Tag Archives: privacy-by-design

Browser Fingerprinting : le renseignement par métadonnées en 2026

Illustration du browser fingerprinting montrant une empreinte numérique de navigateur issue de métadonnées techniques utilisées pour la surveillance et le renseignement numérique

Le browser fingerprinting constitue aujourd’hui l’un des instruments centraux du renseignement par métadonnées appliqué aux environnements numériques civils. Bien au-delà du contenu des communications, ce sont les corrélations comportementales — configurations techniques, temporalités d’usage, régularités d’exécution, contextes matériels — qui structurent désormais la surveillance numérique moderne, civile comme étatique, économique comme publicitaire. Exploité par les plateformes numériques, l’AdTech, les services de renseignement et la cybercriminalité, ce modèle permet d’identifier, de profiler et d’anticiper sans jamais accéder au contenu. Le chiffrement protège les messages, mais pas les empreintes techniques des navigateurs ni les graphes relationnels d’usage. Cette chronique analyse les enjeux stratégiques du browser fingerprinting, ses usages licites, illicites et hybrides, et les conditions d’une véritable souveraineté des métadonnées numériques.

Résumé express — Browser Fingerprinting

⮞ Note de lecture

Ce résumé express se lit en ≈ 3 à 4 minutes. Il permet de comprendre immédiatement l’enjeu central du browser fingerprinting, sans entrer dans l’intégralité de la démonstration technique, juridique et doctrinale.

⚡ Le constat

Le traçage numérique contemporain ne repose plus principalement sur l’exploitation du contenu, mais sur l’extraction et la corrélation de métadonnées techniques. Le browser fingerprinting permet d’identifier un terminal à partir de caractéristiques natives du navigateur et du système — rendu graphique, pile audio, polices, APIs, comportements d’exécution — sans stockage explicite ni trace facilement supprimable. Cette identification persistante rend possible un suivi transversal, y compris lorsque les cookies sont bloqués et le contenu chiffré.

✦ Impact immédiat

  • Identification persistante des terminaux sans mécanisme déclaratif
  • Reconstruction de profils comportementaux à partir de signaux faibles
  • Traçage sans stockage local ni consentement réellement opérant
  • Convergence des usages publicitaires, sécuritaires et criminels

⚠ Message stratégique

Le basculement critique n’est pas l’existence du traçage, mais son invisibilisation structurelle. Lorsque l’identification repose sur des propriétés techniques natives, la frontière entre usage licite, surveillance et renseignement devient floue. L’automatisation algorithmique transforme le fingerprinting en un outil probabiliste : l’erreur n’est plus exceptionnelle, elle devient systémique, difficilement contestable et rarement attribuable.

⎔ Contre-mesure souveraine

Il n’existe pas de solution absolue contre le browser fingerprinting. La souveraineté ne consiste pas à devenir indétectable, mais à réduire l’exploitabilité des métadonnées : standardisation des environnements, minimisation des signaux exposés, blocage des scripts avant exécution, et séparation stricte entre identité, usage et contexte. Il s’agit d’une logique de contre-renseignement numérique, pas d’une promesse d’anonymat total.

Bascule du fingerprinting (2025–2026)

Depuis 2024–2025, l’écosystème accélère l’identification sans stockage. Le point décisif n’est pas “la fin des cookies”, mais le déplacement du pouvoir d’identification vers ce qui est observé pendant l’exécution (scripts, iframes, APIs) et vers ce qui est corrélable au niveau réseau. Dès lors, la défense utile n’est pas une collection d’astuces : c’est une architecture cohérente.

Grille Freemindtronic — “3 déplacements” (lecture opératoire)

  • Du stockage vers l’exécution : si un script ne s’exécute pas, il ne collecte pas.
  • Du navigateur vers la pile complète : navigateur + extensions + OS + réseau doivent rester cohérents.
  • De l’identifiant vers la probabilité : une probabilité stable suffit pour profiler et discriminer.
  • Trajectoire industrielle instable : la logique devient “choix utilisateur / exceptions / contournements”, pas extinction nette.
  • La pression se déplace : quand le stockage est restreint, la collecte remonte vers l’exécution et le réseau.
  • Conséquence défensive : standardiser, réduire la surface, et bloquer avant exécution — pas “cosmétique”.

Trois faits non négociables

  • Invariant #1 — Le contenu chiffré n’efface pas la forme : l’empreinte exploite des propriétés natives (API, rendu, timings, réseau) et peut persister sans cookies.
  • Invariant #2 — L’anti-tracking “cosmétique” peut aggraver l’unicité : l’empilement d’extensions et de réglages rares crée une configuration statistiquement isolée.
  • Invariant #3 — La cohérence bat la variété : une stratégie robuste combine standardisation + réduction d’APIs + contrôle d’exécution.
Test de cohérence (méthode rapide) — Si deux couches se contredisent (UA ≠ OS réel, canvas bloqué mais WebGL exposé, extensions nombreuses mais paramètres “privacy” incohérents), tu n’es pas “plus discret” : tu deviens plus identifiable.

Ce que démontre cette chronique

  • Pourquoi le browser fingerprinting est devenu une infrastructure de métadonnées (publicité, sécurité, fraude, renseignement).
  • Pourquoi l’évitement total est structurellement impossible — et comment réduire l’exploitabilité.
  • Quelles contre-mesures ont un effet mesurable : standardisation, réduction de surface, et blocage avant exécution.
Envie d’aller plus loin ? Le Résumé avancé replace le browser fingerprinting dans une dynamique globale — juridique, industrielle, sécuritaire et géopolitique — et prépare la lecture de la chronique complète.

Paramètres de lecture

Résumé express : ≈ 3–4 min
Résumé avancé : ≈ 5–6 min
Chronique complète : ≈ 30–40 min
Date de publication : 2026-01-08
Dernière mise à jour : 2026-01-09
Niveau de complexité : Élevé — cyber, AdTech, renseignement
Densité technique : ≈ 70 %
Langues disponibles : FR · EN
Focal thématique : browser fingerprinting, métadonnées, surveillance, souveraineté
Type éditorial : Chronique — Freemindtronic Digital Security
Niveau d’enjeu : 9.1 / 10 — enjeux civils, économiques, hybrides et étatiques

Note éditoriale — Cette chronique s’inscrit dans la rubrique Sécurité Digitale. Elle explore le browser fingerprinting comme infrastructure de renseignement par métadonnées, en croisant mécanismes techniques, logiques AdTech, usages de sécurité, cybercriminalité et limites juridiques. Elle prolonge les analyses publiées sur Digital Security. Ce contenu est rédigé conformément à la Déclaration de transparence IA publiée par Freemindtronic Andorra — FM-AI-2025-11-SMD5.
Upload Image...

2026 Crypto Currency Cryptocurrency Digital Security

Ledger Security Breaches from 2017 to 2026: How to Protect Yourself from Hackers

2026 Awards Cyberculture Digital Security Distinction Excellence EviOTP NFC HSM Technology EviPass EviPass NFC HSM technology EviPass Technology finalists PassCypher PassCypher

Quantum-Resistant Passwordless Manager — PassCypher finalist, Intersec Awards 2026 (FIDO-free, RAM-only)

2025 Cyberculture Cybersecurity Digital Security EviLink

CryptPeer messagerie P2P WebRTC : appels directs chiffrés de bout en bout

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Les chroniques affichées ci-dessus ↑ appartiennent à la rubrique Sécurité Digitale. Elles prolongent l’analyse des architectures souveraines, des mécanismes de surveillance invisibles, des marchés de données et des logiques de traçage. Cette sélection complète la présente chronique consacrée au browser fingerprinting comme infrastructure de renseignement par métadonnées.

Résumé avancé — Quand le browser fingerprinting devient une arme de métadonnées

⮞ Note de lecture

Ce résumé avancé se lit en ≈ 5 à 6 minutes. Il consolide le cadre technique et juridique. Ensuite, il prépare l’entrée dans la chronique complète.

Clarifier cookies, sandbox et fingerprinting

Les cookies restent un marqueur visible. Ils sont donc contrôlables. Pourtant, ce contrôle est partiel. Les cookies tiers peuvent être bloqués. Cependant, l’écosystème publicitaire conserve d’autres leviers. Le browser fingerprinting se distingue ici. Il n’a pas besoin de stocker un identifiant. Il extrait une signature. Ensuite, il relie cette signature à des événements. Ainsi, il transforme des signaux techniques en continuité d’identité. La sandbox a tenté d’encadrer le ciblage. Or, le ciblage n’est pas le seul enjeu. L’enjeu central est la persistance. Donc, le fingerprinting agit comme une couche orthogonale. Il fonctionne avec ou sans cookies. Il s’additionne aux autres mécanismes.

Double trajectoire du traçage

Le traçage moderne fonctionne sur deux axes. D’abord, il exploite ce que l’utilisateur autorise, souvent sans le comprendre. Ensuite, il exploite ce qu’il ne peut pas facilement refuser. Les cookies, quand ils existent, offrent une continuité simple. Pourtant, ils restent fragiles. Ils se suppriment. Ils se bloquent. En revanche, le browser fingerprinting est résilient. Il s’appuie sur des caractéristiques natives. Il varie peu à court terme. Donc, il sert de colle. Cette colle relie des sessions. Elle relie aussi des environnements. Par conséquent, le traçage devient cumulatif. Il devient aussi opportuniste. En pratique, un acteur n’a pas besoin d’un seul identifiant. Il lui suffit d’une probabilité stable. Or, la probabilité suffit pour profiler. Elle suffit aussi pour discriminer.

Cadre juridique et consentement

Le cadre européen combine GDPR et ePrivacy. Ainsi, la question n’est pas seulement “cookie ou pas cookie”. La question porte sur l’accès au terminal. Elle porte aussi sur la lecture d’informations. Or, le fingerprinting exploite précisément cette zone. Il lit des propriétés. Il observe des comportements d’API. Ensuite, il dérive une empreinte. Le consentement est donc requis en principe. Cependant, le consentement devient difficile à rendre effectif. D’abord, la collecte est invisible. Ensuite, elle est technique. Enfin, elle est fragmentée entre acteurs. Par conséquent, l’utilisateur ne sait pas à quoi il consent. Il ne sait pas non plus comment s’opposer. De plus, la preuve est asymétrique. L’acteur mesure. L’utilisateur devine. Ainsi, l’illégalité potentielle n’empêche pas l’usage. Elle déplace l’usage. Elle le rend plus discret. Elle le rend aussi plus indirect.

Ce qui change côté doctrine des régulateurs

Le fingerprinting n’est plus traité comme un “détail technique” : il devient un sujet de preuve. Trois exigences reviennent systématiquement, car elles sont opposables dans les faits :

  • Transparence : décrire la finalité et la nature du suivi (pas seulement “cookies”).
  • Contrôle effectif : rendre l’opposition opérante, même quand la collecte est distribuée (scripts/tiers/iframes).
  • Traçabilité de conformité : être capable de démontrer ce qui est collecté, par qui, et à quel moment.

Le nœud conflictuel reste structurel : une collecte invisible et fragmentée produit une asymétrie de preuve. L’acteur mesure ; l’utilisateur subit ou devine.

Le paradoxe de la vie privée

Beaucoup d’outils promettent une protection. Pourtant, ils peuvent augmenter l’unicité. Un VPN masque l’IP. Cependant, il ne masque pas le terminal. Le mode privé efface des traces locales. Or, il ne change pas les signaux exposés. Les extensions bloquent des scripts. Toutefois, elles modifient l’environnement. Ainsi, elles deviennent elles-mêmes des signaux. En pratique, l’excès de personnalisation crée une signature rare. Donc, la bonne stratégie n’est pas l’empilement. C’est la cohérence. D’abord, standardiser l’environnement. Ensuite, réduire les surfaces d’API. Enfin, bloquer ce qui exécute sans nécessité. Par conséquent, on passe d’une logique “privacy gadget” à une logique de contre-renseignement. Cette logique accepte une limite. Elle vise une réduction de risque.

⮞ Synthèse — Cookies, sandbox et VPN ne suffisent pas, car le fingerprinting persiste…
sans stockage et s’additionne aux autres mécanismes. La protection dépend d’une cohérence d’ensemble : standardiser,réduire les APIs exposées,et contrôler l’exécution.
Accès direct à la chronique complète — La section Chronique complète construit la taxonomie du fingerprinting, explique les limites physiques de l’évitement et formalise des contre-mesures réalistes, testables et souveraines.

Chronique complète — Le browser fingerprinting comme infrastructure de renseignement

Taxonomie du browser fingerprinting

Le browser fingerprinting n’est pas une technique unique. Il s’agit d’un ensemble de méthodes. Ces méthodes diffèrent par leur profondeur, leur visibilité et leur résilience. D’abord, certaines reposent sur des signaux statiques. Ensuite, d’autres exploitent des comportements dynamiques. Enfin, certaines opèrent de manière indirecte. Cette diversité explique sa robustesse. Elle explique aussi sa difficulté à être neutralisée. Ainsi, parler de “le” fingerprinting est une simplification. En réalité, il faut raisonner en couches. Chaque couche ajoute de l’entropie. Chaque couche renforce la persistance.

Fingerprinting statique

Le fingerprinting statique exploite des caractéristiques peu variables. Par exemple, il observe les polices installées, la résolution d’écran ou le fuseau horaire. Ces éléments changent rarement. Donc, ils offrent une base stable. Cependant, pris isolément, ils sont peu discriminants. En revanche, combinés, ils deviennent puissants. Ainsi, une configuration banale devient unique par accumulation.

Fingerprinting dynamique

Le fingerprinting dynamique repose sur des comportements. Il observe comment le navigateur exécute du code. Par exemple, il mesure des temps de rendu. Il analyse des variations d’audio. Il teste des réactions à des appels d’API. Ces signaux varient légèrement. Pourtant, leur variation est elle-même caractéristique. Donc, le mouvement devient une signature. Par conséquent, le changement n’implique pas l’anonymat. Il peut même renforcer l’identification.

Fingerprinting indirect et par iframe

Certaines techniques n’agissent pas directement. Elles délèguent la collecte. Par exemple, elles utilisent des iframes. Ces iframes chargent des scripts tiers. Ensuite, ces scripts collectent des signaux. Ce modèle complique l’attribution. Il complique aussi le blocage. Ainsi, l’utilisateur voit une page. En arrière-plan, plusieurs contextes s’exécutent. Chacun contribue à l’empreinte globale.

Fingerprinting réseau et TLS

Enfin, le fingerprinting ne s’arrête pas au navigateur. Il s’étend au réseau. Des caractéristiques TLS peuvent être observées. Des modèles de négociation apparaissent. Même chiffrée, la communication révèle une forme. Donc, le chiffrement protège le contenu. Cependant, il ne supprime pas les métadonnées de transport. Cette couche complète les autres. Elle renforce la corrélation.

Empreintes TLS : de JA3 à JA4+

Le fingerprinting ne se limite pas au navigateur : une partie de l’identification peut être dérivée de la négociation TLS (ClientHello). Historiquement, JA3 a popularisé une signature construite à partir de paramètres TLS. Cependant, l’écosystème a évolué vers des approches de type JA4 / JA4+, conçues pour mieux résister aux contournements et mieux caractériser les clients et bibliothèques réseau.

  • Impact stratégique : même si le contenu est chiffré, la “forme” du trafic (handshake, extensions, ordres) reste corrélable.
  • Conséquence défensive : la protection ne peut pas être uniquement “browser-level” ; elle doit aussi considérer le réseau, les proxies, les piles TLS et la cohérence globale.

Fingerprinting matériel et micro-architectural (timings, jitter, signatures physiques)

Une partie du fingerprinting le plus avancé n’exploite plus seulement des APIs applicatives, mais des caractéristiques physiques mesurables : micro-variations d’exécution, jitter, effets thermiques, stabilité probabiliste de timings. Cette famille ne fournit pas un identifiant “parfait”, mais une signature statistiquement stable qui devient exploitable lorsqu’elle est recoupée avec d’autres couches (browser + réseau + comportement).

“Device intelligence” (anti-fraude / anti-bot) : le dilemme fonctionnel

Le fingerprinting sert aussi à la détection de fraude : cohérence d’empreinte, détection d’anomalies, indices de détournement de session. Le problème stratégique n’est donc pas “pour ou contre” : c’est la frontière entre un usage sécuritaire proportionné et une industrialisation publicitaire non contestable. La souveraineté consiste à imposer des conditions d’usage, de preuve et de cloisonnement, pas à nier la fonction.

Fingerprinting temporel : dérive d’horloge (Clock Skew)

Au-delà des propriétés logicielles, une partie du fingerprinting moderne explore des signaux temporels issus du matériel. La dérive d’horloge (clock skew) exploite le fait qu’un système réel n’exécute jamais le temps “parfaitement” : micro-variations liées à l’oscillateur, aux conditions thermiques et à la charge. Dans certaines conditions, des mesures répétées (timings) permettent de produire une signature probabiliste, y compris entre machines très proches.

Ce point ne doit pas être surinterprété : côté navigateur, la précision des timers est souvent réduite et le bruit complique l’exploitation. Néanmoins, la trajectoire stratégique est claire : le traçage cherche aussi des invariants physiques et non seulement des réglages.

Lecture souveraine — Quand l’empreinte devient temporelle, la défense “cosmétique” (UA/VPN/extensions) perd en valeur. La seule réponse durable reste architecturale : standardiser, réduire la surface d’API et limiter l’exécution non nécessaire.

Fingerprinting comportemental : biométrie d’interaction

Le traçage ne se limite plus à la machine : il peut s’étendre à l’utilisateur via l’analyse de comportements d’interaction. La biométrie comportementale agrège des signaux tels que la cadence de frappe (keystroke dynamics), les trajectoires et micro-corrections de la souris, ou certains schémas gestuels sur mobile. L’objectif n’est pas l’identification “civile” immédiate, mais une continuité d’usage exploitable, même si l’environnement technique change.

  • Atout offensif : résilience au changement de navigateur, de cookies ou de réseau.
  • Limite structurelle : bruit, erreurs, et risque de fausses corrélations (la preuve est rarement opposable côté utilisateur).
  • Lecture stratégique : l’humain devient une couche de métadonnées — donc une surface de discrimination.

Le dilemme sécurité : anti-fraude vs vie privée

Le fingerprinting a une ambivalence fonctionnelle. Il est aussi utilisé en anti-fraude : cohérence d’empreinte lors d’une transaction, détection d’anomalies, suspicion de détournement de session. Le problème 2026 n’est donc pas “pour ou contre” : c’est la gouvernance. Comment bénéficier d’un signal défensif sans dériver vers une infrastructure de profilage publicitaire, et sans rendre l’opposition inopérante ?

Point de souveraineté — La frontière utile se situe dans : finalité explicite, minimisation, durée courte, transparence vérifiable, et séparation stricte anti-fraude / publicité. Sans ces conditions, l’outil de sécurité devient un mécanisme de contrôle.

WebGPU : le fingerprinting haute fidélité

Le passage de WebGL à WebGPU augmente la surface d’observation du GPU depuis le navigateur. Au-delà du rendu, l’accès à des primitives de calcul (compute) et à des comportements d’ordonnancement rend possibles des profils plus fins : latences, micro-variations de pipeline, patterns de scheduling sous charge. Le risque ne tient pas à un “identifiant GPU” explicite, mais à la dérivation d’une signature à partir de comportements mesurables.

Conséquence : la défense ne peut plus être uniquement “browser-level”. Elle doit intégrer une logique de réduction d’exposition (surface d’API) et surtout de contrôle d’exécution (bloquer ce qui ne doit pas s’exécuter, avant collecte), faute de quoi les APIs haute performance deviennent des capteurs.

Contre-mesure réaliste — Réserver WebGPU à des contextes de confiance, segmenter les profils (usage sensible vs usage courant), et privilégier une stratégie “bloquer avant exécution” contre les scripts tiers et iframes qui instrumentent ces APIs.

Signaux techniques réellement collectés

La collecte ne repose pas sur un seul indicateur. Elle agrège des dizaines de signaux. D’abord, le rendu graphique est analysé. Ensuite, la pile audio est sollicitée. Les polices installées sont listées. Le matériel sous-jacent est inféré. Le fuseau horaire est comparé. De plus, certaines APIs exposent des états internes. Ainsi, chaque appel ajoute une information. Isolée, elle semble anodine. Corrélée, elle devient identifiante.

Cette collecte est souvent silencieuse. Elle ne déclenche pas d’alerte visible. Pourtant, elle s’exécute dès le chargement. Par conséquent, l’empreinte se forme rapidement. Elle se met à jour progressivement. Elle accompagne la navigation.

Pourquoi il est impossible à éliminer

L’élimination totale supposerait une uniformité parfaite. Or, cette uniformité est irréaliste. Les systèmes diffèrent. Les usages diffèrent aussi. Chaque variation crée de l’entropie. Ensuite, l’entropie s’additionne. Ainsi, même une faible différence compte. De plus, certaines propriétés sont physiques. Elles dépendent du matériel. Elles dépendent aussi du système. Donc, elles ne sont pas entièrement simulables.

