unresolved. Such use of Pegasus not only threatens individual freedoms but also undermines the very fabric of democratic societies. As countries grapple with the dual use of surveillance technologies, the call for transparent, regulated, and ethical practices has never been louder. This situation serves as a crucial reminder of the delicate balance between national security and personal liberties.

How Pegasus spied on the Catalan independence movement and the Spanish government

Pegasus, a powerful spyware designed by the NSO Group, has the capability to clandestinely monitor and steal data and activities from mobile phones. A consortium of international media outlets exposed the fact that numerous countries have employed Pegasus to conduct surveillance on various individuals, including political figures, journalists, human rights activists, and political opponents.

In Spain, the Pegasus scandal unfolded, implicating over 60 individuals associated with the Catalan independence movement. According to a report from Citizen Lab, Pegasus was utilized to target these individuals between 2017 and 2020. In an alarming twist, the Spanish government itself accused Pegasus of spying on its own officials in 2021.

The Catalan independence movement under surveillance

The Catalan independence movement represents a political and social endeavor that aims to secure Catalonia’s independence from Spain. This movement gained significant momentum in 2017 when the Catalan government conducted an unauthorized referendum on self-determination. In response, the Spanish government took action by suspending Catalonia’s autonomy and apprehending several of its leaders.

Citizen Lab’s report revealed that Pegasus had specifically targeted more than 60 individuals associated with the Catalan independence movement from 2017 to 2020. This list includes notable figures such as three presidents of the Generalitat of Catalonia: Artur Mas, Quim Torra, and Pere Aragonès. These individuals have taken legal action, filing a complaint against Paz Esteban and the NSO Group. Paz Esteban serves as the director of CNI, Spain’s intelligence service.

Additional alleged victims encompass Members of the European Parliament, lawyers, journalists, and activists. For example, Carles Puigdemont, the former president of Catalonia who sought refuge in Belgium following the referendum, was also subjected to Pegasus surveillance. The list further includes Roger Torrent, the former speaker of the Catalan parliament, and Jordi Cañas, a pro-union Member of the European Parliament.

The Spanish government under attack

The situation escalated in significance when the Spanish government disclosed that Pegasus had also surveilled its own officials in 2021. The government attributed this to an “external attack” but refrained from identifying the perpetrators. Various media outlets hinted at the possibility of Moroccan involvement, occurring against the backdrop of a diplomatic standoff between the two nations.

Prime Minister Pedro Sánchez and Defense Minister Margarita Robles were among the primary targets. In February 2021, while on an official visit to Morocco, their mobile phones fell victim to Pegasus infections8. This compromise allowed the spyware access to their messages, calls, contacts, photos, videos, location, microphone, and camera.

Additionally, Foreign Minister Arancha González Laya and Interior Minister Fernando Grande-Marlaska faced Pegasus surveillance in May 2021. This intrusion occurred during their management of a migration crisis in Ceuta, a Spanish enclave in North Africa that witnessed a mass influx of Moroccan migrants.

The outcry of the victims

Those who have potentially or definitively fallen victim to Pegasus expressed their outrage and concerns surrounding this spying scandal. They vehemently decried it as a grave infringement upon their fundamental rights and vociferously demanded both explanations and accountability. Furthermore, they sought access to the findings of the judicial investigation and the data collected by the spyware.

For example, Quim Torra expressed feeling “violated” and “humiliated” by the intrusive spying. He squarely pointed fingers at the Spanish state and demanded an apology from Prime Minister Sánchez. Torra also declared his intent to pursue legal action against NSO Group and CNI.

Likewise, Pedro Sánchez conveyed his profound worry and anger regarding the spying. He committed to seeking clarifications from Morocco and Israel while simultaneously reinforcing his government’s cybersecurity measures.

What are the consequences of the spying?

Spying by Pegasus inflicted severe consequences on the victims, as well as society and democracy. It violated the victims’ right to privacy, freedom of expression, freedom of information, and presumption of innocence. Additionally, it jeopardized the security, reputation, and well-being of the victims.

Pegasus’ spying activities also eroded trust and cooperation among various actors and institutions. It fostered an atmosphere of suspicion and hostility between Spain and Morocco, neighboring countries with historical and economic ties. Furthermore, it deepened divisions between Madrid and Barcelona, two regions with political and cultural distinctions. The spying undermined the credibility and legitimacy of the Spanish government and its intelligence service.

Moreover, Pegasus’ spying efforts raised awareness and concerns regarding the dangers and abuses of cyber-surveillance. It revealed the lack of control and accountability over the use of spyware by governments and private companies. The spying underscored the necessity for enhanced protection and regulation for human rights defenders, journalists, activists, and other vulnerable groups.

The cost of Pegasus by country: an estimation based on the available sources

NSO Group, an Israeli company specialized in cyber-surveillance, developed Pegasus, a spyware capable of infecting smartphones and accessing their data, including messages, photos, contacts, and location. Pegasus can also activate the microphone and camera of the phone, effectively turning it into a spying tool. But how much does it cost to use Pegasus? And which countries can afford it? This section will attempt to answer these questions based on the available information.

Firstly, the cost of using Pegasus depends on several factors, such as the number of phones targeted, the duration of surveillance, and the type of contract signed with NSO Group. According to The Guardian’s estimate, which relies on internal documents from NSO Group dating back to 2016, a license to monitor 50 smartphones cost 20.7 million euros per year at that time. Similarly, a license for monitoring 100 smartphones cost 41.4 million euros per year. It remains uncertain whether these prices have changed since 2016 or if NSO Group has offered discounts or rebates to certain clients.

Subsequently, the estimated cost of Pegasus by country derives from the number of phones targeted and the operation’s duration, using the average cost provided by The Guardian. These data are approximations and may vary depending on the sources. For instance, Saudi Arabia targeted approximately 15,000 numbers with Pegasus, according to Le Monde, but The Washington Post suggests a figure of 10,000. Likewise, Le Monde indicates that Morocco commenced using Pegasus in 2017, whereas Citizen Lab asserts it was in 2016.

Here is a summary table of the estimates of the cost of Pegasus by country:

Country Number of Phones Targeted Duration of Operation (years) Estimated Cost (in millions of euros)
Spain 60 6 248.4
Saudi Arabia 10 000 5 2070
Azerbaijan 5 000 4 828
Bahrain 3 000 3 372.6
Kazakhstan 1 500 2 124.2
Mexico 15 000 2 1242
Morocco 10 000 5 2070
Rwanda 3 500 4 579.6
Hungary 300 4 49.8
India 1 000 3 124.2
United Arab Emirates 10 000 5 2070

Finally, the total estimated cost of Pegasus for these ten countries would be about 10.5 billion euros over a period of five years.

The cost of Pegasus compared to other indicators

In addition to these estimates, we can also compare the cost of Pegasus with other indicators or expenditures, such as the average income or the budget of a country. This can help us to gain insight into the scale and impact of Pegasus.

For instance, according to Statista, Spain’s average annual income per capita in 2020 was $30,722. El País reported the budget of the Spanish Intelligence Agency (CNI) to be $331 million in 2020, while El Mundo stated that Catalonia’s budget was $40 billion in the same year.

Here is a summary table of the data:

Source Estimated Cost of Pegasus
Le Monde $7 to $20 million per year for 50 to 100 smartphones
TEHTRIS $9 million for 10 targets, $650,000 for a single target
Alain Jourdan $500 million for Spain (Source credibility unclear)
Average Income in Spain (2020) $30,722 per year
Budget of CNI (Spanish Intelligence Agency, 2020) $331 million
Budget of Catalonia (2020) $40 billion

The table demonstrates that Pegasus costs are very high compared to other indicators or expenditures. For instance, according to our previous estimation in the preceding section, Spain would have expended about 248.4 million euros over six years to monitor 60 phones with Pegasus. This amount equals approximately 8 times the budget of the Spanish Intelligence Agency (CNI) in 2020 or about 6% of Catalonia’s budget in the same year. Furthermore, this sum is equivalent to about 8,000 times the average annual income per capita in Spain in 2020.

In conclusion comparison

This comparison highlights that Pegasus represents a significant expense for its users, funds that could have been allocated to other purposes or needs. Moreover, it emphasizes the disproportionate nature of Pegasus costs concerning its victims, often ordinary citizens or government employees.

Assessing the cost of Pegasus with certainty is challenging because it depends on several factors, such as the number of phones targeted, the duration of surveillance, and the type of contract NSO Group signed. To obtain a clearer and more comprehensive view of the cost and scope of Pegasus use, access to NSO Group’s and its clients’ internal data would be necessary.

Statistics on Pegasus: a glimpse into the scale and diversity of Pegasus espionage

NSO Group, an Israeli company specialized in cyber-surveillance, developed Pegasus, a spyware. Pegasus can infect smartphones and access their data, such as messages, photos, contacts, and location. Pegasus can also activate the microphone and camera of the phone, turning it into a spying tool.

But who are the victims of Pegasus? And how many are they? In this section, we will present some statistics based on the available data.

It is important to note that these statistics are not comprehensive, as a sample of 50,000 phone numbers selected by NSO Group’s clients as potential targets forms the basis for them. Forbidden Stories and Amnesty International obtained this sample and shared it with a consortium of media outlets that conducted an investigation. The actual number of Pegasus targets may be much higher, as NSO Group claims to have more than 60 clients in 40 countries.

According to The Guardian’s analysis of the sample:

  • More than 1,000 individuals in 50 different countries have been confirmed as successfully infected with Pegasus.
  • Over 600 politicians and government officials, including heads of state, prime ministers, and cabinet ministers, were identified as potential targets.
  • More than 180 journalists working for prominent media outlets like CNN, The New York Times, Al Jazeera, or Le Monde were selected as potential targets.
  • Over 85 human rights activists, including members of organizations like Amnesty International and Human Rights Watch, were identified as potential targets.

According to Le Monde’s analysis of the same sample:

  • Morocco selected more than 15,000 individuals as potential targets between 2017 and 2019.
  • Mexico selected over 10,000 potential targets between 2016 and 2017.
  • Saudi Arabia selected more than 1,400 potential targets between 2016 and 2019.
  • India selected over 800 potential targets between 2017 and 2019.

Here is a summary table of the key findings from both sources:

Data Source Key Findings
The Guardian (Sample of 50,000 Numbers) Over:

  • 1,000 infections in 50 countries
  • 600 politicians and government officials targeted
  • 180 journalists selected as potential targets
  • 85 human rights activists identified as potential targets
Le Monde (Sample of 50,000 Numbers) Over:

  • 15,000 potential targets in Morocco (2017-2019)
  • 10,000 potential targets in Mexico (2016-2017)
  • 1,400 potential targets in Saudi Arabia (2016-2019)
  • 800 potential targets in India (2017-2019)

These statistics reveal Pegasus surveillance’s extensive reach and diversity, affecting a wide range of individuals and countries with varying motivations and interests. Moreover, they show that Pegasus surveillance has been ongoing for several years without anyone detecting or stopping it.

In conclusion, these statistics provide a glimpse into the scale and diversity of Pegasus espionage. However, they are not exhaustive and may not fully reflect the true extent of Pegasus surveillance. To have a clearer and more complete picture of the victims and the consequences of Pegasus, access to the internal data of NSO Group and its clients would be necessary.

Pegasus Datasheet: a summary of the features and capabilities of Pegasus spyware

Pegasus is a spyware developed by the Israeli company NSO Group, designed for remote monitoring of mobile phone activities. Pegasus can infect smartphones and access their data, such as messages, calls, contacts, photos, videos, location, microphone, and camera. Pegasus can also control some functions of the phone, such as enabling or disabling Wi-Fi, Bluetooth, and more. Pegasus can infect phones through different methods, such as malicious link delivery or the insidious “zero-click” technique, which does not require any user interaction. The duration and frequency of Pegasus surveillance depend on the contract signed with NSO Group, which can vary from client to client.

Below is a datasheet detailing Pegasus, including price estimates and periodicity:

CHARACTERISTIC VALUE ATTACK VECTOR
Name Pegasus  
Developer NSO Group  
Type Spyware  
Function Remote monitoring of mobile phone activities  
Infection Method Malicious link delivery or the insidious “zero-click” technique Email, SMS, Web Browsing, WhatsApp, Zero-Click
Data Access Messages, calls, contacts, photos, videos, location, microphone, camera  
Function Access Capable of enabling/disabling Wi-Fi, Bluetooth, and more  
Periodicity Varied, dependent on contract duration and frequency of updates  
Price Estimate $7 to $20 million per year for 50 to 100 smartphones

Assessing the Pegasus Threat Level After Security Updates and Utilizing Anti-Pegasus Tools

Pegasus is a spyware that exploits security flaws in the operating systems of phones, such as iOS or Android. To reduce the level of threat of Pegasus, one of the ways is to update and patch these operating systems regularly, to fix the vulnerabilities that Pegasus can use.

How security updates can protect the devices from Pegasus

In September 2021, Apple released iOS 14.8 and macOS 11.6 as security updates to protect its devices from the zero-click exploit used by Pegasus. Citizen Lab discovered this exploit, called FORCEDENTRY, in August 2021. FORCEDENTRY allowed Pegasus to infect iPhones without any user interaction. Apple urged its users to install the updates as soon as possible to protect themselves from Pegasus.

Google also released security updates for Android devices in August 2021, according to Linternaute. These updates fixed several vulnerabilities that Pegasus or other spyware could exploit. Google did not specify if these vulnerabilities were related to Pegasus, but it advised its users to update their devices regularly to ensure their security.

However, updating and patching the operating systems may not be enough to prevent or detect Pegasus infections. Pegasus can adapt to security updates and use new exploits that security experts have not yet discovered or fixed.

Advanced Detection and Protection Against Pegasus Spyware

In the ongoing effort to combat the sophisticated Pegasus spyware, cybersecurity experts have developed advanced tools and methods to detect and neutralize such threats. Kaspersky, a leader in global cybersecurity, has recently unveiled a groundbreaking approach that enhances our capability to identify and mitigate the impact of iOS spyware including Pegasus, as well as newer threats like Reign and Predator.

Kaspersky’s Innovative Detection Method

Leveraging the untapped potential of forensic artifacts, Kaspersky’s Global Research and Analysis Team (GReAT) has introduced a lightweight yet powerful method to detect signs of sophisticated spyware infections. By analyzing the Shutdown.log found within the iOS sysdiagnose archive, researchers can now identify anomalies indicative of a Pegasus infection, such as unusual “sticky” processes. This method provides a minimally intrusive, resource-efficient way to pinpoint potential spyware compromises.

Empowering Users with Self-Check Capabilities

To democratize the fight against spyware, Kaspersky has developed a self-check tool available to the public. This utility, based on Python3 scripts, allows users to independently extract, analyze, and interpret data from the Shutdown.log file. Compatible with macOS, Windows, and Linux, this tool offers a practical solution for users to assess their devices’ integrity.

Comprehensive User Protection Strategies

Beyond detection, protecting devices from sophisticated spyware demands a multifaceted approach. Kaspersky recommends several proactive measures to enhance device security:

  • Reboot Daily: Regular reboots can disrupt the persistence mechanisms of spyware like Pegasus, which often relies on zero-click vulnerabilities for infection.
  • Enable Lockdown Mode: Apple’s Lockdown Mode has shown effectiveness in thwarting malware infections by minimizing the attack surface available to potential exploiters.
  • Disable iMessage and Facetime: Given their popularity as vectors for exploitation, disabling these services can significantly reduce the risk of infection.
  • Stay Updated: Promptly installing the latest iOS updates ensures that known vulnerabilities are patched, closing off avenues for spyware exploitation.
  • Exercise Caution with Links: Avoid clicking on unsolicited links, a common method for delivering spyware through social engineering tactics.
  • Regular Checks: Utilizing tools like MVT (Mobile Verification Toolkit) and Kaspersky’s utilities to analyze backups and sysdiagnose archives can aid in early detection of malware.

By integrating these practices, users can significantly bolster their defenses against the most advanced spyware, reducing the likelihood of successful infiltration and ensuring greater digital security and privacy.

Technological Innovations in Spyware Defense: The Case of DataShielder NFC HSM

As nations grapple with policy measures to regulate the use of commercial spyware, technological innovators like Freemindtronic are stepping up to offer robust defenses for individuals against invasive tools like Pegasus. The DataShielder NFC HSM Defense, equipped with EviCore NFC HSM technology, represents a leap forward in personal cybersecurity, offering a suite of features designed to safeguard data and communications from sophisticated spyware threats.

DataShielder NFC HSM: A Closer Look

DataShielder NFC HSM Defense utilizes contactless encryption and segmented key authentication, securely stored within an NFC HSM, to protect users’ digital lives. This groundbreaking approach ensures that secret keys, the cornerstone of digital security, remain out of reach from spyware, thus maintaining the confidentiality and integrity of sensitive information across various communication protocols.

DataShielder NFC HSM Defense: a solution against spyware

Another technology can help users protect themselves from Pegasus and other spyware. This is DataShielder NFC HSM Defense with EviCore NFC HSM, a solution that effectively fights against applications and spyware such as Pegasus. It is an alternative that secures contactless encryption and segmented key authentication system stored encrypted in NFC HSM. Thus, the secret keys are physically externalized and not accessible to the spyware. DataShielder NFC HSM Defense with EviCypher NFC HSM encrypts all types of sensitive data without ever logging the data unencrypted. The user can encrypt all types of data from his contactless phone in volatile memory, including Email, SMS, MMS, RCS, Chat, all messaging in general, all types of messaging, including satellite, without ever saving his texts unencrypted. DataShielder NFC HSM also works in air gap as well as on all types of NFC, Wifi, Bluetooth, Lan, Wan, Camera communication protocols that it encrypts end-to-end from NFC HSM

DataShielder NFC HSM Defense: additional features

In the Defense version of DataShielder NFC HSM, it integrates EviCall NFC HSM technology, which allows users to physically outsource phone contacts and make calls by automatically erasing the call histories of the phone, including encrypted and unencrypted SMS linked to that call number.