En pratique, on peut réduire l’exposition. On peut aussi déplacer le point d’observation. Cependant, on ne peut pas supprimer toute signature. Cette limite est structurelle. Elle n’est pas un échec d’outil. Elle est une conséquence statistique.

Le piège de la randomisation

La randomisation est souvent présentée comme une solution. Pourtant, elle comporte un paradoxe. Modifier des paramètres peut sembler protecteur. Cependant, chaque modification ajoute une variation. Or, une variation supplémentaire augmente parfois l’unicité. Ainsi, randomiser sans cadre peut produire l’effet inverse. Le navigateur devient rare. Donc, il devient plus identifiable.

Certaines extensions modifient le canvas ou l’audio. D’autres changent l’agent utilisateur. En pratique, ces changements ne sont pas synchronisés. Ils créent des incohérences. Ensuite, ces incohérences deviennent des signaux. Par conséquent, l’empreinte se renforce. Elle n’est plus stable. Elle est distinctive.

Les navigateurs orientés vie privée ont tiré une leçon claire. Ils privilégient la standardisation. Autrement dit, ils rendent les utilisateurs semblables. Tor et Mullvad suivent cette logique. Ils limitent les variations. Ils réduisent les surfaces d’API. Ainsi, ils diminuent l’entropie exploitable. À l’inverse, une personnalisation excessive isole. Elle signale une configuration atypique.

En résumé, randomiser n’est pas anonymiser. Cela peut aider ponctuellement. Cependant, sans cohérence globale, cela expose davantage. La protection repose donc sur la sobriété. Elle repose aussi sur l’alignement des couches.

Mesurer son exposition : ce que montrent réellement les tests

Mesurer l’exposition est une étape clé. Toutefois, les résultats sont souvent mal interprétés. Des outils publics existent. Ils comparent une configuration à une base de référence. Ensuite, ils estiment une unicité. Cependant, cette unicité est statistique. Elle n’est pas une preuve d’identification directe.

Les tests analysent plusieurs dimensions. D’abord, ils évaluent les traceurs connus. Ensuite, ils mesurent l’empreinte du navigateur. Enfin, ils observent la stabilité dans le temps. Un score “unique” ne signifie pas un suivi certain. Il signifie une probabilité élevée. À l’inverse, un score “non unique” ne garantit rien. Il indique seulement une ressemblance.

Il faut donc lire ces résultats avec méthode. Comparer avant et après un changement est utile. Comparer entre navigateurs l’est aussi. En revanche, chercher le score parfait est une erreur. Aucun outil ne peut certifier l’absence de fingerprinting. Il peut seulement montrer des tendances.

Ainsi, les tests servent à orienter. Ils servent aussi à vérifier des hypothèses. Ils ne remplacent pas une stratégie. Ils l’éclairent. Par conséquent, ils doivent être intégrés dans une démarche globale.

Tests recommandés : EFF et AmIUnique

Ces tests ne prouvent pas une invisibilité. Cependant, ils indiquent une tendance. Ainsi, ils servent à comparer des configurations et à valider des hypothèses.

Contre-mesures : ce qui fonctionne réellement

Toutes les contre-mesures ne se valent pas. Certaines réduisent le risque. D’autres déplacent simplement le problème. Il faut donc distinguer les effets réels des effets perçus. D’abord, la standardisation est la plus efficace. Elle rend les environnements similaires. Ainsi, elle dilue l’unicité. Les navigateurs comme Tor ou Mullvad appliquent ce principe. Ils limitent les variations. Ils figent certains paramètres. Par conséquent, l’empreinte devient moins exploitable.

Ensuite, la réduction de surface est essentielle. Moins d’APIs exposées signifie moins de signaux. Bloquer l’accès inutile au canvas, à l’audio ou au stockage réduit l’entropie. Cependant, cette réduction doit rester cohérente. Une coupure brutale peut créer une anomalie. Or, l’anomalie est elle-même un signal.

Le blocage des scripts intervient plus en amont. Il empêche l’exécution. Donc, il empêche la collecte. Cette approche est efficace. Toutefois, elle doit être sélective. Un blocage total casse l’usage. En pratique, il faut arbitrer. Enfin, certaines mesures sont inefficaces seules. Changer l’agent utilisateur ou multiplier les VPN ne suffit pas. Ces actions modifient un paramètre. Elles laissent les autres intacts. Ainsi, elles offrent une fausse impression de contrôle.

PassCypher et EviBITB : une contre-mesure structurelle

La majorité des outils agissent après coup. Ils modifient des valeurs. Ils masquent certains signaux. EviBITB adopte une logique différente. Il agit avant l’exécution. Autrement dit, il empêche certains scripts de s’exécuter. Cette différence est fondamentale. Si le script ne s’exécute pas, aucune empreinte n’est collectée à ce niveau.

Illustration — Exemple de panneau de paramètres PassCypher HSM PGP avec options de protection BITB (EviBITB) et modes de blocage.
PassCypher HSM PGP settings panel with BITB protection options

Le fingerprinting indirect repose souvent sur des iframes. Ces iframes chargent des contextes tiers. Ensuite, ces contextes collectent des signaux. EviBITB cible précisément ce mécanisme. Il bloque ou neutralise les iframes suspectes. Ainsi, il coupe une chaîne entière de collecte. Ce n’est pas une modification. C’est une suppression du vecteur.

Cette approche est aussi pertinente contre les attaques de type Browser-in-the-Browser. Le principe est similaire. Une iframe simule une interface légitime. Elle capte des interactions. En bloquant l’iframe, on bloque à la fois le phishing et la collecte. Par conséquent, la protection devient transversale. Elle protège l’identité. Elle protège aussi l’authentification.

Exemple BITB — Détection d’une attaque “Browser-in-the-Browser” : une fausse fenêtre d’authentification en iframe est signalée avant exécution, avec options de neutralisation.
PassCypher HSM PGP detecting a Browser-In-The-Browser (BITB) attack and displaying a security warning, allowing users to manually block malicious iframes.

⚠️ Point clé : le BITB est stoppé au niveau du vecteur (iframe) avant que l’interface frauduleuse ne puisse capturer des identifiants — et avant que des scripts tiers ne collectent des signaux de fingerprinting.

Il faut toutefois être clair. EviBITB ne supprime pas tous les signaux. Les caractéristiques statiques restent visibles. C’est pourquoi cette solution doit être combinée. Elle s’intègre dans une stratégie. Elle complète la standardisation du navigateur. Elle complète aussi la réduction de surface. Ensemble, ces couches forment une défense cohérente.

Résultats de test : PassCypher avec et sans EviBITB

Ces résultats illustrent un point simple. D’abord, un script qui s’exécute collecte. Ensuite, une iframe qui persiste corrèle. Ainsi, le blocage avant exécution change la dynamique.

Test 1 : sans EviBITB
  • Les traceurs publicitaires ne sont pas stoppés de manière fiable.
  • Des traceurs invisibles peuvent rester actifs.
  • Les scripts de fingerprinting s’exécutent, donc l’empreinte se consolide.

Résultats de test sans protection : traceurs publicitaires, traceurs invisibles et fingerprinting détectés.

Test 2 : avec EviBITB activé
  • Les vecteurs indirects via iframes sont bloqués plus tôt.
  • La chaîne d’exécution est interrompue avant collecte.
  • Cependant, les caractéristiques statiques du navigateur restent observables.

Résultats de test avec EviBITB : blocage de vecteurs indirects, mais empreinte statique encore détectable.

Point de méthode

Ces tests ne “prouvent” pas une invulnérabilité. En revanche, ils montrent un effet : neutraliser l’exécution dans les iframes réduit un vecteur entier de collecte. Pour réduire aussi l’unicité statique, il faut combiner avec un navigateur standardisé (Mullvad ou Tor).

Test vidéo : blocage avant exécution

Cette démonstration illustre le principe. D’abord, l’attaque s’appuie sur une iframe. Ensuite, l’interface simule une fenêtre légitime. Ainsi, la neutralisation précoce évite la collecte et réduit le risque de capture.

⮞ Point clé — La vidéo illustre une défense en amont : empêcher l’exécution d’une chaîne iframe,plutôt que corriger après collecte.

Matrice comparative des solutions

Comparer les solutions est indispensable. Cependant, la comparaison doit être honnête. Aucune solution ne couvre tout. Chaque outil agit sur une couche précise. D’abord, certains réduisent l’unicité. Ensuite, d’autres bloquent l’exécution. Enfin, certains se contentent de masquer des signaux. Ainsi, une matrice permet de clarifier. Elle montre ce que chaque approche fait réellement. Elle montre aussi ce qu’elle ne peut pas faire.

Les navigateurs standardisés réduisent fortement l’entropie. Toutefois, ils n’empêchent pas tous les scripts de s’exécuter. Les extensions de blocage filtrent des ressources. Cependant, elles modifient l’environnement. Les VPN masquent l’adresse IP. En revanche, ils n’affectent pas l’empreinte du terminal. EviBITB agit différemment. Il supprime des vecteurs d’exécution. Donc, il complète les autres approches. Par conséquent, la protection efficace est composite. Elle repose sur la cohérence, pas sur un outil unique.

Solution Bloque les iframes Protection fingerprinting Protection statique Protection BITB Blocage exécution Facilité Coût
PassCypher HSM PGP Free + Mullvad Browser Oui Élevée Approfondie (UA, audio, canvas) Oui Oui Simple Gratuit
Tor Browser Non Élevée Approfondie (UA, canvas) Non Non Exigeant Gratuit
Mullvad Browser (seul) Non Élevée Standardisation Non Non Simple Gratuit
Brave (mode strict) Non Moyenne Partielle (canvas/WebGL) Non Non Simple Gratuit
Désactiver JavaScript Oui Élevée Par suppression Non Oui Contraignant Gratuit
VPN + chaînes proxy Non Moyenne Aucune Non Non Contraignant Payant
uBlock Origin + CanvasBlocker Non Faible à moyenne Canvas surtout Non Non Simple Gratuit
Changer l’agent utilisateur Non Faible UA seulement Non Non Technique Gratuit
Mode privé + multi-navigateurs Non Très faible Aucune Non Non Simple Gratuit

⮞ Point clé

— La matrice montre l’essentiel : la protection robuste vient d’une combinaison cohérente,et pas d’un outil isolé.

⮞ Synthèse

— Le browser fingerprinting fonctionne par couches,agrège des signaux techniques et réseau,et ne peut pas être supprimé totalement. La stratégie réaliste combine standardisation,réduction de surface et blocage en amont,au lieu d’une randomisation incohérente.

Enseignements clés

Le browser fingerprinting est structurel : il transforme des métadonnées en continuité d’identité. La réponse durable est architecturale.

Cadre Freemindtronic — “FM-TRACE” (5 principes opératoires)

  1. Réduire la surface : moins d’APIs, moins de signaux exploitables.
  2. Standardiser : ressembler à un groupe vaut mieux que devenir “rare”.
  3. Bloquer avant exécution : empêcher la collecte plutôt que masquer après coup.
  4. Séparer les contextes : identité, usage, contexte ne doivent pas se recoller automatiquement.
  5. Vérifier par tests : mesurer l’effet d’un changement, pas “chercher un score parfait”.
⮞ Synthèse — Standardiser + réduire la surface + contrôler l’exécution : c’est la triade qui réduit réellement l’exploitabilité des métadonnées.

Signaux faibles

Radar Freemindtronic (2026) — 9 surfaces à surveiller

  • CTV / TV connectées : environnements peu standardisés, forte corrélation d’usage, SDK publicitaires opaques.
  • Consoles et “app browsers” : surfaces hybrides, permissions floues, instrumentation par tiers.
  • Chaînes publicitaires multi-acteurs : attribution diffuse, responsabilité fragmentée, exécution distribuée (tags/iframes).
  • Fingerprinting réseau : corrélation de flux et signatures TLS en soutien du browser-level.
  • Identité probabiliste : moins d’identifiants, plus de scores, de rapprochements et de “device graphs”.
  • IA de corrélation : exploitation de micro-variations à grande échelle (signaux faibles rendus opératoires).
  • WebGPU / compute dans le navigateur : surface haute-fidélité (GPU, scheduling, contention).
  • Fingerprinting matériel (timings) : dérive, jitter, signatures thermiques et micro-variations d’exécution.
  • Biométrie comportementale : cadence de frappe, dynamique de souris, inerties et gestuelles.

Signal régulatoire (UK) — retour du “digital fingerprinting” dans l’AdTech (dont CTV) et montée en vigilance

Le basculement notable n’est pas seulement technique : il devient doctrinal. Fin 2024, l’assouplissement annoncé par Google sur ses politiques publicitaires a ravivé la controverse autour du fingerprinting dans l’AdTech, en particulier sur des surfaces comme la CTV, difficiles à auditer et à contrôler côté utilisateur. La réaction publique attribuée à l’autorité britannique (ICO) illustre un point central : quand l’identification migre vers des signaux “sans stockage”, le consentement devient moins opérant, la preuve plus asymétrique et la contestation plus coûteuse.

Source officielle (ICO) :

Contexte doctrinal (ICO) : l’ICO replace explicitement les “storage and access technologies” (dont les formes de fingerprinting) au cœur d’une stratégie de guidance et de consultation, signe que le sujet sort du seul débat “cookies”.

Focus — Dérive d’horloge (Clock Skew) : le renseignement au cœur du silicium

Au-delà des logiciels, le fingerprinting tend à exploiter des imperfections physiques : micro-variations d’exécution, jitter, effets thermiques, bruit électronique. La logique “clock skew” consiste à inférer une signature temporelle à partir de mesures répétées : ce n’est plus un identifiant stocké, mais une stabilité statistique issue du matériel. Cela marque une étape : l’empreinte n’est plus uniquement dans le code, elle est aussi dans les propriétés physiques observables par la mesure.

Point défensif : les mitigations récentes réduisent la précision des timers et encadrent certaines métriques ; mais la tendance globale reste celle d’une mesure probabiliste et d’une corrélation multi-sources.

Focus — Biométrie comportementale : l’humain comme métadonnée ultime

Le traçage ne s’arrête plus à la machine. Le behavioral fingerprinting analyse la dynamique d’interaction : cadence de frappe, latences, trajectoires de souris, gestuelles sur mobile. Ces signaux, collectés passivement, produisent un profil “biométrique numérique” difficile à contrefaire. Même si l’environnement technique change (navigateur/VPN), la manière d’interagir peut rester suffisamment stable pour soutenir une corrélation.

Point souverain : ces méthodes déplacent le débat de la “privacy” vers la preuve et la contestation : ce qui discrimine n’est pas visible, et l’erreur devient structurelle.

Focus — WebGPU : fingerprinting haute-fidélité et fin de l’opacité matérielle

WebGPU élargit la surface d’observation du matériel (GPU) et des comportements d’exécution (compute, scheduling, contention). La menace n’est plus limitée au rendu d’une image : elle peut passer par l’observation de micro-comportements de calcul et de contention, donc par une identification plus “haute fidélité”.

Point défensif : plus la performance est exposée, plus la mitigation doit être pensée comme une architecture de réduction d’exploitabilité (standardisation + réduction d’APIs + blocage avant exécution), et pas comme une collection d’astuces.

Ce que nous n’avons pas couvert

Cette chronique n’aborde pas tout. Le fingerprinting mobile avancé reste hors champ. Le fingerprinting matériel pur aussi. Les approches au niveau du système d’exploitation ne sont pas détaillées. De même, les contre-mesures basées sur le matériel sécurisé ne sont qu’évoquées. Ces choix sont assumés. Ils préservent la cohérence. Ils laissent aussi la place à de futures analyses.

⮞ Synthèse — Les dimensions mobile,matériel pur et OS-level sont volontairement hors périmètre. L’objectif est de rester actionnable sur le navigateur et les vecteurs script/iframe,avec une base extensible pour des chroniques futures.

Perspective stratégique

Le traçage va continuer. Il deviendra plus discret. Il sera aussi plus distribué. Les utilisateurs conserveront une marge de manœuvre. Cependant, cette marge sera technique. Elle ne sera pas déclarative. Les régulateurs tenteront d’encadrer. Pourtant, ils ne supprimeront pas les métadonnées. La seule réponse durable est architecturale. Elle repose sur la sobriété, la standardisation et le contrôle de l’exécution. Autrement dit, sur une forme de contre-renseignement numérique.

⮞ Synthèse — Le traçage évolue vers la discrétion et la distribution. Le levier durable n’est pas déclaratif,il est technique : cohérence d’environnement,standardisation,et contrôle des chaînes d’exécution.

FAQs — Browser fingerprinting

Le mode navigation privée empêche-t-il le browser fingerprinting ?Réponse

Non. Il limite surtout les traces locales. Cependant, il ne modifie pas les signaux techniques exposés par le navigateur et le système. Par conséquent,l’empreinte reste exploitable.

Bloquer les cookies suffit-il à empêcher le traçage ?Réponse

Non. Bloquer les cookies réduit une partie du suivi. Toutefois,le fingerprinting fonctionne sans stockage local. Ainsi,l’identification peut persister même sans cookies.

Un VPN protège-t-il contre le fingerprinting ?Réponse

Un VPN masque l’adresse IP. C’est utile. En revanche,il ne change pas l’empreinte du navigateur. Donc,il protège surtout le réseau,pas l’environnement applicatif.

Les extensions anti-fingerprinting sont-elles efficaces ?Réponse

Elles peuvent aider. Cependant,elles modifient parfois l’environnement et augmentent l’unicité. L’efficacité dépend donc de la cohérence globale,et pas d’une extension isolée.

Pourquoi changer souvent l’agent utilisateur peut-il exposer davantage ?Réponse

Parce que cela crée des incohérences. Si l’agent utilisateur ne correspond pas au reste de l’environnement,la configuration devient rare. Ainsi,l’unicité peut augmenter au lieu de diminuer.

Peut-on mesurer précisément son niveau de protection ?Réponse

Pas précisément. Les tests publics donnent des indications statistiques. Ils servent surtout à comparer des configurations et à suivre des tendances,plutôt qu’à certifier une “absence de fingerprinting”.

Le browser fingerprinting permet-il d’identifier une personne ?Réponse

Pas directement. Il identifie d’abord un terminal. Toutefois,ce terminal peut être relié à une identité par corrélation et accumulation de données. Donc,l’identification devient progressive.

Peut-on éliminer totalement le browser fingerprinting ?Réponse

Non. L’uniformité parfaite est irréaliste. En revanche,on peut réduire fortement l’exploitabilité en standardisant l’environnement,en réduisant la surface d’API et en bloquant certains vecteurs d’exécution.

Le fingerprinting est-il encadré juridiquement en Europe ?Réponse

Oui,le cadre combine RGPD et ePrivacy. En principe,la collecte de signaux du terminal doit être encadrée et justifiée. Cependant,l’exécution est souvent invisible et distribuée entre acteurs. Donc,l’effectivité du consentement reste difficile.

Que change le signal régulatoire UK (ICO) sur le “digital fingerprinting” — notamment pour l’AdTech et la CTV ?

Il change la nature du débat : le fingerprinting n’est plus un “détail technique” de remplacement des cookies, mais un objet doctrinal traité comme technologie d’accès/collecte difficilement contrôlable par l’utilisateur.

En pratique, cela renforce l’exigence de transparence, de contrôle effectif et de démontrabilité — particulièrement sur des surfaces comme la CTV où l’audit et l’opposition utilisateur sont faibles.

Source officielle ICO :https://ico.org.uk/about-the-ico/media-centre/news-and-blogs/2024/12/our-response-to-google-s-policy-change-on-fingerprinting/

Le fingerprinting “sans stockage” échappe-t-il aux règles (consentement / accès au terminal) ?

Non. “Sans stockage” ne signifie pas “hors cadre”. Les régulateurs raisonnent aussi en termes d’accès/lecture d’informations sur le terminal et de finalité.

Autrement dit, l’absence de cookie n’est pas un laissez-passer : la question devient ce qui est collecté, comment, par qui, et si l’utilisateur a un contrôle réel.

Référence ICO (cookies & similar technologies / storage & access) :
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/cookies-and-similar-technologies/cookies-and-similar-technologies/

Pourquoi la réduction de précision des timers (timing defenses) revient toujours dans le débat ?

Parce que beaucoup de signaux avancés reposent sur la mesure : micro-latences, jitter, variations d’exécution, comportements GPU/Audio/Canvas.

Réduire la précision (ou ajouter du bruit) dégrade la qualité des “mesures fingerprinting”. Ce n’est pas une protection totale, mais une mitigation structurante.

Référence W3C (guidance de mitigation du fingerprinting dans les specs Web) :
https://www.w3.org/TR/fingerprinting-guidance/

La dérive d’horloge (Clock Skew) est-elle un vrai levier de fingerprinting ?

Oui, mais surtout comme signature statistique et souvent en combinaison multi-couches (réseau + navigateur + comportement).