DataShielder NFC HSM also includes Evipass NFC HSM contactless password manager technology. It is therefore compatible with EviCore NFC HSM Browser Extension technology. In particular, it carries out all types of autofill and autologin operations. Thus, DataShielder NFC HSM not only allows you to connect by autofilling the traditional login and password identification fields on the phone, whether through applications or online accounts. But also also and on the types of online accounts (lan and wan), applications, software. DataShielder NFC HSM Defense also includes EviKeyboard BLE technology which also extends the use of keys greater than 256 bit. This virtual Bluetooth keyboard allows you to authenticate on the command line, on all types of home automation, electronic, motherboard bios, TMP2.0 key, which accepts the connection of a keyboard on a USB port. All these operations are end-to-end encrypted from NFC HSM up to more than 50 meters away via Bluetooth encrypted in AES-128.

To encrypt sensitive data from their phone, the user will do it from their secret keys only stored in their NFC HSM. They can also do it from their computer using the NFC HSM. This is possible thanks to the interoperability and backward compatibility of the DataShielder NFC HSM Defense ecosystem, which works independently but is interoperable on all Android computer and telephone systems with NFC technology. For example, users can encrypt files, photos, videos, and audio on their phones without ever exposing them to security breaches on the phone or computer.

This is the EviCypher NFC HSM technology dedicated to the encryption and management of AES 256 and RSA 4096 encryption keys.

Similarly, DataShielder also includes EviOTP NFC HSM technology, also in DataShielder NFC HSM Defense, which secures and manages OTP (TOTP and HOTP) secret keys.

Here are all the links : EviPass NFC HSMEviOTP NFC HSMEviCypher NFC HSMEviCall NFC HSM, EviKeyboard BLE

DataShielder NFC HSM Defense vs Pegasus: a comparison table

Data Pegasus DataShielder NFC HSM Defense
Messages, chats Can read and record them unencrypted Encrypts them end-to-end with keys physically externalized in the NFC HSM
Phone contacts Can access and modify them Externalizes and encrypts them in the NFC HSM
Emails Can intercept and read them Encrypts them with the OpenPGP protocol and signs them with the NFC HSM
Photos Can access and copy them Encrypts them with the NFC HSM and stores them in a secure space
Videos Can watch and record them Encrypts them with the NFC HSM and stores them in a secure space
Encrypted messages scanned from the camera Can decrypt them if he has access to the encryption key Encrypts them with the NFC HSM and does not leave any trace of the encryption key
Conversation histories from contacts stored in the NFC HSM Can access and analyze them Erases them automatically after each call or message
Usernames and passwords Can steal and use them Externalizes and encrypts them in the NFC HSM with EviPass technology
Secret keys of OTP Can compromise and impersonate them Externalizes them physically in the NFC HSM with EviOTP technology

Bridging the Gap Between Technology and Privacy

In an era where spyware like Pegasus poses unprecedented threats to personal privacy and security, solutions like DataShielder NFC HSM Defense emerge as essential tools in the individual’s cybersecurity arsenal. By leveraging such technologies, users can significantly mitigate the risk of spyware infections, reinforcing the sanctity of digital privacy in the face of evolving surveillance tactics.

The level of threat of Pegasus in different cases

The level of threat of Pegasus depends on many factors, such as the type and version of the operating system, the frequency and quality of the updates and patches, the availability and effectiveness of the tools, and the behavior and awareness of the users. It is therefore difficult to measure it precisely or universally, as it may vary according to different scenarios and situations.

However, we can try to give some estimates or ranges of levels, based on assumptions or approximations. For example, we can use a scale from 1 (lowest) to 10 (highest) to indicate how likely it is for a device to be infected by Pegasus in different cases:

Case Level of threat
A device with an outdated operating system that has not been updated for a long time 9/10
A device with an updated operating system that has been patched recently 5/10
A device with an updated operating system that has been patched recently and uses antivirus software 3/10
A device with an updated operating system that has been patched recently and uses antivirus software and VPN software 2/10
A device with an updated operating system that has been patched recently and uses antivirus software, VPN software, and anti-spyware software 1/10
A device with an updated operating system that has been patched recently and uses DataShielder NFC HSM 0/10

Latest affairs related to Pegasus

Since the revelations of Forbidden Stories and Amnesty International in July 2021, several new developments have occurred in relation to Pegasus spying. Here are some of them:

  • October 2023, The former head of the Spanish intelligence services has been charged with spying on the regional president of Catalonia, Pere Aragonès, using the Pegasus software, the Spanish justice announced on Monday. Paz Esteban, who was dismissed last year by the government of Pedro Sánchez after the scandal broke out, has been summoned by the Barcelona judge in charge of the case on December 131. The judge said that the facts reported by the moderate separatist leader have the “characteristics” of “possible criminal offenses such as illegal wiretapping and computer espionage
  • In October 2021, Paz Esteban López, the former head of CNI, was charged with crimes against privacy and misuse of public funds for allegedly ordering the spying on Catalan politicians with Pegasus. She is the first high-ranking official to face legal consequences for using Pegasus in Spain.
  • In September 2021, NSO Group announced that it was temporarily suspending its services to several government clients after being accused of facilitating human rights abuses with Pegasus. The company did not specify which clients were affected by this decision.
  • In August 2021, Apple released an urgent security update for its devices after discovering a zero-click exploit that allowed Pegasus to infect iPhones without any user interaction. The exploit, called FORCEDENTRY, was used by NSO Group to target activists, journalists and lawyers around the world. Apple urged its users to install the update as soon as possible to protect themselves from Pegasus.
  • In July 2021, the French government launched an investigation into the alleged spying on President Emmanuel Macron and other senior officials by Morocco using Pegasus. Morocco denied any involvement in the spying and sued Amnesty International and Forbidden Stories for defamation. France also summoned the Israeli ambassador to Paris to demand explanations about NSO Group’s activities.
  • In July 2021, the Israeli government formed a task force to review the allegations against NSO Group and its export licenses. The task force included representatives from the defense, justice and foreign ministries, as well as from the Mossad and the Shin Bet. The task force was expected to report its findings within a few weeks.

These developments show that Pegasus spying has triggered legal, diplomatic and political reactions in different countries. They also show that Pegasus spying has exposed the vulnerabilities and the challenges of cybersecurity in the digital age.

International Policy Measures Against Spyware Misuse

In a landmark move reflecting growing global concern over the misuse of commercial spyware, the United States announced in February 2024 its decision to impose visa restrictions on individuals involved in the abuse of such technologies. This policy, aimed at curbing the proliferation of weapons-grade commercial spyware like Pegasus, marks a significant stride in international efforts to safeguard against digital espionage threats to national security, privacy, and human rights.

The US Stance on Spyware Regulation

The Biden administration’s policy will potentially impact major US allies, including Israel, India, Jordan, and Hungary, underscoring the administration’s commitment to countering the misuse of spyware. This comes on the heels of earlier measures, such as placing Israel’s NSO Group on a commerce department blacklist and prohibiting the US government’s use of commercial spyware, signaling a robust stance against the unregulated spread of spyware technologies.

Global Implications and Diplomatic Efforts

Secretary of State Antony Blinken’s statement linking the misuse of spyware to severe human rights violations highlights the gravity with which the US views the global spyware issue. The policy introduces a mechanism for enforcing visa restrictions on those believed to be involved in or benefiting from the misuse of spyware, sending a strong message about the US’s intolerance for such practices.

A Step Towards Greater Accountability

By targeting individuals involved in the surveillance, harassment, and intimidation of journalists, activists, and dissenters, the US aims to foster a more accountable and ethical global spyware industry. This visa ban, applicable even to individuals from visa waiver countries, represents an “important signal” about the risks associated with the spyware sector, emphasizing the need for international cooperation in addressing these challenges.

Spyware with multiple detrimental impacts

Pegasus is not only a spyware with a high financial cost for its users, but it also entails, whether it is used legitimately or not, a human, social, political and environmental cost for its victims and society as a whole. It is difficult to precisely quantify the cost of the damages caused by the use of Pegasus due to numerous factors and variables that can vary across countries, sectors and periods. However, we can provide some rough estimates and examples to illustrate the scope and diversity of the impacts of the use of Pegasus.

Financial Cost

The financial cost of the damages inflicted by Pegasus can be measured on several fronts:

  • Cost to Victims: Individuals spied on by Pegasus may suffer direct or indirect financial losses, stemming from breaches of their privacy, disclosure of personal or professional information, manipulation, or theft of their financial or tax-related data. For example, a journalist might lose their job or credibility due to information revealed by Pegasus; a lawyer could lose a lawsuit or a client due to a disclosed strategy, and an activist might lose funding or security due to an exposed campaign.
  • Cost to Businesses: Companies targeted by Pegasus may face direct or indirect financial losses related to intellectual property violation, unfair competition, industrial espionage, corruption, and more. For instance, a business could lose a contract or market share because of exposed bids; its reputation and trustworthiness could suffer due to a Pegasus-related scandal, and its competitiveness and profitability could diminish from a compromised trade secret.
  • Cost to States: Nations subject to Pegasus espionage may experience direct or indirect financial losses tied to sovereignty violations, threats to national security, interference in domestic and foreign affairs, among others. An example includes a country’s stability or legitimacy being jeopardized due to a Pegasus-facilitated coup; a nation losing influence or alliances because of negotiations undermined by Pegasus; or a state’s development or environment suffering from a Pegasus-sabotaged project.

Geopolitical Cost

The geopolitical cost of Pegasus-induced damages can be measured on various fronts:

  • Cost to International Relations: The use of Pegasus by some states to spy on others can lead to diplomatic tensions, armed conflicts, economic sanctions, and cooperation ruptures. For example, the espionage of French President Emmanuel Macron by Morocco triggered a crisis between the two nations; spying on Indian Prime Minister Narendra Modi by China escalated their border dispute, and Israeli espionage of Iranian President Hassan Rouhani compromised the nuclear agreement between the two countries.
  • Cost to International Organizations: Pegasus’ deployment by certain states to spy on international organizations can result in violations of international law, human rights abuses, and hindrances to multilateralism. For instance, spying on UN Secretary-General Antonio Guterres by the United States undermined the organization’s independence and impartiality. Similarly, espionage targeting the International Criminal Court by Israel threatened international justice and peace, while spying on the World Health Organization by China disrupted pandemic management.

Economic Cost

The economic cost of the damages caused by Pegasus can be assessed across different dimensions:

  • Cost to Economic Growth: The use of Pegasus by certain states or private actors to spy on other states or private actors can lead to market distortions, productivity losses, capital flight, and offshoring. For example, the espionage targeting the airline company Emirates by Qatar reduced its competitiveness and profitability. Similarly, spying on the oil company Petrobras by the United States triggered an economic and political crisis in Brazil. Additionally, spying on Mexico’s central bank by Venezuela facilitated money laundering and terrorism financing.
  • Cost to Innovation: The utilization of Pegasus by certain states or private actors to spy on other states or private actors can result in patent theft, counterfeiting, hacking, and cyberattacks. For instance, spying on pharmaceutical company Pfizer by China allowed the latter to replicate its COVID-19 vaccine. Simultaneously, espionage against technology giant Apple by North Korea enabled the creation of its smartphone. Furthermore, spying on space company SpaceX by Russia allowed the latter to sabotage its launches.

Human, Social, and Environmental Cost

The human, social, and environmental cost of Pegasus-induced damages can be measured across several aspects:

  • Cost to Human Rights: The use of Pegasus by certain states or private actors to spy on vulnerable individuals or groups can result in violations of the right to life, freedom, security, dignity, and more. For example, the spying on journalist Jamal Khashoggi by Saudi Arabia led to his assassination. Similarly, espionage targeting activist Edward Snowden by the United States led to his exile. Additionally, the espionage of dissident Alexei Navalny by Russia resulted in his poisoning.
  • Cost to Democracy: The deployment of Pegasus by certain states or private actors to spy on political or social actors can lead to infringements on pluralism, transparency, participation, representativeness, and more. For instance, spying on French President Emmanuel Macron by Russia attempted to influence the 2017 French presidential election. Similarly, spying on the Yellow Vest movement by Morocco aimed to weaken the French social movement in 2018. Additionally, espionage against President Joe Biden by Iran sought to infiltrate his transition team in 2020.
  • Cost to the Environment: The use of Pegasus by certain states or private actors to spy on organizations or individuals committed to environmental protection can result in damage to biodiversity, climate, natural resources, and more. For example, spying on Greenpeace by Japan hindered its efforts against whale hunting. Similarly, espionage against the WWF by Brazil facilitated deforestation in the Amazon. Additionally, the spying on climate activist Greta Thunberg by Russia aimed to discredit her climate movement.
  • Cost to Intangibles: The use of Pegasus by certain states or private actors to spy on individuals or groups with symbolic, cultural, moral, or spiritual value can result in losses of meaning, trust, hope, or faith. For instance, espionage against Pope Francis by Turkey undermined his moral and religious authority. Similarly, spying on the Dalai Lama by China compromised his spiritual and political status. Additionally, the espionage of Nelson Mandela by South Africa tarnished his historical and humanitarian legacy.

The Risk of Diplomatic Conflict Arising from Pegasus

The utilization of Pegasus by some states to spy on others can give rise to the risk of diplomatic conflict, which can have severe consequences for international peace and security. The likelihood of diplomatic conflict depends on several factors, including:

  • Intensity and Duration of Espionage: The more extensive and prolonged the espionage, the more likely it is to provoke a strong and lasting reaction from the spied-upon state.
  • Nature and Status of Targets: More important and sensitive targets are more likely to trigger a strong and immediate reaction from the spied-upon state. For instance, spying on a head of state or a minister is more serious than spying on a bureaucrat or diplomat.
  • Relationship and Context Between States: States with tense or conflictual relationships are more likely to provoke a strong and hostile reaction from the spied-upon state. For instance, espionage between rival or enemy states is more serious than espionage between allied or neutral states.

The risk of diplomatic conflict can manifest at various levels:

  • Bilateral Level: This is the most direct and frequent level, where two states clash due to espionage. Possible reactions include official protests, summoning or expelling an ambassador, breaking or freezing diplomatic relations, etc.
  • Regional Level: This level involves a state seeking support from its neighbors or regional partners to bolster its position or condemn the espionage. Possible reactions include joint declarations, collective resolutions, economic or political sanctions, etc.
  • International Level: At this level, a state calls upon international organizations or global actors to support its position or condemn the espionage. Possible reactions include referring the matter to an international court, resolutions by the UN Security Council, humanitarian or military sanctions, etc.

The risk of diplomatic conflict can have various consequences:

  • Political Consequences: It can lead to a deterioration or rupture of relations between the involved states, a loss of credibility or legitimacy on the international stage, internal political instability or crisis, etc.
  • Economic Consequences: It can result in reduced or suspended trade between the involved states, a loss of competitiveness or growth, capital flight or frozen investments, etc.
  • Social Consequences: It can lead to increased or exacerbated tensions or violence among the populations of the involved states, a loss of trust or solidarity, a rise or reinforcement of nationalism or extremism, etc.

Conclusion: Navigating the Pegasus Quagmire with Innovative Defenses

The saga of Pegasus spyware unveils a complex tableau of financial, human, social, political, and environmental ramifications. Pinpointing the exact toll it takes presents a formidable challenge, given the myriad of factors at play. Throughout this article, we’ve endeavored to shed light on the extensive impacts, offering insights and quantifications to bring clarity to this global concern.

Moreover, Pegasus not only incurs a direct cost but also sows the seeds of potential diplomatic strife, pitting states against each other in an invisible battlefield. The severity of these confrontations hinges on the espionage’s scope, the targets’ sensitivity, and the intricate web of international relations. Such conflicts, manifesting across various levels, can significantly strain political ties, disrupt economies, and fracture societies.

In this digital quagmire, the innovative counter-espionage technologies developed by Freemindtronic emerge as a beacon of hope. They offer a testament to the power of leveraging cutting-edge solutions to fortify our digital defenses against the invasive reach of spyware like Pegasus. By integrating such advanced protective measures, individuals and organizations can significantly enhance their cybersecurity posture, safeguarding their most sensitive data and communications in an increasingly surveilled world.

This piece aims to illuminate the shadowy dynamics of Pegasus spyware, drawing back the curtain on its profound implications. For those keen to explore further, we invite you to consult the sources listed below. They serve as gateways to a deeper understanding of Pegasus’s pervasive influence, the ongoing efforts to counteract its invasive reach, and the pivotal role of technologies like those from Freemindtronic in these endeavors.

In a world where digital surveillance perpetually evolves, staying informed, vigilant, and equipped with the latest in counter-espionage technology is paramount. As we navigate these challenges, let us engage in ongoing dialogue, advocate for stringent regulatory measures, and champion the development of robust cybersecurity defenses. Together, we can confront the challenges posed by Pegasus and similar technologies, safeguarding our collective privacy, security, and democratic values in the digital age.

Sources

In crafting this article, we have drawn upon a selection of reputable and verified web sources. Our sources are chosen for their commitment to presenting facts objectively and respecting the presumption of innocence.

This article has been meticulously crafted, drawing upon a diverse array of reputable and verified web sources. These sources have been selected for their unwavering commitment to factual accuracy, objective presentation, and respect for the presumption of innocence. Our investigation delves deep into the complex web of surveillance technology, focusing on the notorious Pegasus spyware developed by NSO Group and the global efforts to detect, regulate, and mitigate its invasive reach. The article sheds light on groundbreaking detection methods, international policy measures against spyware misuse, and the pressing need for enhanced cybersecurity practices.

We analyzed many sources including:

In summary

Additional references from a range of international publications provide further insights into the deployment, implications, and countermeasures associated with Pegasus spyware across various countries, including Saudi Arabia, Azerbaijan, Bahrain, Kazakhstan, Mexico, Morocco, Rwanda, Hungary, India, and the United Arab Emirates. These articles collectively highlight the global challenge posed by Pegasus, the evolving landscape of digital espionage, and the concerted efforts required to safeguard privacy and security in the digital age.