Historiquement, des travaux ont montré que des micro-variations de temps peuvent permettre un fingerprinting à distance.
Côté navigateur, les mitigations (timer precision, bruit) compliquent la reproductibilité, mais la trajectoire reste claire : chercher des invariants “physiques” mesurables.

Référence académique (clock skew / fingerprinting à distance) :
https://www.cs.tau.ac.il/~tromer/papers/clockskew.html

WebGPU augmente-t-il réellement le risque de fingerprinting ?

WebGPU élargit la surface d’observation et peut servir de base à des mesures plus fines (compute, contention, comportements micro-architecturaux côté GPU).

La recherche a déjà montré des scénarios exploitant WebGPU pour bâtir des timers et des attaques side-channel liées au GPU, ce qui renforce l’intérêt d’une défense “bloquer avant exécution” + réduction de surface.

Référence (WebGPU + GPU cache/side-channel dans le navigateur) :
https://arxiv.org/abs/2401.04349

La biométrie comportementale est-elle du fingerprinting “au-delà du navigateur” ?

Oui. Elle déplace le suivi vers l’utilisateur : cadence de frappe, micro-corrections, gestes, inerties.

Ce n’est pas toujours une “identification civile” directe ; c’est souvent une continuité d’usage (corrélation) qui devient exploitable pour discriminer, scorer, ou détecter des anomalies — avec une contestation difficile côté utilisateur.

Comment distinguer un usage anti-fraude légitime d’un profilage publicitaire non contestable ?

Par les conditions d’usage : finalité explicite, minimisation, durée courte, transparence vérifiable, séparation stricte des usages (anti-fraude ≠ AdTech), et preuve auditable.

Sans ces garde-fous, la “device intelligence” bascule vers une infrastructure de profilage invisible, où l’opposition devient théorique.

Pourquoi les CTV / TV connectées sont-elles un accélérateur de fingerprinting ?

Parce que l’environnement est peu standardisé, souvent peu auditable, et fortement corrélable par l’usage (foyer, temporalités, contenus).

De plus, la chaîne publicitaire y est fréquemment opaque (SDK, acteurs multiples), ce qui rend l’attribution et le contrôle utilisateur plus difficiles que sur navigateur classique.

Que faut-il tester en priorité pour savoir si une page “instrumente” le fingerprinting ?

D’abord l’exécution : scripts tiers, iframes, tags et leur ordre de chargement.

Ensuite la surface : appels Canvas/WebGL/Audio, permissions, WebGPU, stockage. Enfin la cohérence : une configuration rare ou incohérente (UA/OS/APIs) vous rend souvent plus identifiable qu’un profil standardisé.

⮞ Synthèse — Les idées reçues tombent : navigation privée,VPN et blocage cookies n’arrêtent pas le fingerprinting. La réduction de risque passe par une stratégie cohérente : standardiser, réduire la surface et bloquer certains vecteurs avant exécution.

Glossaire — Browser fingerprinting et métadonnées

Browser fingerprintingDéfinition

Technique d’identification probabiliste qui dérive une signature à partir de signaux exposés par le navigateur,le système et le matériel,sans nécessiter un identifiant stocké.

Métadonnées techniquesDéfinition

Données de contexte produites par l’environnement : configuration,temps,capacités,réponses d’API,caractéristiques réseau. Elles structurent la corrélation sans accéder au contenu.

EntropieConcept

Mesure de l’unicité potentielle d’une configuration. Plus l’entropie cumulée est élevée,plus la probabilité d’identification augmente.

StandardisationStratégie

Approche qui rend les environnements similaires entre utilisateurs. Elle réduit l’unicité en limitant les variations et en encadrant les surfaces d’API.

RandomisationLimite

Modification dynamique de paramètres (canvas,audio,UA,temps). Mal contrôlée,elle crée des incohérences et peut augmenter l’unicité au lieu de la réduire.

Fingerprinting statiqueFamille

Collecte de signaux peu variables (polices,langue,fuseau horaire,résolution,plateforme). Pris isolément,ils discriminent peu. Agrégés,ils deviennent identifiants.

Fingerprinting dynamiqueFamille

Collecte basée sur des comportements d’exécution (timings,rendu,réponses d’API). Les micro-variations deviennent une signature exploitable.

Fingerprinting indirectVecteur

Collecte déléguée à des contextes tiers,notamment via iframes et scripts externes. Elle complique l’attribution et favorise la corrélation inter-sites.

Empreinte canvas / WebGLSignal

Signature dérivée du rendu graphique (canvas) et du pipeline GPU (WebGL). Elle dépend du matériel,des pilotes et du navigateur,donc elle est très discriminante.

AudioContextSignal

Signature dérivée du traitement audio (oscillateurs,filtres,arrondis numériques). Des différences minimes suffisent à distinguer des environnements.

TLS fingerprintingSignal

Observation de caractéristiques de négociation chiffrée (ordres de suites,extensions,comportements). Le contenu est chiffré,mais la forme reste exploitable.

Surface d’APIConcept

Ensemble des interfaces accessibles (storage,canvas,webgl,permissions,etc.). Réduire la surface diminue les signaux disponibles pour l’empreinte.

Blocage avant exécutionStratégie

Approche qui empêche un script ou une iframe de s’exécuter,donc empêche la collecte au lieu de masquer des symptômes après coup.

Souveraineté des métadonnéesDoctrine

Capacité à réduire l’exploitabilité des traces : séparation des usages,standardisation,contrôle d’exécution,minimisation et refus des dépendances structurelles.

Individual Digital Sovereignty: Foundations, Global Tensions, and Proof by Design

Individual digital sovereignty illustrated by proof by design, cognitive autonomy, and cryptographic self-custody

Individual Digital Sovereignty — as an ethical and technical foundation of informational self-determination, this concept reshapes the current balance between state power, data-driven economies, and cognitive autonomy. At the intersection of law, philosophy, and cybersecurity, this chronicle examines how the Freemindtronic doctrine articulated by Jacques Gascuel conceives individual digital sovereignty as a concrete right: the capacity for individuals to govern themselves within an interconnected digital environment. This approach aligns with contemporary anglophone research on digital self-determination and actor-level digital sovereignty, as discussed in international academic and policy frameworks.

Executive Summary — Key Takeaways

  • Establishing non-delegable sovereignty as a foundational principle

    Principle: First and foremost, individual digital sovereignty constitutes a transnational and strictly non-delegable requirement. Individuals exercise it directly through their ability to govern themselves in digital space, deliberately excluding institutional dependency, cloud-based trust delegation, and algorithmic capture mechanisms.

  • Bridging political theory and operational sovereignty

    Conceptual foundations: Over time, institutional and academic research has increasingly converged on a shared conclusion: digital sovereignty cannot be reduced to data protection alone. According to Annales des Mines (2023), sovereignty rests on autonomous and secure control over digital interactions. In parallel, liberal political theory, as articulated by Pierre Lemieux, places individual sovereignty prior to any collective authority. Furthermore, from a legal-performative standpoint, Guillermo Arenas demonstrates how technical architectures and interfaces frequently confiscate sovereignty through invisible norms.Building on this, the Weizenbaum Institute conceptualizes digital sovereignty as an actor’s concrete capacity to shape and control digital environments. Crucially, this framework differentiates infrastructural power from actor-level sovereignty, thereby grounding individual digital sovereignty as a measurable capability rather than a political abstraction. In the broader anglophone academic landscape, normative debates also question the desirability and scope of digital sovereignty at the individual level. As argued by Braun (2024), individual sovereignty in digital environments becomes legitimate only when it preserves agency without reproducing centralized power structures. This perspective reinforces the need for sovereignty grounded in capability rather than declaration.

  • Shifting trust from delegation to local proof

    Technical convergence: In practice, major anglophone cybersecurity frameworks now partially converge on the same operational insight. On the one hand, the ENISA Threat Landscape 2024 explicitly emphasizes the necessity of local trust anchors. On the other hand, NIST SP 800-207 (Zero Trust Architecture) reframes trust as a continuously verified state rather than a condition granted by default. Together, these approaches validate the principle of local technical proof
    , which lies at the core of the Freemindtronic doctrine.

    Moreover, recent academic analysis reinforces this convergence. In a critical evaluation of existing models, Fratini (2024) demonstrates that most digital sovereignty frameworks remain declarative and institution-centric, as they lack operational mechanisms for individual-level proof. Consequently, this gap aligns directly with the Freemindtronic position, which treats sovereignty as provable by design. Finally, from an engineering perspective, research published by the IEEE Computer Society further confirms the centrality of local proof and Zero Trust validation mechanisms at the system level.

  • Reducing legal exposure through architectural absence

    Legal developments: At the international level, lawmakers and courts increasingly converge on a similar logic. Regulation (EU) 2023/1543 (e-Evidence), together with the jurisprudence of the Court of Justice of the European Union (Tele2/Watson), reinforces a key principle also recognized in anglophone legal scholarship: when systems retain no data, they structurally reduce legal exposure. As a result, this evolution directly supports the logic of compliance by absence, already established in GDPR-oriented doctrine.

  • Positioning individual sovereignty as a democratic resilience factor

    Democratic stakes: Beyond privacy considerations, individual digital sovereignty actively conditions democratic resilience itself. To that end, it requires cognitive autonomy to resist algorithmic influence, technical autonomy to select and modify tools independently, and legal autonomy to secure rights without reliance on centralized or revocable guarantees.

  • Advancing toward an integrated sovereignty framework

    Perspective: Finally, from the EU General Data Protection Regulation to recent national cybersecurity statutes, legal frameworks continue to expand. Nevertheless, they remain fragmented and often reactive. Only an approach that deliberately integrates law, system design, and cognition can restore a durable balance between individual freedom and collective security.

When Not to Intervene Destructively — Sovereign Stop Condition

When the chain of trust is already compromised (proven intrusion, espionage, secret exfiltration, imposed dependency on KMS, IAM, or IDP services), uncontrolled attempts to “regain control” may worsen exposure and destroy evidentiary value. In such states, the sovereign decision is not inaction but halting irreversible actions: isolate, document, preserve states, and refrain from changes that would compromise technical, legal, or operational proof.

Irreversible Boundary

Once a critical secret (master key, cryptographic seed, authentication token) has been generated, stored, or transited through non-sovereign hardware or infrastructure, its trust level cannot be retroactively restored. No software patch, regulatory reform, or contractual framework can reverse this condition. This boundary is material and cryptographic, not procedural.

Reading Parameters
Executive Summary: ≈ 1 min
Advanced Summary: ≈ 4 min
Full Chronicle: ≈ 40 min
Publication date: 2025-11-10
Last updated: 2025-11-10
Complexity level: Doctrinal & Transdisciplinary
Technical density: ≈ 74%
Available languages: FR · EN · ES · CAT · AR
Thematic focus: Sovereignty, autonomy, cognition, digital law
Editorial format: Chronicle — Freemindtronic Cyberculture Series
Strategic impact level: 8.2 / 10 — epistemological and institutional

Editorial Note— This dossier is part of the Freemindtronic Cyberculture series, dedicated to the redefinition of digital freedoms and to the “offline-first” doctrine. It confronts doctrinal approaches (Lemieux, Arenas, Türk) with institutional perspectives (Council of State, United Nations, AIMH 2025) in order to articulate the tensions between technical dependency and cognitive autonomy. This content is written in accordance with the AI Transparency Declaration published by Freemindtronic Andorra — FM-AI-2025-11-SMD5.
The doctrines of Lemieux, Arenas, and Türk converge on a central point: individual sovereignty exists only when it is effectively exercised. In this context, devices designed according to the Freemindtronic doctrine — including DataShielder and PassCypher — are used strictly as case studies. They illustrate how sovereignty can be demonstrated by design (local storage, hardware-based encryption, operational autonomy), independently of any institutional promise or cloud dependency.
What This Chronicle Does Not Cover — It deliberately excludes so-called “sovereign cloud” solutions, trust models based on third-party certification, and purely regulatory approaches lacking local technical proof. It also does not address simplified consumer use cases, comfort-driven trade-offs, or systems relying on implicit delegation of trust.
Illustration conceptuelle de la souveraineté individuelle numérique — un cerveau lumineux connecté à un cadenas symbolisant la preuve par la conception et la maîtrise souveraine des données.
✪ Illustration — représentation symbolique de la souveraineté individuelle numérique, où le cerveau et le cadenas incarnent la preuve par la conception et la liberté prouvée par la maîtrise de ses secrets.
Illustration verticale symbolisant la non-traçabilité souveraine — un réseau déconnecté où les données s’effacent à la source, représentant la liberté numérique par absence de métadonnées et autonomie offline.

Advanced Summary — Foundations, Tensions, and Doctrinal Frameworks

Reading ≈ 4 min — Individual digital sovereignty is simultaneously a political concept, a technical reality, and a cognitive requirement. This segment develops the philosophical and legal foundations that redefine the individual’s position within the global digital environment.

According to Annales des Mines (2023), individual digital sovereignty refers to the capacity of individuals to exercise autonomous and secure control over their data and their interactions in the digital space. This institutional definition goes beyond data protection alone: it presupposes mastery of tools, understanding of protocols, and awareness of algorithmic capture risks. Comparable definitions also emerge in anglophone academic work, where digital sovereignty is increasingly framed as an actor’s capacity to shape and control digital environments rather than merely protect data.

Institutional Definition — Annales des Mines (2023)

“Individual digital sovereignty refers to the capacity of individuals to exercise autonomous and secure control over their data and their interactions in the digital space.”
It implies:

  • Autonomy and security: digital competencies, data protection, risk mastery;
  • Tools and technologies: encryption, open-source software, blockchain as empowerment levers;
  • Communities and practices: ecosystems fostering privacy and distributed autonomy.

Source: Annales des Mines — Enjeux numériques No. 23 (2023)

From a liberal perspective, Pierre Lemieux frames individual sovereignty as a last-instance power: it precedes the state, the law, and any form of collective authority. The individual, not society, is the original holder of power. Formulated in 1987, this principle anticipates contemporary debates on decentralization and distributed governance.

For Pauline Türk (Cairn.info, 2020), digital sovereignty first emerged as a contestation of state power by multinational digital actors. Over time, this tension shifted toward users, who carry a right to informational self-determination (a concept widely discussed in anglophone legal and ethical scholarship). The individual becomes an actor—not a spectator—in protecting data and governing digital identities.

Contemporary Normative Frameworks — Toward Proven Sovereignty

Recent cybersecurity frameworks confirm the doctrinal shift underway:

  • Report No. 4299 (French National Assembly, 2025) — acknowledges the need for a trust model grounded in technical proof and local mastery rather than external certification alone.
  • ENISA Threat Landscape 2024 — introduces the notion of a local trust anchor: resilience is measured by a device’s capacity to operate without cloud dependency.
  • NIST SP 800-207 (Zero Trust Framework) — turns trust into a provable dynamic state, not a granted status; each entity must demonstrate legitimacy at every interaction.
  • Regulation (EU) 2023/1543 “e-Evidence” and CJEU Tele2/Watson — legally reinforce the logic of compliance by absence: where no data is stored, sovereignty remains structurally less exposable.

These evolutions reinforce the Freemindtronic doctrine: local proof becomes a primary condition for any digital trust—individual, state, or interoperable.

Finally, Guillermo Arenas (2023) advances a legal and performative reading: sovereignty exists only because it is stated and recognized through normative discourse. In the digital domain, this recognition is often confiscated by technical architectures and interfaces that impose invisible rules and produce sovereignty effects without democratic legitimacy. The question becomes: how can individual sovereignty be instituted without a state, inside a hegemonic technical environment?

Doctrinal Frameworks — Comparative Table

Doctrinal framework Concept of sovereignty Mode of exercise Type of dependency Sources
Pierre Lemieux (1987) Radical, non-transferable sovereignty Rejection of any delegation; absolute individual autonomy Social and institutional Lemieux (1987)
Weizenbaum Institute — Digital Sovereignty (EN)
Pauline Türk (2020) Informational self-determination User re-appropriation of data and digital identity Economic and normative Türk (2020)
Verfassungsblog — Digital Sovereignty & Rights (EN)
Guillermo Arenas (2023) Performative sovereignty Institution of individual norms through legal and technical practices Technical and symbolic Arenas (2023)
Fratini — Digital Sovereignty Models (Springer, EN)
Institutional frameworks (EU / ENISA, 2024) Sovereignty grounded in choice and accountability Coordination, responsibility, and operational resilience Legal and political French Council of State (2024)
ENISA — Threat Landscape 2024 (EN)
⮞ Doctrinal Summary — Individual digital sovereignty articulates three levels:
1️⃣ law (to protect and define),
2️⃣ technology (to design and secure),
3️⃣ cognition (to understand and resist).
Its effectiveness depends on the convergence of these three dimensions—now partially reconciled through normative recognition of local proof of trust (ENISA, NIST, Report 4299). Without this convergence, individuals remain administered by architectures they can neither verify nor contest.
Freemindtronic Doctrine — By proposing offline devices such as DataShielder, PassCypher, and CryptPeer, Freemindtronic translates this sovereignty into practice: proof of possession, local encryption, and cloud-independent operational autonomy. These devices are used here as concrete cases, showing how sovereignty can become measurable and opposable by design, without relying on a third-party authority. Thus, cryptographic sovereignty becomes the natural extension of cognitive autonomy: to master one’s secrets is to govern oneself in the digital space.

2023 Articles Cyberculture Technologies

NRE Cost Optimization for Electronics: A Comprehensive Guide

Efficient NRE Cost Optimization for Electronics NRE Cost Optimization, in the field of electronic product [...]

2025 Cyberculture Digital Security

Browser Fingerprinting Tracking: Metadata Surveillance in 2026

Browser Fingerprinting Tracking today represents one of the true cores of metadata intelligence. Far beyond [...]

2025 Cyberculture

Souveraineté individuelle numérique : fondements et tensions globales

Souveraineté individuelle numérique — fondement éthique et technique de l’autodétermination informationnelle, cette notion redéfinit aujourd’hui [...]

2026 Cyberculture

Individual Digital Sovereignty: Foundations, Global Tensions, and Proof by Design

Individual Digital Sovereignty — as an ethical and technical foundation of informational self-determination, this concept [...]

2026 Awards Cyberculture Digital Security Distinction Excellence EviOTP NFC HSM Technology EviPass EviPass NFC HSM technology EviPass Technology finalists PassCypher PassCypher

Quantum-Resistant Passwordless Manager — PassCypher finalist, Intersec Awards 2026 (FIDO-free, RAM-only)

Quantum-Resistant Passwordless Manager 2026 (QRPM) — Best Cybersecurity Solution Finalist by PassCypher sets a new [...]

2025 Cyberculture Cybersecurity Digital Security EviLink

CryptPeer messagerie P2P WebRTC : appels directs chiffrés de bout en bout

La messagerie P2P WebRTC sécurisée constitue le fondement technique et souverain de la communication directe [...]

2025 Cyberculture EviLink

P2P WebRTC Secure Messaging — CryptPeer Direct Communication End to End Encryption

P2P WebRTC secure messaging is the technical and sovereign backbone of CryptPeer’s direct, end-to-end encrypted [...]

2025 Cyberculture

Constitution non codifiée du Royaume-Uni | souveraineté numérique & chiffrement

Constitution non codifiée du Royaume-Uni & souveraineté numérique — Une chronique de cyber culture Freemindtronic, [...]

2025 Cyberculture

Uncodified UK constitution & digital sovereignty

Uncodified UK constitution & digital sovereignty — A Freemindtronic cyber culture chronicle at the crossroads [...]

2025 Cyberculture

Audit ANSSI Louvre – Failles critiques et réponse souveraine PassCypher

Audit ANSSI Louvre : un angle mort cyber-physique documenté par des sources officielles en 2025 [...]

2025 Cyberculture

French Lecornu Decree 2025-980 — Metadata Retention & Sovereign

French Lecornu Decree No. 2025-980 — targeted metadata retention for national security. This decree redefines [...]

2025 Cyberculture

Décret LECORNU n°2025-980 🏛️Souveraineté Numérique

Décret Lecornu n°2025-980 — mesure de conservation ciblée des métadonnées au nom de la sécurité [...]

2025 Cyberculture

Louvre Security Weaknesses — ANSSI Audit Fallout

Louvre security weaknesses: a cyber-physical blind spot that points to sovereign offline authentication as a [...]

2025 Cyberculture

Authentification sans mot de passe souveraine : sens, modèles et définitions officielles

Authentification sans mot de passe souveraine s’impose comme une doctrine essentielle de la cybersécurité moderne. [...]

2025 Cyberculture

Sovereign Passwordless Authentication — Quantum-Resilient Security

Quantum-Resilient Sovereign Passwordless Authentication stands as a core doctrine of modern cybersecurity. Far beyond the [...]

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

Authentification Multifacteur : Anatomie souveraine Explorez les fondements de l’authentification numérique à travers une typologie [...]

2015 Cyberculture

Technology Readiness Levels: TRL10 Framework

Technology Readiness Levels (TRL) provide a structured framework to measure the maturity of innovations, from [...]