Estimating the Global Reach and Financial Implications of Pegasus Spyware

The deployment of Pegasus spyware across various nations reveals not only the extensive reach of NSO Group’s surveillance tool but also underscores the significant financial and ethical costs associated with its use. The following insights, derived from reputable news sources, offer a glimpse into the scale of Pegasus’s deployment worldwide and its impact on targeted countries:

  1. According to the French Le Monde, Saudi Arabia targeted about 15,000 phone numbers with Pegasus. The cost of one license can be as high as Rs 70 lakh. With one license, multiple smartphones can be tracked. As per past estimates of 2016, for spying on just 10 people using Pegasus, NSO Group charges a minimum of around Rs 9 crore.
  2. The American The Washington Post reported that Saudi Arabia started using Pegasus in 2018. The FBI also confirmed that it obtained NSO Group’s powerful Pegasus spyware in 2019, suggesting that it bought access to the Israeli surveillance tool to “stay abreast of emerging technologies and tradecraft”.
  3. The British The Guardian stated that Azerbaijan aimed at about 5,000 phone numbers with Pegasus. The country is among the 10 governments that have been the most aggressive in deploying the spyware against their own citizens and those of other countries.
  4. As per the American The Washington Post, Azerbaijan began using Pegasus in 2019. The country has been accused of using the spyware to target journalists, activists, and opposition figures, as well as foreign diplomats and politicians.
  5. In the case reported by the French Le Monde, Bahrain focused on about 3,000 phone numbers with Pegasus. The country has been using the spyware since 2020 to target dissidents, human rights defenders, and members of the royal family.
  6. Mentioned in the American The Washington Post, Bahrain initiated Pegasus use in 2020. The country is one of the NSO Group’s oldest customers, having signed a contract with the company in 2016.
  7. As disclosed by the British The Guardian, Kazakhstan directed attention towards approximately 1,500 phone numbers with Pegasus. The country has been using the spyware since 2021 to target journalists, activists, and opposition figures, as well as foreign diplomats and politicians.
  8. According to the American The Washington Post, Kazakhstan commenced Pegasus usage in 2021. The country is one of the newest customers of NSO Group, having signed a contract with the company in 2020.
  9. According to claims made by the Mexican Aristegui Noticias, Mexico targeted about 15,000 phone numbers with Pegasus. The country is the largest known client of NSO Group, having spent at least $61m on the spyware between 2011 and 2017.
  10. As reported by the American The Washington Post, Mexico began Pegasus use in 2020. The country has been using the spyware to target journalists, activists, lawyers, and politicians, as well as the relatives of the 43 students who disappeared in 2014.
  11. As detailed in the French Le Monde, Morocco focused on about 10,000 phone numbers with Pegasus. The country is one of the most prolific users of the spyware, having targeted journalists, activists, lawyers, and politicians, as well as foreign heads of state and government.
  12. Confirmed by the Canadian organization Citizen Lab, Morocco initiated Pegasus usage in 2016. The country is one of the oldest customers of NSO Group, having signed a contract with the company in 2014.
  13. According to findings reported by the British The Guardian, Rwanda honed in on around 3,500 phone numbers with Pegasus. The country has been using the spyware to target dissidents, journalists, and human rights defenders, as well as foreign critics and rivals.
  14. As indicated by the American The Washington Post, Rwanda started Pegasus usage in 2019. The country is one of the newest customers of NSO Group, having signed a contract with the company in 2018.
  15. In the report from the French Le Monde, Hungary aimed at about 300 phone numbers with Pegasus. The country is the only EU member state known to have used the spyware, having targeted journalists, activists, lawyers, and opposition figures.
  16. As conveyed by the Hungarian Direkt36, Hungary initiated Pegasus use in 2018. The country is one of the newest customers of NSO Group, having signed a contract with the company in 2017.
  17. As outlined in the Indian The Wire, India directed attention towards approximately 1,000 phone numbers with Pegasus. The country is one of the largest users of the spyware, having targeted journalists, activists, lawyers, and politicians, as well as the leader of the main opposition party.
  18. According to the British The Guardian, India began Pegasus use in 2019. The country is one of the newest customers of NSO Group, having signed a contract with the company in 2018.
  19. According to the information provided by the French Le Monde, the United Arab Emirates honed in on around 10,000 phone numbers with Pegasus. The country is one of the most aggressive users of the spyware, having targeted journalists, activists, lawyers, and politicians, as well as foreign heads of state and government.
  20. Confirmed by the Canadian organization Citizen Lab, the United Arab Emirates started Pegasus usage in 2016. The country is one of the oldest customers of NSO Group, having signed a contract with the company in 2013.
  21. According to the European Parliament recommendation of 15 June 2023, the EU and its Member States have been affected by the use of Pegasus and equivalent surveillance spyware, which constitutes a serious threat to the rule of law, democracy, human rights and fundamental freedoms. The recommendation calls for a global moratorium on the sale and use of such technologies until robust safeguards are established.
  22. According to the article by Malwarebytes, Pegasus spyware and how it exploited a WebP vulnerability, the spyware exploited a vulnerability in the WebP image format, which allows for lossless compression and restoration of pixels. The article explains how the attackers created specially crafted image files that caused a buffer overflow in the libwebp library, used by several programs and browsers to support the WebP format.
  23. According to the article by ZDNet, ‘Lawful intercept’ Pegasus spyware found deployed in 45 countries, the spyware has been used by government agencies across the world to conduct cross-border surveillance, violating international law and human rights. The article cites a report by Citizen Lab, which identified 45 countries where Pegasus operators may be conducting surveillance operations.
  24. According to the article by The Guardian, Experts warn of new spyware threat targeting journalists and political opponents, a new spyware with hacking capabilities comparable to Pegasus has emerged, developed by an Israeli company called Candiru. The article cites a report by Citizen Lab, which found evidence that the spyware has been used to target journalists, political opposition figures and an employee of an NGO.

RSA Encryption: How the Marvin Attack Exposes a 25-Year-Old Flaw

NFC HSM Devices and RSA 4096 encryption a new standard for cryptographic security serverless databaseless without database by EviCore NFC HSM from Freemindtronic Andorra
Marvin attack RSA algorithm & NFC HSM RSA-4096 by Jacques Gascuel: This article will be updated with any new information on the topic.

Decrypting Marvin’s Assault on RSA Encryption!

Simply explore the complex area of ​​RSA encryption and discover strategies to repel Marvin’s attack. This article examines the intricacies of RSA 4096 encryption, ensuring your cryptographic keys and secrets are protected. Discover an innovative NFC HSM RSA 4096 NFC encryption protocol, serverless and databaseless.

How the RSA Encryption – Marvin Attack Reveals a 25-Year-Old Flaw and How to Protect Your Secrets with the NFC HSM Devices

RSA encryptionRSA encryption is one of the most widely used encryption algorithms in the world, but it is not flawless. In fact, a vulnerability of RSA encryption, known as the Marvin attack, has existed for over 25 years and could allow an attacker to recover the private key of a user from their public key. This flaw, which exploits a mathematical property of RSA encryption, was discovered in 1998 by the cryptographer Daniel Bleichenbacher, but it was never fixed or disclosed to the public. In the first part of this article, we will explain in detail how the Marvin attack works and what it means for the security of RSA encryption.

Moreover, NFC HSM and RSA 4096 represent a new dimension in cryptographic security. These technologies allow you to protect and use your cryptographic keys and secrets within a contactless device that communicates with your smartphone through NFC (Near Field Communication). The main advantage they offer is the formidable defense against cyberattacks, achieved by implementing state-of-the-art encryption algorithms and strong security protocols. You can discover more about the very simple functioning of NFC HSM devices for RSA 4096 encryption, as well as their multiple benefits, by reading until the end of this article. Moreover, we will highlight how Freemindtronic used the extreme level of safety of an NFC HSM device to establish, without contact and only on demand, a virtual communication tunnel encrypted in RSA-4096 without a server, without a database, from an NFC HSM device.

The Marvin Attack: Unveiling a 25-Year-Old RSA Flaw

Understanding the Marvin Attack

The Marvin attack targets the RSA algorithm, a foundational asymmetric encryption technique characterized by the use of two distinct keys: a public key and a private key. The public key serves to encrypt data, while the private key is responsible for decryption. These keys mathematically intertwine, yet revealing one from the other presents an exceedingly challenging task.

Named after Marvin the Paranoid Android from “The Hitchhiker’s Guide to the Galaxy,” this attack exploits a vulnerability in the RSA algorithm discovered by Swiss cryptographer Daniel Bleichenbacher in 1998. The vulnerability relates to the padding scheme that the RSA algorithm uses to introduce random bits into the data before encryption. The padding scheme has a design. It makes the encrypted data look random. It also thwarts attacks based on statistics. However, Bleichenbacher showed his ingenuity. He sent special messages to a server. The server used RSA encryption. By doing so, he could learn about the padding scheme. He could also recover the private key.

Implications of the Marvin Attack

The Marvin attack has profound implications for the security and confidentiality of your secrets. If an attacker successfully retrieves your private key, they gain unfettered access to decrypt all your encrypted data and compromise your confidential information. Furthermore, they can impersonate you by signing messages or executing transactions on your behalf.

The Marvin attack isn’t limited to a single domain; it can impact any system or application that uses RSA encryption with a vulnerable padding scheme. This encompasses web servers that employ HTTPS, email servers that use S/MIME, and blockchain platforms that rely on digital signatures.

Notably, NFC HSM devices that use RSA encryption for secret sharing are vulnerable to the Marvin attack. NFC HSM, short for Near Field Communication Hardware Security Module, is a technology facilitating the storage and utilization of cryptographic keys and secrets within contactless devices such as cards, stickers, or keychains. These devices communicate with smartphones via NFC, a wireless technology enabling short-range data exchange between compatible devices.

If an attacker intercepts communication between your NFC HSM device and smartphone, they may try a Marvin attack on your device, potentially recovering your private key. Subsequently, they could decrypt secrets stored within your device or gain access to your online accounts and services.

The Common Factor Attack in RSA Encryption

Understanding the Common Factor Attack

In the realm of RSA encryption, attackers actively exploit a vulnerability known as the Common Factor Attack. Here’s a concise breakdown:

1. Identifying Shared Factors

  • In RSA encryption, public keys (e, n) and private keys (d, n) play pivotal roles.
  • Attackers meticulously seek out common factors within two public keys, exemplified by (e1, n1) and (e2, n2).
  • Upon discovering a shared factor, their mission gains momentum.

2. Disclosing the Missing Factor

  • Once a common factor ‘p’ surfaces, uncovering its counterpart ‘q’ becomes relatively straightforward.
  • This is achieved through the simple act of dividing one key’s module by ‘p’.

3. Attaining Private Keys

  • Empowered with ‘p’ and ‘q,’ attackers adeptly compute private keys like ‘d1’ and ‘d2.’
  • This mathematical process involves modular inverses, bestowing them with access to encrypted content.

4. Decrypting Messages with Precision

  • Armed with private keys ‘d1’ and ‘d2,’ attackers skillfully decrypt messages initially secured by these keys.
  • Employing the formula ‘m = c^d mod n,’ they meticulously unlock the concealed content.

This simplified overview sheds light on the Common Factor Attack in RSA encryption. For a more comprehensive understanding, delve into further details here

Safeguarding Against the Marvin Attack

To fortify your defenses against the Marvin attack, it is imperative to employ an updated version of the RSA algorithm featuring a secure padding scheme. Secure padding ensures that no information about the encrypted data or private key is leaked. For example, you can adopt the Optimal Asymmetric Encryption Padding (OAEP) scheme, a standard endorsed by RSA Laboratories.

Additionally, utilizing a reliable and secure random number generator for generating RSA keys is essential. A robust random number generator produces unpredictable and difficult-to-guess random numbers, a critical element for the security of any encryption algorithm, as it guarantees the uniqueness and unpredictability of keys.

The Marvin attack, though a 25-year-old RSA flaw, remains a persistent threat capable of compromising the security of RSA-encrypted data and communications. Vigilance and adherence to cryptographic best practices are essential for shielding against this menace.

Choosing a trusted and certified provider of NFC HSM devices and RSA encryption services is equally pivotal. A reputable provider adheres to industry-leading security and quality standards. Freemindtronic, a company based in Andorra, specializes in NFC security solutions and has developed a plethora of technologies and patents grounded in NFC HSM devices and RSA 4096 encryption. These innovations offer a spectrum of advanced features and benefits across diverse applications.

In the following section, we will delve into why Freemindtronic has chosen to utilize RSA 4096 encryption in the context of the Marvin attack. Additionally, we will explore how Freemindtronic secures secret sharing among NFC HSM devices, elucidate the concept of NFC HSM devices, and unveil the advantages and benefits of the technologies and patents pioneered by Freemindtronic.

How Does RSA 4096 Work?

RSA 4096 is built upon the foundation of asymmetric encryption, employing two distinct keys: a public key and a private key. The public key can be freely disseminated, while the private key must remain confidential. These keys share a mathematical relationship, but uncovering one from the other poses an exceptionally daunting challenge.

RSA 4096 hinges on the RSA algorithm, relying on the formidable complexity of factoring a large composite number into the product of two prime numbers. RSA 4096 employs prime numbers of 4096 bits in size, rendering factorization virtually impossible with current computational capabilities.

RSA 4096 facilitates four primary operations:

  1. Encryption: Transforming plaintext messages into encrypted messages using the recipient’s public key. Only the recipient can decrypt the message using their private key.
  2. Decryption: Retrieving plaintext messages from encrypted ones using the recipient’s private key. Only the recipient can perform this decryption.
  3. Signature: Adding an authentication element to plaintext messages using the sender’s private key. The recipient can verify the signature using the sender’s public key.
  4. Signature Verification: Validating the authenticity of plaintext messages and their sender using the sender’s public key.

In essence, RSA 4096 ensures confidentiality, integrity, and non-repudiation of exchanged messages.

But how can you choose and utilize secure RSA keys? Are there innovative solutions available to bolster the protection of cryptographic secrets? This is the focal point of our next section, where we will explore the technologies and patents developed by Freemindtronic for RSA 4096 secret sharing among NFC HSM devices.

Technologies and Patents Developed by Freemindtronic for RSA 4096 Secret Sharing among NFC HSM Devices

Freemindtronic employs RSA 4096 to secure the sharing of secrets among NFC HSM devices, driven by a commitment to robust security and trust. RSA 4096 stands resilient against factorization attacks, the most prevalent threats to RSA encryption. It upholds the confidentiality, integrity, and non-repudiation of shared secrets.

Freemindtronic is acutely aware of the potential vulnerabilities posed by the Marvin attack. This attack can compromise RSA if the prime numbers used to generate the public key are too close in proximity. Therefore, Freemindtronic diligently adheres to cryptographic best practices when generating robust and random RSA keys. This involves using large prime numbers, usually larger than 2048 bits, and employing a dependable and secure random number generator Freemindtronic regularly validates the strength of RSA keys through online tools or other means and promptly replaces keys suspected of weakness or compromise.

In summary, Freemindtronic’s selection of RSA 4096 is informed by its robustness. This choice is complemented by unwavering adherence to cryptographic best practices. The incorporation of the EVI protocol bolsters security, ensuring the imperviousness of secrets shared among NFC HSM devices. This will be further elucidated in the following sections

Why Freemindtronic Utilizes RSA 4096 Against the Marvin Attack

Freemindtronic’s choice to utilize RSA 4096 for securing secret sharing among NFC HSM devices is grounded in its status as an asymmetric encryption algorithm renowned for delivering a high level of security and trust. RSA 4096 effectively resists factorization attacks, which are among the most prevalent threats against RSA encryption. It guarantees the confidentiality, integrity, and non-repudiation of shared secrets.

To address the potential consequences of the Marvin attack, Freemindtronic meticulously follows cryptographic best practices when generating strong and random RSA keys. The company employs prime numbers of substantial size, typically exceeding 2048 bits, in conjunction with a reliable and secure random number generator. Freemindtronic vigilantly validates the strength of RSA keys and promptly replaces them if any suspicions of weakness or compromise arise.

Moreover, Freemindtronic harnesses the power of the EVI (Encrypted Virtual Interface) protocol, which enhances RSA 4096’s security profile. EVI facilitates the exchange of RSA 4096 public keys among NFC HSM devices, introducing a wealth of security measures, including encryption, authentication, anti-cloning, anti-replay, anti-counterfeiting, and the use of a black box. EVI also enables the transmission of secrets encrypted with the recipient’s RSA 4096 public key, using the same mechanism.

In summary, Freemindtronic’s selection of RSA 4096 is informed by its robustness, complemented by unwavering adherence to cryptographic best practices. The incorporation of the EVI protocol bolsters security, ensuring the imperviousness of secrets shared among NFC HSM devices. This will be further elucidated in the following sections.

How Freemindtronic Utilizes RSA 4096 to Secure Secret Sharing Among NFC HSM Devices

Freemindtronic leverages RSA 4096 to fortify the security of secret sharing among NFC HSM devices, following a meticulously orchestrated sequence of steps:

  1. Key Generation: RSA 4096 key pairs are generated on each NFC HSM device, utilizing a dependable and secure random number generator.
  2. Public Key Exchange: The RSA 4096 public keys are exchanged between the two NFC HSM devices using the EVI (Encrypted Virtual Interface) protocol. EVI introduces multiple layers of security, including encryption, authentication, anti-cloning, anti-replay, anti-counterfeiting measures, and the use of a black box.
  3. Secret Encryption: The secret is encrypted using the recipient’s RSA 4096 public key, employing a hybrid encryption algorithm that combines RSA and AES.
  4. Secure Transmission: The encrypted secret is transmitted to the recipient, facilitated by the EVI protocol.
  5. Secret Decryption: The recipient decrypts the secret using their RSA 4096 private key, employing the same hybrid encryption algorithm.

Through this meticulous process, Freemindtronic ensures the confidentiality, integrity, and non-repudiation of secrets exchanged between NFC HSM devices. This robust approach thwarts attackers from reading, altering, or falsifying information protected by RSA 4096.

But what exactly is an NFC HSM device, and what communication methods exist for secret sharing among these devices? What are the advantages and benefits offered by the technologies and patents pioneered by Freemindtronic? These questions will be addressed in the subsequent sections.

What Is an NFC HSM Device?

An NFC HSM (Near Field Communication Hardware Security Module) is a specialized hardware security module that communicates wirelessly with an Android smartphone via NFC (Near Field Communication) technology. These devices come in the form of cards, stickers, or keychains and operate without the need for batteries. They feature EEPROM memory capable of storing up to 64 KB of data.

NFC HSM devices are designed to securely store and utilize cryptographic keys and secrets in an isolated and secure environment. They shield data from cloning, replay attacks, counterfeiting, or extraction and include an access control system based on segmented keys.