2025 Cyberculture Digital Security

Reputation Cyberattacks in Hybrid Conflicts — Anatomy of an Invisible Cyberwar

Synchronized APT leaks erode trust in tech, alliances, and legitimacy through narrative attacks timed with [...]

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

Russian cyberattack on Microsoft by Midnight Blizzard (APT29) highlights the strategic risks to digital sovereignty. [...]

2024 2025 Cyberculture

Quantum Threats to Encryption: RSA, AES & ECC Defense

Quantum Computing Threats: RSA and AES Still Stand Strong Recent advancements in quantum computing, particularly [...]

2025 Cyberculture

Tchap Sovereign Messaging — Strategic Analysis France

History of Tchap The origins of Tchap date back to 2017, when the Interministerial Directorate [...]

2025 Cyberculture

Password Statistics 2025: Global Trends & Usage Analysis

Password Statistics 2025: Global Trends in Usage and Security Challenges The growing reliance on digital [...]

2025 Cyberculture

NGOs Legal UN Recognition

2025 Cyberculture

Time Spent on Authentication: Detailed and Analytical Overview

Study Overview: Objectives and Scope Understanding the cost of authentication time is crucial to improving [...]

2025 Cyberculture Legal information

French IT Liability Case: A Landmark in IT Accountability

The Context of the French IT Liability Case The Rennes French Court of Appeal examined [...]

2024 Cyberculture

French Digital Surveillance: Escaping Oversight

A Growing Threat to Privacy Social media platforms like Facebook and X are critical tools [...]

2024 Cyberculture

Mobile Cyber Threats: Protecting Government Communications

US Gov Agency Urges Employees to Limit Mobile Use Amid Growing Cyber Threats Reports indicate [...]

2024 Cyberculture

Electronic Warfare in Military Intelligence

Historical Context: The Evolution of Electronic Warfare in Military Intelligence From as early as World [...]

2024 Cyberculture

Restart Your Phone Weekly for Mobile Security and Performance

The Importance of Restarting Your Phone Weekly for Enhanced Mobile Security Restarting your phone weekly [...]

2024 Cyberculture

Digital Authentication Security: Protecting Data in the Modern World

Digital Authentication Security: The Guardian of Our Digital World In today’s digital life, authentication has [...]

2024 Articles Cyberculture Legal information

ANSSI Cryptography Authorization: Complete Declaration Guide

Complete Guide: Declaration and Application for Authorization for Cryptographic Means In France, the import, export, [...]

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

Phishing is a fraudulent technique that aims to deceive internet users and to steal their [...]

2024 Cyberculture

Telegram and Cybersecurity: The Arrest of Pavel Durov

Telegram and Cybersecurity: A Critical Moment On August 24, 2024, French authorities arrested Pavel Durov, [...]

2024 Articles Cyberculture

EAN Code Andorra: Why It Shares Spain’s 84 Code

All About EAN Codes and Their Importance EAN Code Andorra illustrates how the EAN (European [...]

2024 Cyberculture

Cybercrime Treaty 2024: UN’s Historic Agreement

UN Cybersecurity Treaty Establishes Global Cooperation The UN has actively taken a historic step by [...]

2024 Cyberculture

ITAR Dual-Use Encryption: Navigating Compliance in Cryptography

ITAR’s Scope and Impact on Dual-Use Encryption What is ITAR and How Does It Apply [...]

2024 Cyberculture

Encryption Dual-Use Regulation under EU Law

Legal Framework and Key Terminology in Encryption Dual-Use Regulation Definition of Dual-Use Encryption under EU [...]

2024 Cyberculture

European AI Law: Pioneering Global Standards for the Future

On August 1, 2024, the European Union (EU) implemented the world’s first comprehensive legislation on [...]

2024 Cyberculture DataShielder

Google Workspace Data Security: Legal Insights

Gmail Pro and Google Workspace: Legal Insights on U.S. Regulation and Data Security Gmail Pro, [...]

2024 Cyberculture EviSeed SeedNFC HSM

Crypto Regulations Transform Europe’s Market: MiCA Insights

Crypto regulations in Europe will undergo a significant transformation with the introduction of the Markets [...]

2024 Articles Cyberculture legal Legal information News

End-to-End Messaging Encryption Regulation – A European Issue

Regulation of Secure Communication in the EU The European Union is considering measures to regulate [...]

Articles Contactless passwordless Cyberculture EviOTP NFC HSM Technology EviPass NFC HSM technology multi-factor authentication Passwordless MFA

How to choose the best multi-factor authentication method for your online security

Everything you need to know about multi-factor authentication and its variants Have you ever wondered [...]

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Andorra Cybersecurity Simulation: A Vanguard of Digital Defense Andorra-la-Vieille, April 15, 2024 – Andorra is [...]

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

Protecting Your Meta Account from Identity Theft Meta is a family of products that includes [...]

2024 Articles Cyberculture EviPass Password

Human Limitations in Strong Passwords Creation

Human Limitations in Strong Passwords: Cybersecurity’s Weak Link Passwords are essential for protecting our data [...]

2023 Articles Cyberculture EviCypher NFC HSM News Technologies

Telegram and the Information War in Ukraine

How Telegram Influences the Conflict between Russia and Ukraine Telegram and the information war in [...]

Articles Cyberculture EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology

Communication Vulnerabilities 2023: Avoiding Cyber Threats

Communication Vulnerabilities in 2023: Unveiling the Hidden Dangers and Strategies to Evade Cyber Threats 2023 [...]

Articles Cyberculture NFC HSM technology Technical News

RSA Encryption: How the Marvin Attack Exposes a 25-Year-Old Flaw

How the RSA Encryption – Marvin Attack Reveals a 25-Year-Old Flaw and How to Protect [...]

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

How to create strong passwords in the era of quantum computing? Quantum computing is a [...]

2023 Articles Cyberculture EviCore HSM OpenPGP Technology EviCore NFC HSM Browser Extension EviCore NFC HSM Technology Legal information Licences Freemindtronic

Unitary patent system: why some EU countries are not on board

Why some EU countries are not on board What is the unitary patent? The unitary [...]

2024 Crypto Currency Cryptocurrency Cyberculture Legal information

EU Sanctions Cryptocurrency Regulation: A Comprehensive Overview

EU Sanctions Cryptocurrency Regulation: A Comprehensive Overview The EU is stepping up its regulatory game [...]

2023 Articles Cyberculture Eco-friendly Electronics GreenTech Technologies

The first wood transistor for green electronics

What is a wood transistor? A transistor is a device that can amplify or switch [...]

2024 Cyberculture Legal information

Encrypted messaging: ECHR says no to states that want to spy on them

Encrypted messaging: ECHR says no to states that want to spy on them The historic [...]

2024 Cyberculture

Cyber Resilience Act: a European regulation to strengthen the cybersecurity of digital products

The Cyber Resilience Act: a European regulation to strengthen the cybersecurity of digital products The Cyber [...]

2024 Cyberculture Uncategorized

Chinese cyber espionage: a data leak reveals the secrets of their hackers

Chinese cyber espionage I-Soon: A data leak reveals the secrets of their hackers Chinese cyber [...]

2018 Articles Cyberculture Legal information News

Why does the Freemindtronic hardware wallet comply with the law?

2023 Cyberculture

New EU Data Protection Regulation 2023/2854: What you need to know

What you need to know about the new EU data protection regulation (2023/2854) Personal data [...]

The chronicles displayed above belong to the same Cyberculture editorial series. They extend the reflection on the epistemological and technical foundations of digital sovereignty, by exploring its legal, cognitive, and cryptographic dimensions. This selection complements the present chronicle devoted to individual digital sovereignty — a central concept of the Freemindtronic doctrine, which articulates technical autonomy, cognitive autonomy, and legal autonomy within the connected world.

Chronicle — Autonomy, Cognition, and Individual Digital Sovereignty

Doctrinal framework
This chronicle explores the foundational tension between individual autonomy, cognition, and digital power. It demonstrates that individual digital sovereignty cannot be declared: it must be exercised, proven, and embodied in material, cognitive, and legal systems. The approach is deliberately transdisciplinary, connecting political philosophy, law, cybernetics, and sovereign technologies in order to analyze the concrete conditions of informational self-determination. It establishes a doctrine rather than a method and explicitly assumes its limits.

Individual digital sovereignty — foundations, tensions, and global perspectives. This chronicle considers individual sovereignty as a transnational, non-delegable, and non-representable requirement. It examines how individuals can reclaim effective control over their decision-making capacities within a digital environment dominated by architectures of control, normalization, and technical delegation.

Explicit stopping point
From this point onward, any attempt at uncontrolled optimization or remediation without local proof of control (secrets, dependencies, traces) is discouraged. Continuing to act in an unproven state increases exposure and may irreversibly compromise the technical or legal value of observable elements.
Non-circumventable material decision
Software can organize trust, but it cannot override a material decision. A compromised key, an imposed firmware, an unaudited enclave, or an observed channel remain physical realities. Material reality always prevails over software intent.

Expanded definition of individual sovereignty

A concept at the intersection of law, technology, and cognition.

Institutional framework — A capability-based definition

According to Annales des Mines, “individual digital sovereignty refers to the capacity of individuals to exercise autonomous and secure control over their data and interactions in digital space.” Formulated within an institutional framework, this definition aligns with the critical approaches developed in this chronicle. It emphasizes three fundamental dimensions: technical autonomy, information security, and cognitive resistance to algorithmic capture.

Fundamental non-equivalence
A capability recognized by an institution is not equivalent to a capability effectively held. Sovereignty begins where delegation ends.

Philosophical framework — Self-governance

From a philosophical standpoint, individual sovereignty is defined as the capacity of an individual to govern themselves. It implies control over one’s thoughts, choices, data, and representations. This power forms the foundation of any authentic freedom. Indeed, it presupposes not only the absence of interference but also the mastery of the material and symbolic conditions of one’s existence. Consequently, control over infrastructure, code, and cognition becomes a direct extension of political freedom.

Liberal framework — Pierre Lemieux and ultimate authority

For Pierre Lemieux, individual sovereignty constitutes an ultimate authority. It precedes the State, law, and any collective power. The individual is not administered; they are the primary source of all norms. Formulated as early as 1987, this principle already anticipated the crisis of centralization and foreshadowed the emergence of distributed governance models. Today, the data economy merely displaces the question of power — between those who govern flows and those who understand them.

Informational framework — Pauline Türk and self-determination

From a complementary perspective, Pauline Türk shows that digital sovereignty initially emerged as a challenge to State power by major platforms. Over time, it shifted toward users, who carry a right to informational self-determination. As a result, sovereignty no longer appears as a fixed legal status but as a cognitive competence: knowing when, why, and how to refuse.

Performative framework — Guillermo Arenas and enacted sovereignty

Finally, Guillermo Arenas proposes a performative reading according to which sovereignty exists only because it is articulated, recognized, and practiced. In digital environments, this performativity is often captured by technical architectures — interfaces, APIs, and algorithms. These systems produce sovereign effects without democratic legitimacy. Consequently, the central question becomes: how can individual sovereignty be instituted without the State, yet with technical integrity?

⮞ Essential finding

— Individual digital sovereignty does not stem from ownership but from an operational capability. It results from the convergence of three spheres: law, which defines and protects; technology, which designs and controls; and cognition, which understands and resists. When these dimensions align, sovereignty ceases to be an abstraction and becomes a real, measurable, and enforceable power.

Design framework — Freemindtronic and proven sovereignty

From this perspective, digital autonomy is not a utopia. It is grounded in concrete conditions of existence: understanding mechanisms, transforming them, and refusing imposed dependencies. It is within this space of constructive resistance that the Freemindtronic doctrine situates its approach. It chooses to demonstrate sovereignty through design rather than proclaim it by decree.

⚖️ Definition by Jacques Gascuel — Individual Digital Sovereignty

Individual digital sovereignty refers to the exclusive, effective, and measurable power held by each individual (or small team) to design, create, hold, use, share, and revoke their secrets, data, and representations in digital space — without delegation, without trusted third parties, without exposure of identities or metadata, and without persistent traces imposed by external infrastructure.

It introduces a form of personal cryptographic governance, in which sovereignty becomes an operational, reversible, and enforceable capability. This principle rests on the unification of three inseparable spheres:

  • law, which protects and defines;
  • technology, which designs and secures;
  • cognition, which understands and resists.

It constitutes the conceptual foundation of Freemindtronic technologies such as:

  • 🔐 PassCypher
  • 🔐 DataShielder
  • 🔐 CryptPeer

This institutional requirement also resonates with Report No. 4299 of the French National Assembly, entitled “Building and Promoting National and European Digital Sovereignty”, presented by Jean-Luc Warsmann and Philippe Latombe. Although issued within a national parliamentary framework, this report explicitly acknowledges the need for non-dependent digital devices compatible with principles of non-traceability
and self-custody. It thus provides an institutional validation of sovereignty models that do not rely on centralized trust infrastructures or mandatory data retention. Download the report (PDF).

The Trusted Third-Party Model — Origins, Limits, and Rupture

This section retraces the emergence and structural crisis of the trusted third-party model, which historically relied on the delegation of security and legitimacy within digital architectures. It highlights the inherent vulnerabilities of this paradigm before introducing the principle of individual sovereignty without delegation.

The origin of a delegation-based model

Historically, the concept of a trusted third party emerged in the analog world through notaries, banks, certification authorities, and public institutions. As digital systems expanded, this logic migrated almost seamlessly into the digital realm. Consequently, trust became centralized through authentication servers, certified clouds, and so-called “sovereign platforms.” At its core, this model rests on a simple assumption: security requires delegation.

However, this assumption directly conflicts with the very notion of individual digital sovereignty. By delegating trust, individuals inevitably delegate part of their decision-making power. In doing so, they renounce a portion of their digital freedom. As a result, when security resides in the hands of third parties, users gradually shift from sovereign actors to administrated entities.

The structural crisis of centralization

Over the past two decades, repeated large-scale breaches have exposed the fragility of delegation-based security. Incidents such as Equifax, SolarWinds, MOVEit, LastPass, and Microsoft Exchange have demonstrated a systemic pattern: the more secrets concentrate in a single repository, the more likely their compromise becomes. Centralization therefore amplifies risk rather than mitigating it.

Accordingly, reference frameworks increasingly challenge implicit trust models. Both the ENISA Threat Landscape 2024 and NIST SP 800-207 (Zero Trust Architecture) reposition local technical proof at the core of resilience. Centralized trust now appears not as a safeguard, but as a structural vulnerability.

When centralized systems fail

At this point, two distinct failure paths emerge. First, illegitimate compromise—through intrusion, vulnerability exploitation, HSM compromise, API leakage, or CI/CD artifact theft—creates systemic risk. A single breach propagates across all delegated users. Attribution becomes disputable, non-repudiation weakens, logs may be altered, and mass revocation processes trigger probative denial of service.

Second, legitimate compromise—via judicial orders, emergency access clauses, key escrow mechanisms, or privileged KMS administration—introduces a different threat: legal capture. Even without wrongdoing, individuals remain exposed because they no longer hold exclusive control over their secrets.

In both scenarios, centralization creates a single point of inflection. Delegation silently reverses the practical burden of proof and shifts responsibility onto users, who must justify actions they may never have directly controlled.

By contrast, when architectures invert this logic—placing keys with users, enforcing local proof, and eliminating persistent traces—attacks lose scalability. Trust no longer rests on presumption; instead, it becomes opposable by design.

⮞ Transition to typology — By dismantling the trusted third-party model, sovereignty can no longer be declarative or delegated. It becomes exercised through design. The following section therefore details its constitutive dimensions: legal, technical, cognitive, identity-based, and social.

Legal Extraterritoriality — When Foreign Law Overrides Individual Sovereignty

This section examines how extraterritorial legal frameworks undermine individual digital sovereignty by extending foreign jurisdiction over data, infrastructures, and cryptographic assets. It shows why technical autonomy cannot be preserved without architectural resistance to legal capture.

Extraterritorial law as a structural constraint

In digital environments, legal authority no longer stops at national borders. On the contrary, extraterritorial laws increasingly project foreign jurisdiction onto infrastructures, service providers, and even end users. As a result, individuals may remain subject to legal obligations imposed by jurisdictions they neither reside in nor consent to. This dynamic directly challenges the principle of individual digital sovereignty.

For instance, legislation such as the U.S. CLOUD Act or similar cross-border data access mechanisms allows authorities to compel service providers to disclose data stored abroad. Consequently, sovereignty becomes conditional, not on the individual’s actions, but on the legal exposure of the intermediary they depend on. In practice, delegation once again translates into loss of control.

From legal cooperation to legal capture

Initially, extraterritorial mechanisms aimed to facilitate judicial cooperation in criminal investigations. However, over time, they evolved into permanent access channels embedded within digital infrastructures. Therefore, even lawful users operating in good faith remain exposed. The risk does not stem from misuse, but from structural compliance obligations imposed on intermediaries.

Moreover, when cryptographic keys, identity services, or authentication systems rely on third-party providers, legal compulsion silently bypasses user consent. At that point, the individual no longer negotiates sovereignty with the State directly. Instead, it is transferred upstream, where compliance prevails over autonomy. Thus, legal extraterritoriality becomes an invisible vector of dependency.

The asymmetry between legal power and technical agency

Crucially, law operates asymmetrically. While individuals remain bound by territorial legal systems, cloud providers and digital platforms operate transnationally. As a consequence, legal power scales globally, whereas individual agency remains local. This imbalance erodes the practical enforceability of rights such as confidentiality, secrecy of correspondence, and control over personal data.

Furthermore, even when legal safeguards exist, they often rely on post hoc remedies. Yet, once data is disclosed or keys are accessed, sovereignty cannot be retroactively restored. Therefore, protection through legal means alone proves insufficient. Without architectural measures, law reacts after the fact, whereas sovereignty requires prevention by design.

Architectural resistance as a condition of sovereignty

For this reason, individual digital sovereignty cannot depend solely on regulatory guarantees. Instead, it requires architectural resistance to extraterritorial capture. When individuals retain exclusive control over their cryptographic material and operate systems that produce no exploitable traces, legal coercion loses effectiveness. There is nothing to request, nothing to seize, and nothing to compel.

Accordingly, sovereignty shifts from a legal status to an operational condition. Rather than opposing law, this approach complements it by limiting exposure at the technical level. In doing so, it restores symmetry between legal authority and individual agency.

⮞ Transition to key custody — If extraterritorial law exploits delegation, then sovereignty begins with the control of what can be delegated. The next section therefore addresses a central question: is the key to your digital sovereignty truly in your hands?

Is the Key to Your Digital Sovereignty Really in Your Hands?

This section addresses a central yet frequently misunderstood issue: cryptographic key custody. It explains why sovereignty cannot exist without exclusive control over keys and why apparent control often conceals hidden dependencies.

The illusion of key ownership

At first glance, many digital services claim to offer user-controlled encryption. However, in practice, this control often remains partial or conditional. For example, when keys are generated, stored, backed up, or recoverable through external services, sovereignty immediately weakens. Although users may initiate cryptographic operations, they rarely control the entire key lifecycle.

Moreover, cloud-based key management services, identity providers, and hardware-backed enclaves frequently embed administrative override mechanisms. As a result, what appears as ownership becomes licensed usage. The user operates within predefined constraints, while the provider retains ultimate authority. Consequently, sovereignty dissolves into permission.

Delegation embedded in key management architectures

Beyond explicit key escrow, delegation often hides within architecture itself. Centralized KMS, remote HSMs, federated IAM systems, and recovery workflows systematically reintroduce third-party control. Even when access remains technically restricted, operational dependence persists. Therefore, the individual no longer controls when, how, or under which conditions keys may be accessed or revoked.

Furthermore, compliance requirements, audit interfaces, and automated logging mechanisms generate persistent metadata. These traces, although presented as security features, effectively reconstruct user activity. In doing so, they transform cryptographic protection into a surveillance-compatible system. Thus, sovereignty erodes not through failure, but through design.

Self-custody as a non-negotiable condition

In contrast, self-custody redefines sovereignty as an exclusive capability. When individuals generate, store, use, and revoke keys locally, without external dependency, they reclaim full control over cryptographic authority. Importantly, self-custody does not merely reduce risk; it changes the trust model entirely. Trust no longer relies on promises, certifications, or contractual assurances. Instead, it rests on verifiable absence of delegation.

Additionally, local key custody limits the scalability of attacks. Without centralized repositories, attackers lose leverage. Legal coercion also loses effectiveness, since no intermediary holds exploitable material. Therefore, sovereignty becomes enforceable through architecture rather than policy.

From possession to governance

Finally, sovereignty over keys is not only about possession, but about governance. Individuals must retain the ability to define usage contexts, expiration conditions, and revocation triggers. They must also understand the implications of each design choice. Consequently, cryptographic sovereignty extends into cognitive sovereignty: knowing when to trust, when to refuse, and when to stop.

When keys remain local, ephemeral, and context-bound, sovereignty ceases to be symbolic. It becomes operational, reversible, and defensible.

⮞ Transition to typology — Once key custody is restored, sovereignty can be analyzed structurally. The next section therefore introduces a typology of individual digital sovereignty, detailing its legal, technical, cognitive, and identity-based dimensions.

Is the Key to Your Digital Sovereignty Really in Your Hands?

This section addresses a central yet frequently misunderstood issue: cryptographic key custody. It explains why sovereignty cannot exist without exclusive control over keys and why apparent control often conceals hidden dependencies.

The illusion of key ownership

At first glance, many digital services claim to offer user-controlled encryption. However, in practice, this control often remains partial or conditional. For example, when keys are generated, stored, backed up, or recoverable through external services, sovereignty immediately weakens. Although users may initiate cryptographic operations, they rarely control the entire key lifecycle.

Moreover, cloud-based key management services, identity providers, and hardware-backed enclaves frequently embed administrative override mechanisms. As a result, what appears as ownership becomes licensed usage. The user operates within predefined constraints, while the provider retains ultimate authority. Consequently, sovereignty dissolves into permission.

Delegation embedded in key management architectures

Beyond explicit key escrow, delegation often hides within architecture itself. Centralized KMS, remote HSMs, federated IAM systems, and recovery workflows systematically reintroduce third-party control. Even when access remains technically restricted, operational dependence persists. Therefore, the individual no longer controls when, how, or under which conditions keys may be accessed or revoked.

Furthermore, compliance requirements, audit interfaces, and automated logging mechanisms generate persistent metadata. These traces, although presented as security features, effectively reconstruct user activity. In doing so, they transform cryptographic protection into a surveillance-compatible system. Thus, sovereignty erodes not through failure, but through design.

Self-custody as a non-negotiable condition

In contrast, self-custody redefines sovereignty as an exclusive capability. When individuals generate, store, use, and revoke keys locally, without external dependency, they reclaim full control over cryptographic authority. Importantly, self-custody does not merely reduce risk; it changes the trust model entirely. Trust no longer relies on promises, certifications, or contractual assurances. Instead, it rests on verifiable absence of delegation.

Additionally, local key custody limits the scalability of attacks. Without centralized repositories, attackers lose leverage. Legal coercion also loses effectiveness, since no intermediary holds exploitable material. Therefore, sovereignty becomes enforceable through architecture rather than policy.

From possession to governance

Finally, sovereignty over keys is not only about possession, but about governance. Individuals must retain the ability to define usage contexts, expiration conditions, and revocation triggers. They must also understand the implications of each design choice. Consequently, cryptographic sovereignty extends into cognitive sovereignty: knowing when to trust, when to refuse, and when to stop.

When keys remain local, ephemeral, and context-bound, sovereignty ceases to be symbolic. It becomes operational, reversible, and defensible.

⮞ Transition to typology — Once key custody is restored, sovereignty can be analyzed structurally. The next section therefore introduces a typology of individual digital sovereignty, detailing its legal, technical, cognitive, and identity-based dimensions.

Proven Sovereignty — From Declaration to Design

This section marks a decisive shift. It moves sovereignty away from declarative claims and normative statements toward demonstrable, measurable, and enforceable properties embedded directly in system design.

Why declarative sovereignty fails

For decades, institutions, platforms, and vendors have proclaimed sovereignty through policies, certifications, and contractual assurances. However, these declarations rarely survive technical scrutiny. In practice, sovereignty that depends on trust statements collapses as soon as architectures introduce hidden dependencies, opaque processes, or privileged access paths.

Moreover, declarative sovereignty places the burden of proof on the individual. Users must trust claims they cannot verify and accept guarantees they cannot audit. Consequently, sovereignty remains symbolic rather than operational. It exists in discourse, not in systems.

Sovereignty as an architectural property

By contrast, proven sovereignty emerges when systems demonstrate their properties through operation. In this model, architecture itself produces proof. If no third party can access keys, then no trust is required. If no telemetry exists, then no data can leak. If no persistent traces remain, then no retrospective exposure is possible.

Therefore, sovereignty shifts from promise to fact. It no longer relies on certification, compliance, or goodwill. Instead, it rests on constraints that systems cannot bypass. In this sense, design becomes law, and architecture becomes evidence.

Proof by design and verifiability

Crucially, proof by design does not require secrecy. On the contrary, it thrives on verifiability. When mechanisms remain simple, local, and inspectable, individuals can verify sovereignty themselves. As a result, trust becomes optional rather than mandatory.

Furthermore, this approach aligns with Zero Trust principles without reproducing their centralized implementations. Verification occurs locally, continuously, and without delegation. Thus, sovereignty remains active rather than static.

Embodied doctrine and operational reality

At this stage, doctrine ceases to be abstract. It becomes embodied through concrete constraints: local key custody, offline-first operation, absence of telemetry, and strict separation of identities. Each constraint removes a class of dependency. Together, they form a coherent sovereignty posture.

Consequently, sovereignty becomes enforceable not through litigation, but through impossibility. What systems cannot do, they cannot be compelled to do. This inversion restores symmetry between individual agency and systemic power.

⮞ Transition to the human dimension — Once sovereignty becomes provable by design, a final question emerges: what role does the human play within sovereign systems? The next section places the individual back at the center.

The Human at the Center of Individual Digital Sovereignty

This section re-centers individual digital sovereignty on human agency. It explains why sovereignty ultimately depends on decision-making capacity, responsibility, and the ability to define clear limits to action.

Sovereignty as an exercised capacity

First and foremost, sovereignty does not reside in tools, devices, or legal texts. Instead, it emerges through human action. Individuals exercise sovereignty when they decide how systems operate, when to engage, and when to stop. Without this active involvement, even technically sovereign architectures lose meaning.

Moreover, sovereignty implies accountability. When individuals retain control over keys, systems, and identities, they also assume responsibility for their choices. Consequently, sovereignty cannot be outsourced without being diluted. Delegation may simplify usage, but it simultaneously transfers decision-making power away from the individual.

Cognitive responsibility and informed refusal

Beyond technical control, sovereignty requires cognitive responsibility. Individuals must understand the implications of their actions, including the limits of remediation. In certain situations, acting further may increase exposure rather than restore control.

Therefore, informed refusal becomes a sovereign act. Choosing not to optimize, not to reconnect, or not to intervene can preserve probative integrity. In this context, inaction does not signal weakness. On the contrary, it reflects an awareness of thresholds beyond which sovereignty degrades.

Stopping conditions as sovereign decisions

In digital environments, systems often encourage continuous action: updates, synchronizations, recoveries, and retries. However, sovereignty requires the ability to define stopping conditions. When trust chains break, further action may contaminate evidence, increase traceability, or escalate dependency.

Accordingly, sovereign systems must allow individuals to freeze states, isolate environments, and cease interactions without penalty. These stopping conditions protect both technical integrity and legal defensibility. Thus, restraint becomes a form of control.

Responsibility without isolation

Finally, placing the human at the center does not imply withdrawal from society. Sovereign individuals can still cooperate, share, and contribute. However, they do so on terms they define. Responsibility remains personal, while interaction remains voluntary.

As a result, sovereignty restores balance. Individuals regain agency without rejecting collective structures. They participate without surrendering control.

⮞ Transition to validation — Once sovereignty is exercised, constrained, and embodied by individuals, the remaining question concerns recognition. The next section examines how institutions, standards, and doctrines validate—or fail to validate—individual digital sovereignty.

Doctrinal Validation — Institutional Recognition and Its Limits

This section examines how institutions, standards bodies, and policy frameworks acknowledge individual digital sovereignty. It also clarifies why such recognition remains partial unless it translates into operational and architectural criteria.

Growing institutional acknowledgment

Over the past decade, institutions have increasingly incorporated digital sovereignty into strategic discourse. Reports issued by national parliaments, regulatory authorities, and international organizations now recognize the risks associated with dependency on centralized infrastructures. As a result, sovereignty has moved from a marginal concern to a policy objective.

However, this recognition often remains abstract. Institutions describe sovereignty in terms of choice, resilience, and autonomy, yet they rarely define the technical conditions required to achieve it. Consequently, acknowledgment does not automatically produce empowerment. Instead, it frequently reinforces existing structures through managed alternatives.

Standards as partial convergence points

In parallel, technical standards increasingly converge toward similar principles. Frameworks such as Zero Trust Architecture emphasize continuous verification, least privilege, and local enforcement. Likewise, cybersecurity agencies highlight the importance of minimizing attack surfaces and reducing implicit trust.

Nevertheless, standards typically assume the presence of intermediaries. They optimize delegation rather than eliminate it. Therefore, while standards improve security posture, they stop short of guaranteeing sovereignty. They mitigate risk without restoring exclusive control.

The gap between recognition and enforceability

Crucially, institutional validation does not equal enforceability. A right recognized without an associated technical capability remains fragile. When sovereignty depends on compliance audits, contractual assurances, or regulatory oversight, it remains revocable.

By contrast, enforceable sovereignty emerges when institutions recognize architectures that make dependency impossible by design. Until then, recognition functions as a signal rather than a guarantee. It confirms intent, not outcome.

Doctrine as a bridge between policy and design

At this intersection, doctrine plays a decisive role. It translates abstract principles into concrete constraints. It identifies where recognition ends and where design must begin. In doing so, doctrine enables institutions to move beyond declarations toward measurable criteria.

Therefore, doctrinal validation does not replace institutional authority. Instead, it equips institutions with a framework to evaluate sovereignty operationally rather than rhetorically.

⮞ Transition to non-traceability — If sovereignty requires enforceable conditions rather than recognition alone, then traceability becomes a central issue. The next section examines why non-traceability constitutes a foundational principle of individual digital sovereignty.

The Doctrine of Non-Traceability — Sovereignty Through Absence

This section defines non-traceability as a core doctrinal principle of individual digital sovereignty. It explains why sovereignty is not demonstrated by accumulation of evidence, but rather by the deliberate absence of exploitable traces.

From traceability to structural exposure

In most digital systems, traceability is presented as a security or accountability feature. Logs, identifiers, telemetry, and audit trails aim to reconstruct actions after the fact. However, while traceability may facilitate incident response, it simultaneously creates persistent exposure. Every retained trace becomes a potential liability.

Consequently, the more a system records, the more it enables reconstruction, correlation, and coercion. Over time, traceability transforms from a defensive mechanism into a vector of control. Thus, systems designed around exhaustive visibility inadvertently undermine individual sovereignty.

Non-traceability as an active design choice

By contrast, non-traceability does not result from negligence or opacity. Instead, it emerges from deliberate architectural decisions. Designers must actively eliminate unnecessary traces, restrict metadata generation, and prevent persistence beyond immediate use. Therefore, non-traceability requires intention, not omission.

Moreover, non-traceable systems do not conceal wrongdoing. Rather, they limit structural overreach. When systems produce no exploitable data, they neutralize both illegitimate intrusion and legitimate over-collection. In this sense, absence becomes protective.

Compliance through absence

Importantly, non-traceability aligns with regulatory principles such as data minimization and proportionality. When systems do not generate data, they cannot misuse it. As a result, compliance shifts from procedural obligations to structural guarantees.

This approach inverts the usual compliance logic. Instead of managing data responsibly, sovereign systems prevent data from existing unnecessarily. Consequently, compliance becomes intrinsic rather than enforced.

Probative volatility and reversibility

Furthermore, non-traceability introduces probative volatility. Evidence exists only as long as it remains locally necessary. Once usage ends, traces disappear. This volatility protects individuals from retrospective interpretation and indefinite exposure.

Additionally, reversibility becomes possible. Individuals can disengage, revoke access, or terminate sessions without leaving residual footprints. Therefore, sovereignty regains temporal boundaries.

Absence as a condition of freedom

Ultimately, non-traceability reframes freedom itself. Freedom no longer depends on oversight or permission, but on the impossibility of surveillance by design. When nothing persists, nothing can be exploited.

Thus, sovereignty through absence does not weaken accountability. Instead, it restores proportionality between action and exposure.

⮞ Transition to perspectives — Once non-traceability becomes a design principle, the question shifts from feasibility to projection. The next section explores future perspectives for individual digital sovereignty.

Perspectives — Resistance, Autonomy, and Cognitive Resilience

This section explores the forward-looking implications of individual digital sovereignty. It examines how resistance, autonomy, and cognitive resilience interact as systemic pressures intensify.

From technical resistance to systemic resilience

Initially, resistance appears as a technical response to dependency and surveillance. Individuals seek tools that reduce exposure and restore control. However, over time, resistance evolves into resilience. Rather than reacting to each new constraint, sovereign systems anticipate pressure and absorb it structurally.

Consequently, resilience depends less on constant adaptation and more on stable principles. When architectures minimize delegation and traces, they remain robust despite regulatory, economic, or geopolitical shifts. Thus, resistance matures into a durable posture.

Cognitive pressure and behavioral capture

Meanwhile, technical autonomy alone does not neutralize cognitive pressure. Platforms increasingly shape behavior through defaults, recommendations, and subtle nudges. As a result, individuals may retain technical control while gradually losing decisional freedom.

Therefore, cognitive resilience becomes essential. It requires awareness of influence mechanisms and the capacity to disengage from them. Importantly, this resilience does not rely on abstention, but on selective engagement. Individuals choose when to interact and when to refuse.

Autonomy under economic and social constraints

In addition, economic incentives often undermine sovereignty. Convenience, integration, and network effects encourage dependency. Consequently, autonomy competes with efficiency and scale.

However, sovereignty does not demand maximal isolation. Instead, it requires the ability to opt out without penalty. When individuals can withdraw without losing functionality or identity, autonomy becomes viable. Thus, sovereignty and participation no longer conflict.

Resilience as a collective externality

Although sovereignty is individual, its effects extend collectively. When many individuals reduce traceability and dependency, systemic risk decreases. Attack surfaces shrink, coercion becomes less scalable, and systemic failures propagate less efficiently.

Accordingly, individual sovereignty produces collective resilience without central coordination. It emerges organically from distributed choices rather than imposed policies.

⮞ Transition to strategic outlook — These perspectives lead naturally to a broader horizon. The next section projects strategic trajectories for individual digital sovereignty toward 2030.

Strategic Outlook — Horizon 2030

This strategic outlook projects the evolution of individual digital sovereignty toward 2030. It identifies emerging technical, legal, and cognitive trajectories that are likely to redefine autonomy, trust, and governance in digital environments.

Toward embedded and sovereign intelligence

By 2030, the convergence of local cryptography, embedded intelligence, and offline-first architectures is expected to accelerate. As a result, individuals will increasingly rely on autonomous systems capable of reasoning, protecting secrets, and enforcing constraints without external infrastructure.

Consequently, sovereignty will shift closer to the edge. Intelligence will no longer require permanent connectivity or centralized processing. Instead, individuals will deploy localized decision-making systems that operate within clearly defined boundaries. Thus, autonomy becomes scalable without becoming centralized.

From standards to operational criteria

At the same time, international standards bodies and regulatory frameworks will likely formalize new criteria for digital sovereignty. However, rather than focusing solely on compliance documentation, future standards may emphasize operational properties: absence of telemetry, local key custody, reversibility, and non-correlation.

Accordingly, certification may evolve from declarative audits to verifiable architectural constraints. Systems will demonstrate sovereignty through behavior rather than attestations. In this context, proof replaces promise.

Geopolitical pressure and individual resilience

Meanwhile, geopolitical fragmentation will intensify digital pressure. Competing jurisdictions, trade restrictions, and extraterritorial claims will increasingly target infrastructures and data flows. Therefore, individuals will face growing exposure through the services they depend on.

In response, sovereignty at the individual level will function as a resilience buffer. When individuals reduce dependency and traceability, geopolitical shocks lose reach. Thus, individual autonomy contributes directly to systemic stability.

Democracy measured by technical autonomy

Finally, democratic resilience may increasingly correlate with the technical sovereignty of citizens. States that enable self-custody, non-traceability, and identity dissociation strengthen civic trust. Conversely, systems that rely on pervasive monitoring and delegated trust erode legitimacy.

Therefore, sovereignty evolves into a measurable indicator of democratic health. The more individuals retain operational control, the more institutions reinforce their own stability.

⮞ Strategic perspective — By 2030, individual digital sovereignty will no longer represent an abstract ideal. Instead, it will emerge as a verifiable technical capability, grounded in design choices, architectural constraints, and the deliberate refusal of unnecessary delegation. The remaining challenge will not be feasibility, but adoption.

Perspectives — 2026 and Beyond

This section focuses on near-term trajectories for individual digital sovereignty. It identifies concrete technical, legal, and cognitive shifts likely to make sovereignty demonstrable and enforceable as early as 2026.

2026 as a turning point toward demonstrable sovereignty

By 2026, individual digital sovereignty is expected to cross a critical threshold. Rather than being asserted rhetorically, it will increasingly be demonstrated through design. Systems will no longer rely on declarations of trust or compliance labels alone. Instead, they will prove sovereignty by exhibiting operational properties such as local key custody, absence of telemetry, and functional autonomy.

As a result, individuals will no longer need to justify their autonomy. Architecture itself will serve as evidence. Consequently, sovereignty will transition from intention to capability.

Toward certification of non-traceability

In parallel, regulatory authorities and standards bodies may begin formalizing criteria for verifiable non-traceability. Rather than certifying processes or organizations, future frameworks could assess whether systems structurally prevent the production of exploitable data.

Accordingly, certification may evolve into a technical property rather than an administrative status. When systems generate no persistent traces, compliance becomes intrinsic. Thus, regulation aligns with architecture instead of compensating for it.

The individual as the primary trust anchor

Simultaneously, trust models are likely to invert. Instead of anchoring trust in centralized services or institutional guarantees, systems will increasingly rely on individuals as primary trust anchors. Self-custody of keys, contextual identities, and local decision-making will become baseline expectations rather than exceptions.

Therefore, institutions may shift their role. Rather than managing trust, they will validate architectures that eliminate the need for trust delegation. In this way, sovereignty becomes distributed without becoming fragmented.

States as guarantors, not custodians

Finally, states that embrace individual digital sovereignty will reposition themselves as guarantors rather than custodians. By enabling citizens to retain technical control, states strengthen democratic resilience and reduce systemic risk.

Conversely, systems that enforce dependency may face growing legitimacy challenges. As individuals become capable of proving autonomy, tolerance for imposed delegation will diminish.

⮞ Doctrinal perspective — By 2026, individual digital sovereignty will no longer be a theoretical ambition. It will function as a technically opposable norm, grounded in the capacity to delegate nothing essential, retain nothing unnecessary, and prove autonomy locally.

Doctrinal FAQ — Comparison and Positioning

From state-centric sovereignty to individual operational sovereignty

Most institutional publications addressing digital sovereignty — such as those issued by national policy platforms or governmental information portals — primarily focus on states, infrastructures, and strategic autonomy. In contrast, the Freemindtronic chronicle formalizes individual digital sovereignty as an operational condition. Rather than relying on institutional guarantees, it demonstrates sovereignty through design: non-traceability, local custody of master keys, and material proof, without dependence on contractual promises or centralized trust frameworks. As a result, sovereignty shifts from governance discourse to individual capability.

From analytical frameworks to exercised sovereignty

Academic research conducted by institutions such as political science schools, policy think tanks, and interdisciplinary journals generally analyzes tensions between states, platforms, and citizens. While these works provide valuable conceptual insight, they often remain descriptive. By contrast, the Freemindtronic chronicle operates at the operational level. It explains how individuals can exercise sovereignty directly, using concrete mechanisms grounded in local cryptographic control, absence of exploitable traces, and cognitive autonomy. Therefore, the doctrine complements academic analysis by translating theory into actionable constraints.

Bridging law, infrastructure, and individual capability

Technical research organizations focus primarily on infrastructures and systemic cybersecurity, while legal scholarship examines regulatory regimes and jurisprudence. However, these domains often remain disconnected at the individual level. The Freemindtronic doctrine explicitly bridges this gap. It unifies law, system architecture, and cognition by introducing the concept of compliance by absence: individuals remain compliant because no exploitable data is produced in the first place. Consequently, compliance becomes a property of design rather than an obligation of behavior.

Delegated sovereignty versus sovereignty without intermediaries

Many enterprise-oriented approaches promote a form of “hosting sovereignty” based on the selection of trusted service providers or jurisdictionally compliant clouds. Although these models may reduce certain risks, they remain inherently delegated. In contrast, the Freemindtronic doctrine advances a model of sovereignty without service providers. In this framework, keys, proof, and trust remain exclusively under individual control through self-custody. As a result, sovereignty no longer depends on vendor alignment or contractual enforcement.

Defining sovereignty as a demonstrable architectural property

Proof by design refers to the capacity of a system to demonstrate sovereignty solely through its architecture. It does not rely on declarations, audits, or certifications. Instead, it rests on verifiable properties: exclusive key self-custody, automatic data erasure, absence of third-party servers, ephemeral usage, and zero persistent traces. In this model, what matters is not what systems claim, but what they structurally cannot expose. Consequently, sovereignty becomes provable rather than declared — enforceable, reproducible, and measurable.