One prime example of an NFC HSM device is the EviCypher NFC HSM developed by Freemindtronic. This technology allows for the storage and utilization of cryptographic keys and secrets within a contactless device, such as a card, sticker, or keychain. EviCypher NFC HSM offers a range of features, including offline isolation, seamless integration with other technologies, and enhancements to the user experience. With its robust security measures and innovative features, EviCypher NFC HSM sets a new standard for secure communication and secret management in the digital realm.

Resistance Against Brute Force Attacks on NFC HSM

The RSA 4096 private key is encrypted with AES 256. Therefore, the user cannot extract it from the EEPROM memory. The NFC HSM has this memory. It also has other secrets in this memory. This memory is non-volatile. As a result, it can last up to 40 years without power. Consequently, any invasive or non-invasive brute force attack on NFC HSM is destined for failure. This is due to the fact that secrets, including the RSA private key, are automatically encrypted in the EEPROM memory of the NFC HSM using AES-256 with segmented keys of physical origin, some of which are externalized from the NFC HSM.

Real-Time Secret Sharing with EviCore NFC HSM

An intriguing facet of EviCore NFC HSM technology is its ability to facilitate real-time secret sharing without the need for a remote server or database. EviCore NFC HSM accomplishes this by encrypting secrets with the recipient’s randomly generated RSA 4096 public key directly on their NFC HSM device. This innovative approach to secret sharing eliminates the necessity for a trusted third party. Furthermore, EviCore NFC HSM executes these operations entirely in the volatile (RAM) memory of the phone, leaving no traces of plaintext secrets in the computer, communication, or information systems. As a result, it renders remote or proximity attacks, including invasive or non-invasive brute force attacks, exceedingly complex, if not physically impossible. Our EviCore NFC HSM technology is an Android application designed for NFC-enabled phones, functioning seamlessly with our NFC HSM devices. This application serves as both firmware and middleware, constituting an embedded system, offering optimal performance and compatibility with NFC HSM devices.

What Are the Advantages and Benefits of NFC HSM Devices and RSA 4096 Encryption?

NFC HSM devices and RSA 4096 encryption offer numerous advantages and benefits across various applications and domains. Some of these include:

  1. Enhanced Security and Trust: They bolster security and trust in the digital landscape through the utilization of a robust and efficient encryption algorithm that withstands factorization attacks.
  2. Simplified Key and Secret Management: They simplify the management and sharing of cryptographic keys and secrets by leveraging contactless technology for communication with Android phones via NFC.
  3. Improved Device Performance and Compatibility: They enhance device performance and compatibility by functioning as a firmware-like middleware embedded within an Android application for NFC-enabled phones.
  4. Enhanced User Experience: They improve the user experience of devices by offering features such as offline isolation, seamless integration with other technologies, and enhanced user experiences.

In summary, NFC HSMs and RSA 4096 encryption offer inventive and pragmatic answers to the escalating requirements for security and confidentiality in the digital sphere.

Communication Vulnerabilities 2023: Avoiding Cyber Threats

Person working on a laptop within a protective dome, surrounded by falling hexadecimal ASCII characters, highlighting communication vulnerabilities
The hidden dangers of communication vulnerabilities in 2023  by Jacques Gascuel: This article will be updated with any new information on the topic.

Beware of communication vulnerabilities in 2023

Communication is essential for our personal and professional lives, but it also exposes us to cyber threats. In 2023, hackers will exploit the hidden dangers of communication vulnerabilities to steal data, disrupt services, and spy on users. This article will explain the main types of communication vulnerabilities, their impact, and how to protect yourself from them.

Communication Vulnerabilities in 2023: Unveiling the Hidden Dangers and Strategies to Evade Cyber Threats

2023 Security Vulnerabilities in Means of Communication

Communication is essential for individuals and professionals, but it is also exposed to many cyber threats. In 2023, several security breaches affected emails and messages, compromising the security of data, services, and users. These breaches showed the vulnerability of communication systems, which are exposed to increasingly sophisticated and targeted attacks. To protect themselves, users need to encrypt their data and communications with their own keys that they created and stored offline. One of the solutions that can help them achieve this is EviCypher NFC HSM technology by Freemindtronic.

The Reality of Security Breaches in Communication Systems

However, we wanted to highlight a disconcerting reality: users often found themselves defenseless against the hidden dangers of communication vulnerabilities in 2023 that festered beneath the surface for long periods of time. Unaware of these current, imminent or future risks, they unwittingly provided gateways to espionage activities, whether motivated by legitimate or malicious intentions. These vulnerabilities enabled a relentless cycle of cyber victimization, perpetuating the very threats they aimed to mitigate.

For example, iCloud Email operated without end-to-end encryption from its launch in 2011 until December 2022 – a troubling reality that put users in a vulnerable position, their security at the mercy of external factors they could not control.

Another example, several reports by the Citizen Lab have revealed the existence and the use of Pegasus spyware developed by the Israeli company NSO Group, which sells its services to governments and private actors to spy on targets around the world. Moreover, several investigations by the consortium Forbidden Stories have revealed that more than 50,000 phone numbers have been selected as potential targets by NSO Group’s clients, including heads of state, journalists, human rights activists, etc.

Among the most recent examples of these vulnerabilities, we can mention the cyberattack against the US State Department, which was attributed to hackers linked to China.

Chinese hackers hacked 60,000 emails from the US State Department

In March 2023, Chinese hackers hacked 60,000 emails from the US State Department. Some of them were very sensitive to national security and foreign affairs. They used a Microsoft Exchange flaw named Log4Shell. This vulnerability allows hackers to remotely execute malicious code on servers that use this software. It affects millions of servers worldwide. Senator Mark Warner revealed the attack and criticized the lack of transparency and security of the State Department. He called for strengthening cooperation between government agencies and the private sector to cope with cyberthreats. This attack is part of a context of rising tensions between the US and China, who accuse each other of espionage and sabotage on cyberspace.

The other sensitive organs targeted by the attack

Besides the State Department emails, the attack also targeted other sensitive organs, such as:

  • The Bureau of the Coordinator for Cyber Issues, which is responsible for coordinating the State Department’s efforts to prevent and respond to cyberattacks.
  • The Bureau of Consular Affairs, which is in charge of issuing passports and visas, as well as protecting US citizens abroad.
  • The Bureau of Intelligence and Research, which provides analysis and assessments on foreign policy and national security issues.

These sensitive organs hold confidential or personal information that could be used by the Chinese hackers for espionage, blackmail or sabotage. For example, the hackers could access the biometric data of visa applicants, the reports of intelligence agents or the action plans in case of crisis.

The security flaw exploited by the Chinese hackers

The most serious thing is that some servers that were hacked by the Chinese had not been updated with the patch released by Microsoft on December 10, 2022. This shows that the updates are not automatic and that they have to be installed manually. This also shows the lack of responsiveness and vigilance of the IT security managers. They let the Chinese hackers exploit this flaw before it was fixed by Microsoft, who released security updates. Indeed, this cyberattack shows the vulnerability of communication systems and the need to protect them effectively.

A Case of Satellite Messaging Security Vulnerability

Satellite messaging is a means of communication that allows the transmission of electronic messages or calls via a network of artificial satellites. It is used by professionals and individuals in areas with no cellular coverage or those seeking discreet communication. However, satellite messaging is not immune to security vulnerabilities that can compromise data confidentiality and integrity.

In September 2023, a team of cybersecurity researchers uncovered a significant security vulnerability in the Bullitt satellite messaging service. This vulnerability allowed hackers to read and modify messages sent and received by users, as well as access their personal information, including GPS coordinates and phone numbers. Hackers could also impersonate users by sending messages on their behalf. The vulnerability was found in the PubNub-Kotlin API used by the Bullitt Messenger app to manage communication between devices and the service’s servers. Despite alerting Bullitt, the service provider, about this vulnerability, the researchers received no satisfactory response.

This security flaw poses a high risk to satellite messaging users, as their data can be exposed or manipulated by hackers.

Security Vulnerabilities in Communication Systems: A Closer Look

2023 Security Flaws in Communication Channels is a paramount concern for individuals and organizations across the globe. Hackers frequently exploit vulnerabilities within communication protocols and services to launch attacks that can compromise data confidentiality, integrity, and availability. To illustrate the magnitude and gravity of this issue, we have compiled statistics based on our web research:

Security Vulnerabilities in Emails

Emails serve as a central vector for cyberattacks, representing a significant portion of security incidents, with up to 91% of reported incidents, as per cybermalveillance.gouv.fr. Among these email-targeted threats, ransomware attacks are the most prevalent, comprising 25% of reported security incidents. Additionally, it’s striking to note that 48% of malicious files attached to emails are Microsoft Office documents. These statistics underscore the critical importance of implementing robust security measures for emails to guard against evolving threats.

Furthermore, an analysis conducted by the Verizon Data Breach Investigations Report for 20232 highlights that emails remain the primary variety of malicious actions in data breaches, underscoring their continued relevance as a vector for cyberattacks.

However, it is essential to note that email-specific vulnerabilities can vary based on factors such as email protocol vulnerabilities, server configuration errors, human mistakes, among others.