Comparative positioning within the international landscape

This question naturally arises when situating the Freemindtronic doctrine within broader intellectual ecosystems. The comparative analysis below contrasts institutional, academic, legal, and commercial approaches to digital sovereignty with the doctrine of proof by design. It highlights convergences, divergences, and structural breaks, showing how proof by design shifts the center of gravity of digital power from declaration to demonstration, and from law to architecture.

Tension between systemic marginality and strategic recognition

This question has been examined for over a decade. Proof by design — grounded in non-traceability, self-custody, and material demonstration — conflicts with dominant economic models based on SaaS, cloud dependency, telemetry, and data capture. Without institutional alignment, such approaches risk marginalization within standardization ecosystems. Therefore, adoption by states as a strategic sovereignty marker constitutes a decisive lever for legitimacy and enforceability.

Institutional acknowledgments of proof by design

Yes. Over the years, Freemindtronic technologies have received multiple institutional distinctions, including international innovation awards and cybersecurity recognitions. These acknowledgments explicitly validate the doctrine of proof by design, recognizing both its technical innovation and its doctrinal coherence. They demonstrate that individual sovereignty, when provable by design, can be assessed and validated by established cybersecurity ecosystems.

Doctrinal Glossary — Key Terms

Operational definition of individual digital sovereignty

By definition, individual digital sovereignty refers to the exclusive, effective, and measurable power of an individual over their secrets, data, and representations, without delegation or persistent traces. Consequently, it is exercised through local key control, the absence of third-party servers, and—above all—the ability to prove autonomy without structural dependency. This approach aligns with international research framing digital sovereignty as a capability rather than a policy declaration, notably articulated by the Weizenbaum Institute.

Non-traceability as a condition of demonstrable freedom

Within this framework, sovereign non-traceability constitutes an ethical and technical principle according to which freedom is demonstrated through the absence of exploitable data. Accordingly, it relies on architectures designed to produce no unnecessary traces: local keys, ephemeral usage, and zero telemetry. This position resonates with anglophone cybersecurity literature emphasizing data minimization as a structural safeguard rather than a compliance afterthought.

Cryptographic control without trusted third parties

More fundamentally, cryptographic sovereignty corresponds to the local control of master keys and their entire lifecycle—generation, usage, and revocation—without reliance on trusted third parties. As a result, it forms the technical foundation of individual autonomy and guarantees independence from external infrastructures. This requirement echoes positions expressed in Zero Trust research, including NIST SP 800-207, while extending them beyond delegated trust models.

Capacity to resist digital influence mechanisms

At the cognitive level, autonomy designates the capacity to resist influence mechanisms such as recommendations, dark patterns, and behavioral nudges, while understanding design intentions. Therefore, it enables individuals to make informed digital choices without implicit manipulation. This dimension connects with anglophone research on algorithmic influence and human-centered AI, including work discussed by the Weizenbaum Institute.

Compliance demonstrated through non-production of data

In this model, compliance does not result from declaration or documentation, but from a factual state: no exploitable data is produced. Consequently, this approach aligns with GDPR principles of minimization and proportionality, while also resonating with broader international privacy scholarship that frames absence of data as the strongest form of protection.

Absence of persistence as a probative guarantee

In addition, probative volatility refers to the property of a system that ensures no data or evidence persists beyond its local usage. Thus, individuals leave no durable footprint, even unintentionally. This concept addresses concerns raised in anglophone legal debates on data retention and retrospective exposure, particularly in the context of cross-border access regimes.

Structural separation of digital identities

Within this logic, identity dissociation refers to the capacity to separate technical, social, and legal identifiers within a system. As a result, it prevents cross-context correlation and protects structural anonymity. This principle aligns with privacy-by-design approaches discussed in international standards and academic literature on identity management.

Technical design ensuring autonomy and locality

Technically, a sovereign architecture is designed to guarantee autonomy, non-traceability, and local proof. For this reason, it excludes any systemic dependency on trusted third parties and relies on offline-first principles, segmentation, and locality. This architectural stance contrasts with most cloud-centric models discussed in international cybersecurity frameworks.

Material proof embedded in architecture

At the core of the Freemindtronic doctrine, proof by design asserts that a system proves its compliance, security, and sovereignty not through declaration, but through its operation. Accordingly, proof is not documentary but material: it resides in architecture, physical constraints, and measurable properties. This approach directly addresses critiques found in recent academic literature, such as Fratini (2024), regarding the declarative nature of most digital sovereignty frameworks.

A unified doctrine: law, technology, and cognition

Finally, the Freemindtronic doctrine constitutes a unified system integrating law, technology, and cognition, in which sovereignty is exercised through design. As such, it relies on offline devices, local keys, verifiable non-traceability, and compliance without promises. Within the international landscape, it positions individual sovereignty as an operational capability rather than an institutional abstraction.

What We Did Not Cover

This section explicitly delineates the scope of this chronicle. It clarifies which approaches, models, and narratives are intentionally excluded in order to preserve doctrinal coherence and analytical rigor.

So-called “sovereign cloud” solutions

First, this chronicle deliberately excludes cloud services marketed as “sovereign” when sovereignty relies primarily on contractual guarantees, certifications, or jurisdictional promises. While such models may reduce certain risks, they remain fundamentally dependent on trusted intermediaries. Consequently, they do not satisfy the requirement of non-delegable, provable individual sovereignty.

Certification-centric and compliance-only approaches

Second, this analysis does not focus on governance models that equate sovereignty with regulatory compliance alone. Although standards and certifications play a role in risk management, they do not, by themselves, confer sovereignty. When systems continue to generate exploitable traces or rely on third-party control, compliance remains declarative rather than operational.

Purely institutional or state-centric doctrines

Moreover, doctrines that frame digital sovereignty exclusively at the level of states or institutions fall outside the scope of this work. While collective sovereignty matters, it does not automatically translate into individual autonomy. This chronicle therefore prioritizes the individual as the primary locus of sovereignty, rather than treating citizens as indirect beneficiaries of institutional control.

Convenience-driven consumer solutions

In addition, mass-market solutions optimized primarily for convenience are not addressed. Systems that trade autonomy for usability often embed irreversible dependencies. As a result, they undermine the very conditions required for sovereignty. This work assumes that freedom may require conscious trade-offs rather than maximal comfort.

Opaque or fully delegated artificial intelligence

Finally, this chronicle does not engage with AI systems that operate as opaque, fully delegated decision-makers. Artificial intelligence that cannot be locally constrained, audited, or interrupted conflicts with the principles of sovereignty outlined here. Instead, the doctrine implicitly favors embedded, controllable, and interruptible intelligence aligned with human agency.

⮞ Strategic boundary — These exclusions do not weaken the doctrine. On the contrary, they define its operational perimeter. By refusing ambiguity, the doctrine preserves its capacity to remain verifiable, enforceable, and resistant to absorption by declarative or automated narratives.

Décret LECORNU n°2025-980 🏛️Souveraineté Numérique

Affiche conceptuelle du Décret Lecornu n°2025-980 illustrant la souveraineté numérique française et européenne, avec un faisceau de circuits reliant la carte de France au drapeau européen pour symboliser la conformité cryptographique Freemindtronic

Décret Lecornu n°2025-980 — mesure de conservation ciblée des métadonnées au nom de la sécurité nationale, ce texte redéfinit la frontière entre traçabilité légale et souveraineté numérique. Cette chronique expose la portée juridique et européenne, tout en montrant comment la doctrine Freemindtronic — via les technologies DataShielder NFC HSM, DataShielder HSM PGP et CryptPeer® — permet de rester hors champ d’application en supprimant toute traçabilité exploitable. Ainsi, la cryptologie souveraine offre, par conception, une conformité native. Le Résumé express ci-après en présente les implications techniques.

Résumé express — Décret LECORNU n°2025-980 : métadonnées et sécurité nationale

Ce premier résumé offre une lecture rapide du Décret LECORNU n°2025-980, texte fondateur de la doctrine de souveraineté numérique française et présente la portée technique et juridique de la réponse souveraine apportée par Freemindtronic.

⮞ En bref

Lecture rapide (≈ 4 minutes) : le décret Lecornu n° 2025-980 impose aux opérateurs numériques la conservation pendant un an des métadonnées de communication : identifiants, horodatages, protocole, durée, localisation et origine technique. Objectif : permettre aux autorités d’anticiper les menaces contre la sécurité nationale, sous contrôle du Premier ministre et de la CNCTR. Ce texte s’inscrit dans la continuité du Livre VIII du Code de la sécurité intérieure. Il ne s’applique pas aux dispositifs cryptographiques autonomes ni aux architectures hors ligne sans journalisation. Ainsi, les solutions DataShielder NFC HSM et DataShielder HSM PGP de Freemindtronic Andorra ne sont pas concernées : elles ne transmettent, n’hébergent ni ne conservent aucune donnée ou métadonnée.

⚙ Concept clé

Comment garantir la conformité sans être soumis à l’obligation ? En concevant des architectures offline : les dispositifs DataShielder chiffrent localement sur le terminal NFC, sans serveur, sans cloud et sans base de données. Aucune trace de communication n’existe, aucune conservation n’est possible. Le respect du RGPD, de la Directive NIS2 et du Règlement DORA est ainsi natif : la conformité découle de la non-collecte.

Interopérabilité

Compatibilité complète avec toutes infrastructures, sans dépendance réseau. Produits autorisés en France conformément au Texte officiel publié au Journal officiel sur les moyens de cryptologie, et au décret n° 2024-95 du 8 février 2024 relatif au contrôle des biens et technologies à double usage. Supervision assurée par l’ANSSI. Architecture souveraine : aucune donnée n’entre dans le périmètre du décret Lecornu.

Paramètres de lecture

Temps de lecture résumé express : ≈ 4 minutes

Temps de lecture résumé avancé : ≈ 9 minutes

Temps de lecture chronique complète : ≈ 32 minutes

Dernière mise à jour : 2025-10-21

Niveau de complexité : Expert / Cryptologie & Droit européen

Densité juridique : ≈ 82 %

Langues disponibles : FR · EN

Spécificité : Analyse souveraine — Décret Lecornu, CJUE, RGPD, doctrine cryptologique EviLink™ / CryptPeer®™

Ordre de lecture : Résumé → Cadre → Application → Doctrine → Souveraineté → Sources

Accessibilité : Optimisé lecteurs d’écran – ancres, tableaux et légendes inclus

Type éditorial : Chronique juridiqueCyberculture & Cryptologie souveraine

Niveau d’enjeu : 7.2 / 10 — portée nationale, européenne et technologique

À propos de l’auteur : Jacques Gascuel, inventeur et fondateur de Freemindtronic Andorra, expert en architectures de sécurité matérielle HSM, cryptologie hybride et souveraineté numérique.

Note éditoriale — Cette chronique sera mise à jour à mesure des réactions institutionnelles (CNIL, CNCTR, CJUE, CEDH) et de l’intégration du décret Lecornu dans la doctrine européenne de la non-traçabilité souveraine. Ce contenu est rédigé conformément à la Déclaration de transparence IA publiée par Freemindtronic Andorra — FM-AI-2025-11-SMD5

Illustration symbolique du Décret Lecornu n°2025-980 sur la souveraineté numérique, représentant une empreinte digitale formée de circuits électroniques bleus et rouges, métaphore de la traçabilité légale et de la cryptologie souveraine.
Empreinte numérique et souveraineté cryptographique — Décret Lecornu n°2025-980, 16 octobre 2025.

Résumé avancé — Décret Lecornu n° 2025-980 et la doctrine de traçabilité ciblée

Le décret n° 2025-980 du 15 octobre 2025, publié au Journal officiel du 16 octobre 2025, instaure une obligation de conservation temporaire des métadonnées liées aux communications électroniques (identifiants, horodatage, protocole, durée, localisation, origine technique) pendant douze mois. Il s’inscrit dans le prolongement du Code de la sécurité intérieure (Livre VIII – Techniques de renseignement) et relève du contrôle conjoint du Premier ministre, de la CNCTR et de la CNIL.

Ce mécanisme repose sur la clause d’exception de sécurité nationale reconnue par la CJUE (affaires C-511/18, C-512/18, C-746/18) et encadrée par la CEDH (affaires Big Brother Watch, Centrum för Rättvisa, Ekimdzhiev). Il est soumis au principe de proportionnalité (Cons. const., décision n° 2021-808 DC) : toute mesure doit être limitée dans le temps, motivée par une menace grave et actuelle, et soumise à contrôle indépendant. Ce texte, désormais référencé comme Décret Lecornu n°2025-980, constitue un jalon structurant dans l’architecture juridique de la souveraineté numérique française.

Champ d’application et exclusions

Sont concernés : les fournisseurs d’accès à Internet, opérateurs de communications électroniques, hébergeurs, plateformes numériques et services de messagerie ou de collaboration. Sont exclus : les dispositifs autonomes sans infrastructure d’hébergement, sans transmission ni conservation de données. Les solutions DataShielder NFC HSM et HSM PGP, produits de cryptologie locaux autorisés par le décret n° 2007-663 du 2 mai 2007 et placés sous supervision de l’ANSSI, ne génèrent aucune métadonnée, n’opèrent aucun serveur ni cloud, et ne relèvent donc pas du périmètre du décret Lecornu.

Compatibilité européenne et souveraineté cryptographique

La CJUE (arrêts Tele2 Sverige AB, Watson, Privacy International) et la CEDH exigent un cadre légal prévisible, des garanties de contrôle indépendant et des limites strictes de conservation. La CNIL rappelle que toute conservation préventive constitue un traitement soumis au RGPD (article 6), devant être proportionné et limité à la finalité définie. Les architectures DataShielder incarnent une résilience juridique native : elles ne traitent ni ne stockent de données personnelles, et leur conception respecte les principes du privacy by design (article 25 RGPD) — minimisation, cloisonnement, destruction immédiate.

Informations essentielles

  • Le décret Lecornu repose sur une logique de conservation encadrée, non sur une surveillance généralisée.
  • Les produits DataShielder NFC HSM et HSM PGP ne sont pas concernés, faute de traitement ou de transmission.
  •  La conformité RGPD/NIS2/DORA découle de la non-existence de la donnée en dehors du terminal local.
  •  La cryptologie souveraine reste la voie la plus robuste pour concilier sécurité nationale et respect de la vie privée.

2023 Articles Cyberculture Technologies

NRE Cost Optimization for Electronics: A Comprehensive Guide

2026 Awards Cyberculture Digital Security Distinction Excellence EviOTP NFC HSM Technology EviPass EviPass NFC HSM technology EviPass Technology finalists PassCypher PassCypher

Quantum-Resistant Passwordless Manager — PassCypher finalist, Intersec Awards 2026 (FIDO-free, RAM-only)

2025 Cyberculture Cybersecurity Digital Security EviLink

CryptPeer messagerie P2P WebRTC : appels directs chiffrés de bout en bout

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Cyberculture

NGOs Legal UN Recognition

2025 Cyberculture Legal information

French IT Liability Case: A Landmark in IT Accountability

2024 Articles Cyberculture Legal information

ANSSI Cryptography Authorization: Complete Declaration Guide

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Cyberculture DataShielder

Google Workspace Data Security: Legal Insights

2024 Articles Cyberculture legal Legal information News

End-to-End Messaging Encryption Regulation – A European Issue

Articles Contactless passwordless Cyberculture EviOTP NFC HSM Technology EviPass NFC HSM technology multi-factor authentication Passwordless MFA

How to choose the best multi-factor authentication method for your online security

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Articles Cyberculture EviPass Password

Human Limitations in Strong Passwords Creation

2023 Articles Cyberculture EviCypher NFC HSM News Technologies

Telegram and the Information War in Ukraine

Articles Cyberculture EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology

Communication Vulnerabilities 2023: Avoiding Cyber Threats

Articles Cyberculture NFC HSM technology Technical News

RSA Encryption: How the Marvin Attack Exposes a 25-Year-Old Flaw

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2023 Articles Cyberculture EviCore HSM OpenPGP Technology EviCore NFC HSM Browser Extension EviCore NFC HSM Technology Legal information Licences Freemindtronic

Unitary patent system: why some EU countries are not on board

2024 Crypto Currency Cryptocurrency Cyberculture Legal information

EU Sanctions Cryptocurrency Regulation: A Comprehensive Overview

2023 Articles Cyberculture Eco-friendly Electronics GreenTech Technologies

The first wood transistor for green electronics

2018 Articles Cyberculture Legal information News

Why does the Freemindtronic hardware wallet comply with the law?

Les billets affichés ci-dessus appartiennent à la même rubrique éditoriale Rubrique Cyberculture. Ils approfondissent les mutations juridiques, techniques et stratégiques liées à la souveraineté numérique. Cette sélection prolonge la réflexion initiée dans cette chronique autour du décret Lecornu n°2025-980 et des technologies de cryptologie souveraine développées par Freemindtronic.

Fiche synthétique — Décret Lecornu n° 2025-980 sur la conservation des métadonnées

Publié au Journal officiel du 16 octobre 2025 (texte intégral sur Légifrance), le décret n° 2025-980 du 15 octobre 2025 impose aux opérateurs numériques la conservation durant un an des métadonnées de communication : identifiants des interlocuteurs, protocoles, durées, localisation et origine technique.

Cette obligation, placée sous le contrôle du CNCTR et du Premier ministre, s’inscrit dans le Livre VIII du Code de la sécurité intérieure sur les techniques de renseignement.

Le décret ne s’applique ni aux dispositifs cryptographiques autonomes, ni aux systèmes hors ligne ne traitant ni n’hébergeant de communication.  C’est le cas des solutions DataShielder NFC HSM et DataShielder HSM PGP, outils de chiffrement local sans serveur, cloud ni base de données, conformes au RGPD, à la directive NIS2 et au règlement DORA.

Synthèse juridique

Élément Statut après publication
Texte Décret n° 2025-980 du 15 octobre 2025 : conservation d’un an des données de connexion par les opérateurs numériques, motivée par la menace grave et actuelle contre la sécurité nationale.
Champ Opérateurs de communications électroniques, hébergeurs, plateformes numériques et services de messagerie.
Finalité Prévention et anticipation des menaces à la sécurité nationale (article 1er).
Durée de conservation 12 mois maximum.
Autorité de supervision Premier ministre ; contrôle par la CNCTR.
Publication JORF n° 0242 du 16 octobre 2025 — texte n° 48 (Légifrance).
TL;DR — Le décret Lecornu 2025-980 impose la conservation d’un an des métadonnées par les opérateurs numériques. Les solutions cryptographiques autonomes DataShielder NFC HSM et HSM PGP en sont exclues, car elles ne traitent ni n’hébergent aucune donnée de communication.

Introduction — Décret LECORNU n°2025-980 et souveraineté numérique : dix ans de législation sur la traçabilité

Contexte juridique — Dix ans d’encadrement du renseignement et de la conservation ciblée

Le décret Lecornu n° 2025-980 s’inscrit dans la continuité d’un cadre législatif amorcé en 2015 et consolidé par plusieurs textes successifs :

Ce décret marque une stabilisation du cadre français du renseignement, en appliquant la jurisprudence européenne (CJUE – La Quadrature du Net) tout en réaffirmant la compétence du Premier ministre et le contrôle du CNCTR.

Note : le CNCTR publie chaque année un rapport d’activité sur la proportionnalité, la légalité et le contrôle des mesures de conservation, consultable sur cnctr.fr.

Frise chronologique — Évolution du cadre de conservation et de surveillance (2015 → 2025)

Cette chronologie met en perspective l’évolution du droit français et européen en matière de conservation des données de connexion et de métadonnées :

Lecture : chaque étape illustre la tension croissante entre exigences de sécurité nationale et protection des droits fondamentaux, sous arbitrage conjoint du Conseil constitutionnel, de la CJUE et de la CEDH.

Cette évolution progressive révèle combien le décret Lecornu souveraineté numérique s’inscrit dans une logique d’équilibre entre sécurité et autonomie des systèmes d’information. Ainsi, avant d’aborder les encadrés contextuels suivants, il importe d’examiner comment la traçabilité ciblée a évolué vers une véritable souveraineté cryptographique, où la conformité découle directement de la conception même des architectures.

Encadrés contextuels — Décret LECORNU n°2025-980 : de la traçabilité ciblée à la souveraineté cryptographique

Cette évolution progressive montre clairement que le Décret LECORNU n°2025-980 s’inscrit dans une dynamique d’équilibre entre sécurité nationale et autonomie cryptographique entre sécurité nationale et autonomie technique. Ainsi, en reliant la traçabilité juridique à la conception décentralisée des systèmes, il devient possible d’observer comment la traçabilité ciblée s’est transformée, au fil des réformes, en une souveraineté cryptographique fondée sur la conformité par conception.

Contexte politico-juridique

Depuis 2015, la France consolide un cadre de surveillance encadrée et contrôlée : création du CNCTR, décisions du Conseil constitutionnel et adaptation aux directives européennes. Le décret Lecornu 2025-980 s’inscrit dans cette lignée en rendant la conservation des métadonnées ciblée, limitée et supervisée.

Contexte technologique

L’évolution parallèle des technologies de chiffrement a ouvert la voie à une cryptologie souveraine : les HSM autonomes, le stockage local sécurisé et l’absence de journalisation forment un écosystème offline hors du champ des décrets de rétention. C’est le socle de la doctrine Freemindtronic : sécuriser sans surveiller.

Chronologie visuelle — Dix ans de droit de la traçabilité (2015 → 2025)

  • 2015 – Loi n° 2015-912 : légalisation des techniques de renseignement, création du CNCTR.
  • 2016 → 2018 – CJUE Tele2 Sverige / Watson : interdiction de la rétention généralisée.
  • 2021 – Décision n° 2021-808 DC : validation conditionnelle, exigence de proportionnalité.
  • 2022 – Directive NIS2 et Règlement DORA : résilience et sécurité opérationnelle européenne.
  • 2024 – Révision du Livre VIII du Code de la sécurité intérieure : intégration des principes européens.
  • 2025 – Décret Lecornu n° 2025-980 : conservation temporaire d’un an des métadonnées, sous contrôle CNCTR.

Lecture croisée — Sécurité nationale et souveraineté numérique selon le Décret LECORNU n°2025-980

Le décret Lecornu symbolise un point d’équilibre entre deux dynamiques :

      • La logique étatique : anticiper les menaces via une traçabilité temporaire, proportionnée et encadrée.
      • La logique souveraine : restaurer la confidentialité et l’autonomie des utilisateurs grâce à la cryptologie locale et décentralisée.

Ainsi, la traçabilité ciblée devient un instrument de sécurité publique légitime, tandis que les architectures autonomes offline (à l’image de DataShielder NFC HSM et DataShielder HSM PGP) permettent d’en préserver l’équilibre sans rentrer dans le champ de rétention légale.

Focus doctrinal sur le Décret LECORNU n°2025-980 — de la rétention à la résilience cryptographique

Entre 2015 et 2025, la France est passée d’un paradigme de rétention préventive à une résilience juridique et technique. Le décret Lecornu concentre l’analyse de proportionnalité, tandis que Freemindtronic illustre la solution inversée : éliminer la traçabilité par conception. Cette dualité dessine le futur de la souveraineté numérique européenne.

Synthèse — Lecture stratifiée des données

Niveau 1 : encadrement national (Décret Lecornu 2025-980).
Niveau 2 : supervision indépendante (CNCTR, Conseil d’État).
Niveau 3 : conformité européenne (CJUE, CEDH, RGPD, NIS2, DORA).
Niveau 4 : innovation souveraine (DataShielder – conformité par absence de donnée). Ce quadrillage doctrinal structure désormais la politique de traçabilité ciblée et de souveraineté cryptographique dans l’Union européenne.

Décret Lecornu souveraineté numérique : cadre juridique, sécurité nationale et libertés fondamentales

Publié au Journal officiel du 16 octobre 2025 (texte intégral – Légifrance), le décret n° 2025-980 du 15 octobre 2025 impose aux opérateurs numériques la conservation d’une année de certaines métadonnées de communication (identifiants, horodatage, durée, protocole, localisation, origine technique).

Cette mesure, motivée par la prévention des menaces contre la sécurité nationale, s’inscrit dans le prolongement du  Livre VIII du Code de la sécurité intérieure relatif aux techniques de renseignement. Elle relève du contrôle du Premier ministre et de la CNCTR (Commission nationale de contrôle des techniques de renseignement). Le décret Lecornu ne s’applique pas aux dispositifs autonomes, offline et non communicants — notamment les outils de cryptologie matérielle DataShielder NFC HSM, DataShielder HSM PGP et CryptPeer®™ HSM PGP embarquant la technologie EviLink™ HSM PGP.

Ces solutions locales, sans serveur publique ni cloud, ne génèrent aucune métadonnée et opèrent dans un cadre conforme au Règlement (UE) 2016/679 (RGPD), à la Directive NIS2 (UE) 2022/2555 et au Règlement DORA (UE) 2022/2554.

TL;DR — Le décret Lecornu 2025-980 instaure une obligation de conservation des métadonnées par les opérateurs numériques. Les technologies cryptographiques locales comme DataShielder NFC HSM, DataShielder HSM PGP et CryptPeer®™ HSM PGP ne sont pas concernées, car elles ne traitent ni ne transmettent aucune donnée de communication.

Ainsi, pour comprendre pleinement la portée du décret Lecornu souveraineté numérique, il convient d’examiner son fondement juridique et la définition même d’un opérateur au sens du Code des postes et communications électroniques. Cette étape éclaire la distinction essentielle entre les infrastructures communicantes et les dispositifs de cryptologie souveraine, autonomes par conception.

Encadré juridique — Définition d’un « opérateur de communications électroniques » (article L32 du CPCE)

L’article L32 du Code des postes et communications électroniques définit l’opérateur de communications électroniques comme toute personne physique ou morale « exploitant un réseau ou fournissant au public un service de communications électroniques ».Cette définition détermine directement le champ d’application du décret Lecornu n° 2025-980 :

  • Sont concernés : FAI, opérateurs télécoms, hébergeurs, plateformes et services d’intermédiation assurant un transport ou un stockage de données.
  • Sont exclus : les dispositifs de chiffrement autonomes et hors ligne ne fournissant aucun service de communication au public — tels que DataShielder NFC HSM, DataShielder HSM PGP ou CryptPeer®™ HSM PGP intégrant la technologie EviLink™ HSM PGP.

Analyse : Un dispositif de chiffrement local, auto-hébergeable et non interconnecté ne peut être qualifié d’« opérateur » au sens du L32 CPCE. Il relève du décret n° 2007-663 sur les moyens de cryptologie, et non du cadre des communications électroniques. Ainsi, le décret Lecornu ne lui est ni applicable, ni opposable.

Dans la continuité du décret Lecornu souveraineté numérique, la doctrine EviLink™ HSM PGP illustre la mise en œuvre concrète d’une cryptologie souveraine, fondée sur la décentralisation et la non-traçabilité. Ainsi, avant d’aborder les implications juridiques et techniques du décret, il importe de comprendre comment cette architecture segmentée réalise la conformité par conception tout en supprimant toute forme de stockage exploitable.

La technologie EviLink™ HSM PGP, embarquée au cœur du système CryptPeer®™ HSM PGP, met en œuvre un modèle inédit de chiffrement hybride décentralisé.
Elle associe des facteurs matériels, logiciels et contextuels pour créer une architecture souveraine : les clés sont segmentées, volatiles et impossibles à reconstituer dans un même espace mémoire.

Architecture et fonctionnement

  • Serveur décentralisé auto-hébergeable : chaque instance peut être déployée localement ou sur un relais distant privé, contrôlé exclusivement par l’utilisateur.
  • Connexion distante sécurisée : canaux TLS via Let’s Encrypt et/ou tunnel VPN. Chaque instance dispose d’un certificat unique généré dynamiquement.
  • Adresses IP dynamiques : attribution variable et non corrélable pour empêcher tout traçage persistant.
  • Volatilité post-transmission : suppression instantanée des messages et clés dérivées après lecture ; aucun log, cache ni fichier de session n’est conservé.

Chiffrement segmenté AES-256 dans le cadre du Décret LECORNU souveraineté numérique

EviLink™ HSM PGP repose sur un chiffrement AES-256 segmenté, où la clé de session est dérivée par concaténation de plusieurs segments indépendants. Chaque paire de clés segmentées est autonome et d’une longueur minimale de 256 bits, soit ≥ 512 bits avant dérivation.

Ligne typologique de dérivation
# Concaténation + dérivation vers 256 bits
SEED = localStorageKey || serveur || [facteurs_de_confiance_optionnels] || salt || nonce
AES256_KEY = HKDF-SHA512(SEED, info="EviLink-HSMPGP", len=32)

Légende : Cette ligne représente le processus de dérivation cryptographique typologique. Chaque segment est concaténé pour former un SEED, puis dérivé via HKDF-SHA512 dans un contexte nommé (“EviLink-HSMPGP”) pour produire une clé AES-256 de 32 octets.

  • localStorageKey : segment généré aléatoirement en mémoire et exportable sous forme chiffrée pour restauration ; réutilisable uniquement après déverrouillage par authentification forte et politique de confiance.
  • serveur : segment externe hébergé temporairement sur le relais EviLink™ (généré côté relais, stockage chiffré et effacement après session / TTL).
  • Optionnel — Facteurs de confiance : éléments contextuels (ex. BSSID, userPassphrase, empreintes de périphériques) ajoutés dynamiquement à la concaténation pour lier la clé à un contexte d’exécution réel.
  • salt / nonce : valeurs fraîches garantissant l’unicité des dérivations et la résistance à la réutilisation.
Sécurité des exports : les segments exportés sont toujours conservés sous coffre chiffré. Un segment de 256 ou 512 bits dérobé est inutilisable en l’état : il manque l’algorithme de concaténation, les paramètres de dérivation et les facteurs de confiance. L’attaquant ne peut pas reconstituer la AES256_KEY requise par AES-256-CBC/PGP sans la totalité des entrées et du procédé de dérivation.

Le résultat : un chiffrement ininterceptable, localement dérivé, et un système où les données côté expéditeur/destinataire restent surchiffrées. Même en cas de compromission d’un segment (serveur ou local), l’absence de l’algorithme de concaténation, des facteurs de confiance et des paramètres (salt/nonce) empêche tout déchiffrement.

Statut juridique et conformité

Cette architecture hybride satisfait pleinement les normes de sécurité sans entrer dans le champ du Décret n° 2025-980 :

  • Décret 2025-980 : inapplicable — aucune donnée ni métadonnée exploitable n’est stockée.
  • Décret 2007-663 : produit de cryptologie à double usage, déclarable à l’ANSSI.
  • RGPD (articles 5 & 25) : conformité native — minimisation et privacy by design.
  • CJUE & CEDH : respect des arrêts La Quadrature du Net et Big Brother Watch — proportionnalité et destruction immédiate.

Synthèse comparative

Élément Architecture EviLink™ HSM PGP / CryptPeer®™ Applicabilité Décret 2025-980
Stockage centralisé Non — auto-hébergement utilisateur Hors champ
Clés de chiffrement Segmentées, exportables sous coffre, réutilisables sous conditions Non exploitables isolément
Journalisation Absente — aucun log persistant Hors champ
Transport réseau TLS / VPN (Let’s Encrypt) Conforme RGPD / ANSSI
Effacement post-lecture Destruction instantanée du contenu Conforme CJUE / CEDH

Doctrine EviLink™ HSM PGP — Système d’authentification à clé segmentée breveté à l’international :

La conformité repose sur l’inexistence de tout stockage exploitable et sur la non-reconstructibilité cryptographique des clés sans reconstitution complète du contexte. En fragmentant la clé entre composants logiciels, matériels et cognitifs, puis en supprimant toute trace après usage, CryptPeer®™ HSM PGP incarne une messagerie souveraine hors du champ de toute obligation de rétention légale.
Ce modèle opérationnel incarne le principe de conformité par volatilité distribuée, fondement de la cryptologie hybride souveraine articulée entre composants logiciels, matériels et cognitifs. Il rend toute obligation de rétention inapplicable par conception.

Après avoir exposé les principes cryptologiques de la doctrine EviLink™ HSM PGP et sa logique de conformité par souveraineté décentralisée, il convient désormais d’examiner la manière dont le décret Lecornu souveraineté numérique encadre juridiquement ces approches. Cette transition du plan technique au plan normatif permet de comprendre comment la régulation française s’articule avec les exigences européennes de proportionnalité, de contrôle indépendant et de respect des droits fondamentaux.

Cadre juridique et européen du décret Lecornu souveraineté numérique — fondements, contrôle et doctrine

Le Décret n° 2025-980 du 15 octobre 2025 (Légifrance) prolonge la logique instaurée par la Loi n° 2015-912 relative au renseignement. Il autorise la conservation, pour une durée maximale d’un an, des métadonnées techniques (identifiants, protocoles, durées, localisation et origine des communications) lorsque subsiste une menace grave et actuelle à la sécurité nationale.

Ce dispositif, préventif et non intrusif sur le contenu des échanges, repose sur la distinction posée par le Conseil constitutionnel 2021-808 DC : le contenu demeure soumis à autorisation judiciaire, tandis que la collecte technique relève d’un contrôle administratif par le Premier ministre assisté du CNCTR.

2. Position européenne : CJUE et CEDH

La CJUE a confirmé l’interdiction de la rétention généralisée des données (Tele2 Sverige C-203/15, Privacy International C-623/17), mais admet une dérogation ciblée en cas de menace grave et actuelle (La Quadrature du Net C-511/18, SpaceNet C-746/18). Le décret Lecornu applique précisément cette exception en limitant la durée et en imposant un contrôle indépendant.

La CEDH (Big Brother Watch, Centrum för Rättvisa, Ekimdzhiev) impose des garanties : base légale prévisible, contrôle indépendant et destruction à échéance. Le décret 2025-980 répond à ces critères : base légale claire, durée limitée et supervision CNCTR.

3. Articulation RGPD / CNIL

Selon la CNIL, la conservation de métadonnées constitue un traitement de données personnelles soumis au RGPD.
Même lorsqu’elle repose sur l’exception de sécurité nationale (article 2 §2 a), la mesure doit respecter les principes de proportionnalité et minimisation. Les autorités responsables demeurent tenues d’assurer la sécurité du traitement (art. 32 RGPD) et d’en limiter l’accès aux seules finalités de défense nationale.

4. Tableau comparatif — Décret LECORNU n°2025-980 et droit européen

Cadre Exigence Position du décret 2025-980
Constitution française Proportionnalité, contrôle CNCTR ✓ Conforme (décision 2021-808 DC)
CJUE Pas de rétention généralisée ✓ Dérogation motivée par menace grave
CEDH Prévisibilité, contrôle indépendant ✓ Contrôle CNCTR + durée limitée
RGPD Minimisation, finalité, sécurité ~ Hors champ partiel (art. 2§2 a)
Directive NIS2 Résilience et cybersécurité ✓ Renforce la traçabilité ciblée

5. DataShielder : conformité par non-applicabilité

Les DataShielder NFC HSM et DataShielder HSM PGP, développés par Freemindtronic Andorra, fonctionnent entièrement hors ligne. Aucun serveur, cloud ou base de données n’est utilisé ; aucune métadonnée n’est générée ou conservée. Ces dispositifs sont donc hors du champ du décret 2025-980.

Ils appliquent nativement les principes du privacy by design et du data minimization (RGPD art. 25), et répondent aux cadres de résilience du NIS2 et du DORA.
Conformes au décret 2007-663 (cryptologie à double usage), ils sont autorisés par l’ANSSI.

Architecture centralisée        Architecture DataShielder offline
───────────────────────────      ────────────────────────────────
Serveur / Cloud requis           Aucun serveur ni cloud
Sessions identifiées (UUID)      Aucun identifiant persistant
Transmission réseau              Chiffrement local sur puce NFC
Logs techniques                  Aucune journalisation
Contrôle ex post (audit)         Non-applicabilité juridique

Leur design illustre la conformité par absence de donnée :
aucun log ni identifiant n’existe, donc aucune obligation de conservation n’est applicable.

6. Perspective — vers une souveraineté numérique équilibrée

Le décret Lecornu 2025-980 traduit un tournant : il institutionnalise une traçabilité ciblée et temporaire, sous contrôle indépendant. Face à l’extension de la surveillance globale, les solutions cryptographiques autonomes comme DataShielder ouvrent une voie de résilience juridique et technique fondée sur la non-existence de la donnée.

Strategic Outlook — Une doctrine européenne de la non-traçabilité

Le décret Lecornu n° 2025-980 consacre la traçabilité encadrée plutôt que généralisée. Les architectures cryptographiques autonomes offrent un modèle juridiquement sain pour protéger à la fois la sécurité de l’État et la vie privée numérique. Une doctrine européenne de la non-traçabilité pourrait bientôt devenir le nouveau standard de souveraineté numérique.

Au terme de cette analyse doctrinale, le décret Lecornu souveraineté numérique apparaît comme un instrument d’équilibre entre sécurité nationale et respect du droit européen. Toutefois, son interprétation et sa portée effective dépendent désormais des institutions chargées de son contrôle et de sa mise en œuvre. C’est dans cette perspective que s’inscrit la veille institutionnelle, destinée à observer les réactions des autorités, des juridictions et des acteurs de la société civile face à ce nouveau cadre de conservation ciblée.

À l’issue de l’examen juridique du décret Lecornu souveraineté numérique, l’attention se porte désormais sur sa réception institutionnelle et sa mise en œuvre pratique. Cette phase de veille vise à mesurer comment les autorités nationales et européennes interprètent l’équilibre entre sécurité publique et respect des droits fondamentaux.

Réactions et veille institutionnelle autour du Décret LECORNU n°2025-980 sur la souveraineté numérique

Absence de réaction officielle, mais vigilance associative

À la date du 20 octobre 2025, aucune réaction officielle n’a encore été publiée par la CNIL, la CNCTR ou le Conseil constitutionnel concernant le décret n° 2025-980. Cependant, plusieurs acteurs institutionnels et ONG spécialisées en protection des données — notamment La Quadrature du Net et Privacy International — ont exprimé dans leurs communiqués antérieurs leur opposition de principe à toute conservation généralisée des métadonnées, invoquant les arrêts CJUE Tele2 Sverige et La Quadrature du Net.

Anticipation doctrinale et surveillance européenne

Du côté européen, ni le European Data Protection Board (EDPB) ni la Commission européenne n’ont encore commenté ce texte. Néanmoins, la question de sa compatibilité avec la Charte des droits fondamentaux de l’Union européenne devrait logiquement émerger lors de prochains échanges entre la France et la Commission.

En France, des juristes et chercheurs en droit numérique — Université Paris-Panthéon-Assas, Institut Montaigne et Observatoire de la souveraineté numérique — analysent déjà le décret comme une mesure transitoire avant encadrement européen, dont la portée effective dépendra des futurs contrôles de proportionnalité du Conseil d’État.

En synthèse : le décret Lecornu souveraineté numérique n’a pas encore suscité de contestations officielles, mais il est probable qu’il devienne prochainement un cas test devant la CJUE ou la CEDH, à l’instar des lois de renseignement de 2015 et 2021. Freemindtronic Andorra assure une veille continue sur les publications de la CNIL, de la CNCTR et des juridictions européennes afin d’anticiper toute évolution doctrinale.

Si la veille institutionnelle permet d’évaluer la première réception du décret Lecornu souveraineté numérique, l’analyse doctrinale révèle désormais les zones d’incertitude qui entourent son application. Entre interprétation juridique, contraintes techniques et souveraineté numérique européenne, plusieurs points demeurent ouverts et nécessitent une lecture approfondie pour anticiper les ajustements futurs du cadre légal.

Après la première phase de veille institutionnelle, l’analyse doctrinale du décret Lecornu souveraineté numérique met en évidence plusieurs zones d’interprétation. Ces incertitudes, à la fois juridiques et techniques, structurent les débats autour de la portée réelle du texte et de son articulation avec le droit européen de la protection des données.

Zones d’interprétation, débats doctrinaux et veille autour du Décret LECORNU n°2025-980

Bien que le Décret LECORNU n°2025-980 établisse un cadre de conservation ciblée, certaines zones demeurent juridiquement et techniquement ouvertes. Elles concernent la portée exacte de la notion d’opérateur numérique, les limites de la proportionnalité, et l’articulation entre sécurité nationale et droits fondamentaux.

Zone 1 — Qualification d’« opérateur »

La définition du champ d’application reste floue : doit-elle inclure les services hybrides (hébergement collaboratif, protocoles fédérés, clouds privés) ? Le Conseil d’État devra trancher en cas de contentieux, notamment pour les services auto-hébergés ou décentralisés.

Zone 2 — Proportionnalité temporelle

La durée uniforme d’un an pourrait être jugée excessive pour certains services. La CJUE (SpaceNet C-746/18) et La Quadrature du Net C-511/18 ont rappelé que la rétention doit être strictement limitée aux menaces graves et actuelles.

Zone 3 — Articulation RGPD / sécurité nationale

Bien que l’article 2 §2 (a) du RGPD exclue les activités étatiques, la CNIL plaide pour des garanties minimales de transparence et de contrôle. Le principe de garanties équivalentes reste à préciser au niveau européen.

Zone 4 — Transferts et extraterritorialité

La conservation de métadonnées sur des services hors UE (TikTok, Telegram, WeChat) soulève la question de la compétence territoriale et du contrôle effectif du CNCTR. Cette problématique pourrait être soumise à la CJUE ou à la CEDH dans les prochaines années.

Lecture doctrinale

La portée réelle du décret dépendra de sa mise en œuvre et des recours futurs. Les juristes du numérique évoquent déjà une possible « QPC 2026 » portant sur la durée unique de conservation et la compatibilité avec la Charte des droits fondamentaux de l’Union européenne. Le Conseil d’État jouera ici un rôle central dans la recherche d’un équilibre durable entre sécurité publique et vie privée numérique.