Security Vulnerabilities in Encrypted Messaging Services

Encrypted messaging services like Signal, Telegram, or WhatsApp are not immune to security vulnerabilities, which can compromise message and file confidentiality, integrity, and availability. In March 2023, Cellebrite, an Israeli data extraction company, claimed to have successfully decrypted messages and files sent via Signal. In June 2023, Google disclosed a vulnerability in its RCS service that allowed hackers to send fraudulent messages to Android users, containing malicious links redirecting victims to compromised websites.

Security Vulnerabilities in Communication Protocols

Communication protocols such as SMTP, RCS, or SMS are also susceptible to security vulnerabilities that can enable hackers to intercept, modify, or spoof messages and calls. SS7 vulnerabilities involve attacks exploiting the vulnerabilities of the SS7 protocol, used to establish and terminate telephone calls on digital signaling networks. These attacks can allow hackers to intercept, modify, or spoof voice and SMS communications on a cellular network. In January 2023, a hacking group named Ransomware.vc launched a data extortion campaign targeting organizations using the Progress MOVEit file transfer tool. The hackers exploited an SS7 vulnerability to intercept verification codes sent via SMS to MOVEit users, gaining access to sensitive data. In February 2023, the Ukrainian power grid was hit by a new malware called Industroyer2, attributed to Russian hackers. The malware used an SS7 vulnerability to take control of network operator phone calls, disrupting electricity distribution in the country. In March 2023, Samsung suffered a data breach that exposed the personal and financial information of millions of customers. The breach was caused by an SS7 vulnerability that allowed hackers to access SMS messages containing online transaction confirmation codes.

An Overview of Security Vulnerabilities in Communication Systems

Communication systems exhibit various vulnerabilities, with each element susceptible to exploitation by hackers. These weaknesses can have severe consequences, including financial losses, damage to reputation, or national security breaches.

  • Protocols: Communication protocols, like Internet Protocol (IP), Simple Mail Transfer Protocol (SMTP), Signaling System 7 (SS7), and Rich Communication Services (RCS), can contain security vulnerabilities. These vulnerabilities enable hackers to intercept, modify, or spoof communications on the network. For instance, an SS7 vulnerability allows hackers to eavesdrop on phone calls or read SMS messages on a cellular network.
  • Services: Network services, such as messaging, cloud, streaming, or payment services, possess their own vulnerabilities. These vulnerabilities may permit hackers to access, modify, or delete data within the service. For instance, a vulnerability in an encrypted messaging service enables hackers to decrypt messages or files sent via the service.
  • Applications: Software applications, including web, mobile, desktop, or IoT applications, are prone to security vulnerabilities. These vulnerabilities empower hackers to execute malicious code on a user’s device or gain control of the device itself. For example, a vulnerability in a web application allows hackers to inject malicious code into the displayed web page.
  • Devices: Physical devices, such as computers, smartphones, tablets, or IoT devices, feature their own set of security vulnerabilities. These vulnerabilities can enable hackers to access the device’s data or functionalities. For instance, a vulnerability in a smartphone grants hackers access to the device’s camera, microphone, or GPS.

In conclusion, the multitude of security vulnerabilities in communication systems presents a significant challenge to all stakeholders. Protecting against these vulnerabilities and enhancing cybersecurity is essential to safeguard sensitive data and infrastructure.

How communication vulnerabilities exposed millions of users to cyberattacks in the past years

Communication is essential for our personal and professional lives, but it also exposes us to cyber threats. In the past years, hackers exploited the hidden dangers of communication vulnerabilities to steal data, disrupt services, and spy on users. These vulnerabilities affected software and services widely used, such as Log4j, Microsoft Exchange, Exim, Signal, Telegram, or WhatsApp. Some of these vulnerabilities have been fixed, while others remain active or in progress. The following table summarizes the main communication vulnerabilities in the past years, their impact, and their status.

Name of the breach Type of breach Impact Status Date of discovery Date of patch
Log4j Command injection Control of servers and Java applications Fixed November 24, 2021 December 18, 2021
Microsoft Exchange Remote code execution Data theft and backdoor installation Fixed March 2, 2021
Exim Multiple vulnerabilities Control of email servers June 5, 2020
Signal Denial of service Blocking of messages and calls Fixed May 11, 2020 May 15, 2020
Telegram Deserialization Access to messages and files Fixed January 23, 2021
WhatsApp QR code spoofing Account hacking Fixed October 10, 2019
File-based XSS Code injection Execution of malicious code in the browser Not fixed December 17, 2020 N/A
RCS QR code spoofing Interception, modification or spoofing of messages and calls Not fixed June 17, 2020 N/A
SMS SIM swap fraud Account takeover and identity theft Active or in progress
MMS Stagefright vulnerability Remote code execution and data theft Fixed July 27, 2015 August-September 2015
SolarWinds Orion Supply chain compromise Data theft and backdoor installation Fixed December 8, 2020 February 25, 2023
API PubNub-Kotlin Privilege escalation by deserialization of untrusted data Arbitrary command execution on SolarWinds Platform website Fixed February 8, 2022 April 19, 2023
SS7 Multiple vulnerabilities Data theft, interception, modification or blocking of communications, location tracking or spoofing, fraud Active or in progress 2014 N/A

This table provides a concise overview of the hidden dangers of communication vulnerabilities in 2023, their types, impacts, and current statuses.

EviCypher NFC HSM: The technology that makes your communications invulnerable to security breaches

Security vulnerabilities in the means of communication pose a high risk to users, including satellite messaging, as their data can be exposed or manipulated by hackers. Therefore, effective protection against this threat is essential. This is precisely where the EviCypher NFC HSM technologies mentioned in this article come in as an innovative and secure solution.

EviCypher NFC HSM Technology for Messaging Protection

EviCypher NFC HSM technology is a solution that enables contactless encryption and decryption of data using an NFC card. It employs a hardware security module (HSM) that securely stores encryption keys. It is compatible with various communication services, including emails, SMS, MMS, satellite messaging, and chats.

To use EviCypher NFC HSM technology, simply pair the NFC Card, to an NFC-enabled Android phone and activate it with your fingerprint. Messages sent and received through messaging services are encrypted and decrypted using the NFC card. Only the card owner can access their messages and files. No one can intercept or alter them, even if the  service is compromised by a security vulnerability.

EviCypher NFC HSM technology offers optimal protection for commincation, ensuring data confidentiality and integrity. It also safeguards against other types of security vulnerabilities that may affect communication methods, such as Log4Shell or SolarWinds. It is a simple, effective solution that requires no change in user habits.

What is EviCypher NFC HSM technology?

EviCypher NFC HSM technology is a contactless encryption technology that uses hardware security modules (HSM) devices that communicate via NFC (Near Field Communication) protocols. These devices are EviTag and Evicard, which are small and portable devices that can be attached to a keychain or a card holder. They allow users to store and manage their keys and secrets securely, without relying on third-party services or cloud storage.

How does EviCypher NFC HSM technology work?

EviCypher NFC HSM technology works by encrypting and decrypting data and communications with the user’s own keys that they created and stored offline. The user can use the devices for various applications, such as encrypting emails, messages or files.

To use NFC HSMs, the user must first pair it with their phone. He chooses the option of encryption or decryption on his phone, writes or reads his messages on his phone. Encryption and decryption operations are performed from the NFC HSM itself, without exposing keys or secrets to the phone. The same operation is available on computer via a phone-paired web extension and using the NFC HSM.

Why is EviCypher NFC HSM technology secure and reliable?

EviCypher NFC HSM technology is integrated into a hardware security module that stores encrypted secrets, such as encryption keys, in the highly secure NFC eprom memory. It enables to encrypt contactless communications upstream, in post-quantum AES 256, before sending them. It is thus secure and reliable, because it encrypts the data before transmitting them without ever keeping the message in plain text.

How can EviCypher NFC HSM technology protect you from security breaches?

EviCypher NFC HSM technology can protect you from security breaches by encrypting your data and communications in advance in volatile memory before sending them encrypted without ever keeping the message in clear automatically destroyed and replaced by its encrypted version in AES 256 symmetry considered post quantum. Thus, even if there are security flaws the messages and emails and their attachments remain always encrypted. This can be done from an Android NFC phone and/or from the Freemindtronic extension.

This way, you can avoid being exposed to past, present or future security vulnerabilities, since the encryption is done on the device itself, without exposing the keys or secrets to the phone or computer. Even if your phone or computer is compromised by a hacker or a spyware, they cannot access your data or messages in clear text. Only you can decrypt them with your device and your PIN code.

EviCypher NFC HSM technology is an innovative solution that offers a high level of security and privacy for your communication systems. It is developed by Freemindtronic, an Andorran company specialized in NFC security. It is based on EviCore NFC HSM technology, which is a hardware security module that combines hardware encryption and NFC communication protocols.

In conclusion, the EviCypher NFC HSM technology is integrated into a hardware security module that stores encrypted secrets, such as encryption keys, in the highly secure NFC eprom memory. It allows to encrypt contactless communications upstream, in post-quantum AES 256, before sending them. It is thus secure and reliable, because it encrypts the data before transmitting them without ever keeping the message in plain text.

This site uses cookies to offer you a better browsing experience. By browsing this website, you agree to our use of cookies.