Veille institutionnelle — CNCTR, CNIL et juridictions européennes

À la date du 20 octobre 2025, aucune prise de position officielle n’a encore été publiée concernant le décret n° 2025-980. Cependant, plusieurs institutions et ONG préparent leurs analyses :

      • CNCTR : rapport annuel 2025 attendu (rubrique « Conservation des données »).
      • CNIL : avis à venir sur la proportionnalité et la sécurité des traitements associés.
      • CJUE / CEDH : possibles renvois préjudiciels sur l’interprétation de la notion de « menace grave et actuelle ».
      • ONG : La Quadrature du Net et Privacy International surveillent activement le champ d’application du décret.

Veille Freemindtronic

Freemindtronic Andorra assure une veille continue sur les publications de la CNCTR, de la CNIL et des juridictions européennes. Les dispositifs DataShielder NFC HSM, DataShielder HSM PGP et CryptPeer® HSM PGP demeurent hors du champ du décret : aucune donnée n’étant conservée, ils restent conformes par conception, indépendamment des futures évolutions réglementaires.

Ainsi, ces zones d’interprétation illustrent la complexité d’un équilibre encore mouvant entre sécurité nationale, conformité européenne et souveraineté technique. Dans ce contexte d’incertitude juridique, l’analyse suivante explore la portée opérationnelle du décret Lecornu souveraineté numérique et son impact concret sur les infrastructures, les messageries et les services numériques. Elle permet d’évaluer comment les obligations de conservation s’appliquent — ou non — aux différentes catégories d’acteurs, tout en montrant comment la souveraineté technique et la conformité par conception offrent une voie d’exemption naturelle pour les architectures décentralisées et offline.

Application concrète — Portée du décret Lecornu n° 2025-980 sur messageries, e-mails, plateformes (hébergeurs) et infrastructures

Le décret Lecornu n° 2025-980 impose un an de conservation de catégories de métadonnées par (i) les opérateurs de communications électroniques et (ii) les personnes visées à l’article 6 I (1°–2°) de la LCEN (fournisseurs d’accès et hébergeurs). L’applicabilité dépend de la nature du service, de l’architecture technique et de l’ancrage territorial.

Légende & périmètre juridique

Statut décret : 🟢 Non concerné · 🟠 Partiellement concerné · ✅ Soumis
Compat. RGPD/CJUE (éditorial) : 🛡️ Robuste · ⚠ Points d’attention · 🔴 Risque notable

« Soumis » vise strictement les opérateurs de communications électroniques et les acteurs LCEN art. 6 I (1°–2°) (FAI et hébergeurs). Le décret ne crée pas de nouvelles données ; il exige la conservation des catégories effectivement détenues, selon les listes applicables (CPCE R.10-13 V pour les opérateurs ; décret 2021-1362 pour les hébergeurs).

Matrice XL — Services & exposition juridique

Catégorie Service Rôle juridique Statut décret RGPD/CJUE E2E par défaut Siège (ISO) Drapeau siège Hébergement (ISO/régions) Drapeaux hébergement Métadonnées détenues (typiques) Notes
A – Messageries grand public Messenger (Facebook) Hébergeur Optionnel US 🇺🇸 US, IE/UE, CDN global 🇺🇸/🇮🇪/🇪🇺 Comptes/ID Transferts possibles (SCC)
A – Messageries grand public Messenger Kids Hébergeur Non US 🇺🇸 US, IE/UE 🇺🇸/🇮🇪/🇪🇺 Comptes/ID (gestion parent) Règles “child-directed”
A – Messageries grand public Instagram DM Hébergeur Optionnel US 🇺🇸 US, IE/UE 🇺🇸/🇮🇪/🇪🇺 ID/appareil/IP/horodatages Écosystème Meta
A – Messageries grand public Threads DMs Hébergeur 🟠 Optionnel US 🇺🇸 US, IE/UE 🇺🇸/🇮🇪/🇪🇺 ID/appareil/IP/horodatages Interop avec compte Instagram
A – Messageries grand public Snapchat Hébergeur Optionnel US 🇺🇸 Mix US/UE 🇺🇸/🇪🇺 ID/appareil/IP/horodatages Éphémère mais sauvegardes/journaux possibles
A – Messageries grand public WeChat Hébergeur 🟠 🔴 Non CN 🇨🇳 CN + global 🇨🇳/🌐 Compte/contacts/IP/horodatages Juridiction hors UE
A – Messageries grand public LINE Hébergeur 🟠 Optionnel JP 🇯🇵 JP/TW/TH + UE 🇯🇵/🇪🇺 ID/IP/horodatages DC régionaux selon marché
A – Messageries grand public Viber Hébergeur 🟠 Optionnel JP 🇯🇵 UE + global 🇪🇺/🌐 ID/IP/horodatages Groupe Rakuten
A – Messageries grand public KakaoTalk Hébergeur 🟠 Optionnel KR 🇰🇷 KR + global 🇰🇷/🌐 ID/IP/horodatages Contraintes régionales
A – Messageries grand public Threema Hébergeur 🟠 🛡️ Oui CH 🇨🇭 Focal CH/UE 🇪🇺/🇨🇭 Minimal (ID/horodatages) Privacy-by-design
A – Messageries grand public Wire (grand public) Hébergeur 🟠 🛡️ Oui CH 🇨🇭 UE (DE/IE) surtout 🇩🇪/🇮🇪 Minimal (ID/horodatages) E2E par défaut
A – Messageries grand public Wickr (grand public) Hébergeur 🟠 Oui US 🇺🇸 US/UE 🇺🇸/🇪🇺 Minimal (ID/horodatages) Service en évolution
A – Messageries grand public Telegram Hébergeur 🟠 🔴 Optionnel (Secret Chats) AE (ops) / VG 🇦🇪 UE + hors UE 🇪🇺/🌐 ID/contacts/IP/horodatages Hébergement hybride ; juridiction hors UE
A – Messageries grand public WhatsApp Hébergeur Oui (chats) US 🇺🇸 IE/UE + global 🇮🇪/🇪🇺/🌐 Compte/appareil/IP/horodatages DPA Meta / transferts
A – Messageries grand public Signal Hébergeur 🟠 🛡️ Oui US (org) / miroirs UE 🇺🇸 Mix UE/US (variable) 🇪🇺/🇺🇸 Minimal (ID techniques/horodatages) Exposition selon données détenues
A – Messageries grand public Olvid Hébergeur 🟠 🛡️ Oui FR 🇫🇷 FR/UE 🇫🇷/🇪🇺 Minimisation extrême Dépend des données de connexion sous contrôle
A – Messageries grand public iMessage Hébergeur Oui (messages) US 🇺🇸 US/UE (Apple + iCloud) 🇺🇸/🇪🇺 Apple ID/appareil/IP/horodatages Limites E2E avec sauvegardes
B – Messageries pro & collaboration Discord Hébergeur 🟠 Non (DM) US 🇺🇸 Mix US/UE 🇺🇸/🇪🇺 ID/serveurs/IP/horodatages Politiques de logs variables
B – Messageries pro & collaboration Skype Hébergeur 🟠 Optionnel US 🇺🇸 UE/US (Microsoft) 🇪🇺/🇺🇸 ID/métadonnées d’appel Héritage + écosystème Teams
B – Messageries pro & collaboration Zoom Chat Hébergeur Non (chat seul) US 🇺🇸 US/UE sélectionnable 🇺🇸/🇪🇺 ID/appareil/IP/horodatages DPA & options de routage régional
B – Messageries pro & collaboration Google Chat Hébergeur Non US 🇺🇸 UE/US (régions) 🇪🇺/🇺🇸 ID/appareil/IP/horodatages Google Workspace DPA
B – Messageries pro & collaboration Microsoft Teams Hébergeur Non US 🇺🇸 UE/US (M365) 🇪🇺/🇺🇸 ID/journaux locataire DPA UE ; options géo
B – Messageries pro & collaboration Slack Hébergeur 🔴 Non US 🇺🇸 US/UE (Enterprise Grid) 🇺🇸/🇪🇺 ID/journaux d’espace SCC ; transferts vers US
B – Messageries pro & collaboration Mattermost Hébergeur (par instance) 🟠 🛡️ Optionnel US 🇺🇸 Auto-hébergé (variable) 🏠 Défini par serveur/admin Exposition dépend de l’instance
B – Messageries pro & collaboration Rocket.Chat Hébergeur (par instance) 🟠 🛡️ Optionnel BR 🇧🇷 Auto-hébergé (variable) 🏠 Défini par serveur/admin Exposition dépend de l’instance
B – Messageries pro & collaboration Zulip Hébergeur (par instance) 🟠 🛡️ Optionnel US 🇺🇸 Auto-hébergé (variable) 🏠 Défini par serveur/admin Exposition dépend de l’instance
B – Messageries pro & collaboration Element One (Matrix) Hébergeur 🟠 🛡️ Optionnel UK 🇬🇧 UE/RU 🇪🇺/🇬🇧 Journaux/ID selon politique Dépend du homeserver
B – Messageries pro & collaboration Wire Pro (entreprise) Hébergeur 🟠 🛡️ Oui CH 🇨🇭 UE (DE/IE) 🇩🇪/🇮🇪 Minimal (ID/horodatages) Contrôles entreprise
B – Messageries pro & collaboration Wickr Gov Hébergeur 🟠 Oui US 🇺🇸 Clouds gouvernement US 🇺🇸 Minimal (ID/horodatages) Cible conformité secteur public
B – Messageries pro & collaboration Threema Work Hébergeur 🟠 🛡️ Oui CH 🇨🇭 UE/CH 🇪🇺/🇨🇭 Minimal (ID/horodatages) Variante entreprise
B – Messageries pro (texte-seul souverain) CryptPeer® Text (HSM PGP) Outil local / P2P 🟢 🛡️ N/A AD 🇦🇩 Local appareil 📱 Aucune donnée détenue par un hébergeur Hors périmètre en tant qu’outil ; couches réseau potentiellement soumises — HQ Andorre (🇦🇩)
B – Messageries pro (souverain) CryptPeer® HSM PGP Outil local / P2P 🟢 🛡️ N/A AD 🇦🇩 Local appareil 📱 Aucune donnée détenue par un hébergeur Chiffrement matériel hors-ligne — HQ Andorre (🇦🇩)
B – Messageries pro (souverain) em609™ (texte-seul) Outil local / P2P 🟢 🛡️ N/A AE (déploiement client) 🇦🇪 Local appareil 📱 Aucune donnée détenue par un hébergeur Développé par Freemindtronic pour une société basée à Dubaï
C – Services e-mail Gmail / Outlook Hébergeur 🔴 Non US 🇺🇸 Global/UE 🌐/🇪🇺 Indexation contenu + métadonnées Transferts hors UE
C – Services e-mail Tutanota / Proton Hébergeur 🟠 🛡️ Oui DE/CH 🇩🇪/🇨🇭 UE/CH 🇪🇺/🇨🇭 Minimisation Privacy-first
C – Services e-mail iCloud Mail Hébergeur Non US 🇺🇸 US/UE 🇺🇸/🇪🇺 Apple ID/IP/horodatages Garde-fous contractuels
C – Services e-mail Yahoo Mail Hébergeur 🔴 Non US 🇺🇸 US/UE 🇺🇸/🇪🇺 Indexation contenu + métadonnées Transferts vers US
C – Services e-mail Fastmail Hébergeur Non AU 🇦🇺 AU/UE 🇦🇺/🇪🇺 Métadonnées/journaux Orientation vie privée
C – Services e-mail Posteo Hébergeur 🟠 🛡️ Non DE 🇩🇪 DE/UE 🇩🇪/🇪🇺 Minimisation Privacy-first
C – Services e-mail Mailbox.org Hébergeur 🟠 🛡️ Non DE 🇩🇪 DE/UE 🇩🇪/🇪🇺 Minimisation Privacy-first
C – Services e-mail Hey by Basecamp Hébergeur Non US 🇺🇸 US/UE 🇺🇸/🇪🇺 Métadonnées/journaux Fournisseur US
C – Services e-mail Zoho Mail Hébergeur Non IN 🇮🇳 IN/UE/US 🇮🇳/🇪🇺/🇺🇸 Métadonnées/journaux Options DC UE
D – Infrastructures & transport FAI / Télécoms Opérateur réseau N/A Variable 🌐 National/UE 🇪🇺 Catégories trafic/localisation (CPCE R.10-13 V) Proportionnalité
D – Infrastructures & transport Clouds UE Hébergeur N/A UE 🇪🇺 Régions UE 🇪🇺 Journalisation + logs d’accès Articulation NIS2/DORA
D – Infrastructures & transport Opérateurs DNS / CDN Fournisseur d’acheminement 🟠 🔴 N/A Variable 🌐 Global 🌐 Risque de profilage systémique Dépendance à des tiers
A – Messageries grand public X (Twitter) DMs Hébergeur Non US 🇺🇸 Mix US/UE 🇺🇸/🇪🇺 ID/appareil/IP/horodatages Politiques en évolution
A – Messageries grand public TikTok DMs Hébergeur 🔴 Non CN 🇨🇳 Global incl. UE 🌐/🇪🇺 ID/appareil/IP/horodatages Noyau hors UE + risque de profilage
A – Messageries grand public Reddit Chat Hébergeur Non US 🇺🇸 US/UE 🇺🇸/🇪🇺 Compte/ID/IP/horodatages Plateforme communautaire
A – Messageries grand public Twitch Whispers Hébergeur Non US 🇺🇸 US/UE 🇺🇸/🇪🇺 Compte/ID/IP/horodatages Groupe Amazon
A – Messageries grand public Mastodon DMs Hébergeur (par instance) 🟠 🛡️ Optionnel Variable 🌐 Auto-hébergé (variable) 🏠 Défini par serveur/admin Fédéré ; dépend de l’instance
A – Messageries grand public Bluesky DMs Hébergeur 🟠 Non US 🇺🇸 US/UE 🇺🇸/🇪🇺 ID/appareil/IP/horodatages AT Protocol ; en évolution
A – Ouvert/décentralisé XMPP/Jabber (ejabberd/Prosody) Hébergeur (par serveur) 🟠 🛡️ Optionnel Variable 🌐 Auto-hébergé (variable) 🏠 Défini par serveur/admin Exposition par opérateur
A – Ouvert/décentralisé Réseaux IRC (Libera/OFTC) Hébergeur 🟠 Non Variable 🌐 Distribué 🌐 Logs limités selon réseau Politiques hétérogènes
A – Ouvert/décentralisé Delta Chat (IMAP/SMTP) Dépend de l’hébergeur mail 🟠 Optionnel Variable 🌐 Dépend de la boîte mail 🌐 Métadonnées de l’hébergeur mail Chat sur e-mail
A – Ouvert/décentralisé Briar P2P / Outil local 🟢 🛡️ Oui (via Tor) AT 🇦🇹 Local appareil 📱 Aucune donnée hébergeur Serverless/mesh/Tor
A – Ouvert/décentralisé Session Décentralisé (LLARP/Oxen) 🟠 Oui Variable 🌐 Nœuds de service distribués 🌐 Minimale/relai Juridictions mixtes
A – Ouvert/décentralisé Jami (ex-Ring) P2P / Outil local 🟢 🛡️ Oui CA/FR 🇨🇦/🇫🇷 Local appareil 📱 Aucune donnée hébergeur Serverless
A – Ouvert/décentralisé Tox P2P / Outil local 🟢 🛡️ Oui Variable 🌐 Local appareil 📱 Aucune donnée hébergeur DHT distribuée
A – Ouvert/décentralisé Ricochet P2P via oignon 🟢 🛡️ Oui Variable 🌐 Local appareil (Tor) 📱 Aucune donnée hébergeur Identifiants hidden-service
A – Ouvert/décentralisé SimpleX Chat P2P / relais 🟢/🟠 🛡️ Oui Variable 🌐 Relais privés (optionnel) 🌐 Relais : métadonnées minimales Paradigme serverless
F – Infra (annexe) Cloudflare (DNS/CDN/Workers) Routage/hébergement 🟠 🔴 N/A US 🇺🇸 Global 🌐 Risque de profilage systémique Dépendance à des tiers
F – Infra (annexe) Akamai CDN 🟠 🔴 N/A US 🇺🇸 Global 🌐 Risque de profilage systémique Dépendance à des tiers
F – Infra (annexe) Fastly CDN 🟠 🔴 N/A US 🇺🇸 Global 🌐 Risque de profilage systémique Dépendance à des tiers
F – Infra (annexe) DNS publics (1.1.1.1 / 8.8.8.8 / 9.9.9.9) Résolveur DNS 🟠 N/A Variable 🌐 Global 🌐 Politiques de logs variables Allégations de confidentialité diverses
F – Infra (annexe) Apple Push (APNs) Push/notifications 🟠 N/A US 🇺🇸 Global 🌐 Métadonnées de routage Écosystème appareil
F – Infra (annexe) Google FCM Push/notifications 🟠 N/A US 🇺🇸 Global 🌐 Métadonnées de routage Écosystème Android
Note de périmètre : Classification indicative selon l’instance, l’hébergement et les données effectivement détenues. Icônes : 🟢 Non concerné · 🟠 Partiellement concerné · ✅ Soumis | 🛡️ Robuste · ⚠ Points d’attention · 🔴 Risque notable. Dernière vérification : 2025-11-09 (CET).

E. Plateformes sociales — messageries intégrées

Service Type Statut décret Compat. RGPD/CJUE
LinkedIn Messages Plateforme sociale / Cloud ⚠ Transferts encadrés (DPA/SCC) ; métadonnées étendues
Facebook Messenger Plateforme sociale / Cloud 🔴 Profilage marketing, transferts extra-UE
Instagram Direct Plateforme sociale / Cloud 🔴 Données comportementales, transferts extra-UE
X (ex-Twitter) DM Plateforme sociale / Cloud 🔴 Hébergement/traitements hors UE, journalisation
TikTok Messages Plateforme sociale / Cloud 🔴 Gouvernance et transferts hors UE ; risques de profilage

Synthèse opérationnelle

1️⃣ Opérateurs de communications électroniques et acteurs LCEN art. 6 I (1°–2°) (FAI et hébergeurs) sont directement visés (rétention d’un an) — voir
décret 2025-980 et LCEN art. 6.

2️⃣ Plateformes sociales — messageries intégrées (LinkedIn Messages, Facebook Messenger, Instagram Direct, X DM, TikTok Messages) : directement visées (✅) en tant que services de communication au public en ligne avec hébergement et métadonnées sous contrôle de la plateforme (points d’attention RGPD : DPA/SCC, transferts extra-UE, profilage/marketing).

3️⃣ Les messageries chiffrées E2E ou très minimisantes (Signal, Olvid, Proton) présentent une exposition variable (🟠) selon l’ancrage territorial et les métadonnées effectivement détenues (pas d’obligation de créer des données).

4️⃣ Les outils/appareils souverains hors-ligne (DataShielder, CryptPeer® PGP, em609™) sont hors périmètre en tant qu’outils : aucune donnée, donc pas de conservation — toutefois, les couches réseau sous-jacentes restent soumises au décret.

5️⃣ Listes de données visées :
CPCE R.10-13 V (trafic & localisation — opérateurs) et décret 2021-1362 (données d’identification — hébergeurs).

6️⃣ Validation juridictionnelle du mécanisme d’« injonction » d’un an pour la sécurité nationale : Conseil d’État, 30 juin 2023.

Contexte international et comparatif du Décret LECORNU n°2025-980

Le décret Lecornu n° 2025-980 s’inscrit dans un mouvement global de réaffirmation de la souveraineté numérique et de maîtrise nationale des flux de données. Plusieurs États ont adopté des régimes similaires, cherchant un équilibre entre sécurité nationale, proportionnalité et protection de la vie privée. Leurs approches varient selon la structure constitutionnelle et les garanties juridictionnelles offertes.

  • 🇺🇸 États-UnisPatriot Act (2001), puis Freedom Act (2015) : conservation ciblée possible, sous contrôle de la Foreign Intelligence Surveillance Court (FISA Court). La collecte massive a été restreinte depuis 2015 après la décision USA Freedom Act.
  • 🇬🇧 Royaume-UniInvestigatory Powers Act (2016) : vaste cadre de conservation et d’accès, critiqué par la CEDH (arrêt Big Brother Watch, 2021) pour insuffisance des garanties de contrôle indépendant.
  • 🇩🇪 AllemagneBundesdatenschutzgesetz : cadre de conservation très restreint, invalidé partiellement par la CJUE dans l’affaire SpaceNet C-793/19 pour non-respect de la limitation temporelle et du ciblage géographique.
  • 🇪🇸 EspagneLey Orgánica 7/2021 sur la protection des données traitées à des fins de prévention, détection, enquête et poursuite des infractions : conservation temporaire permise, sous supervision du Consejo de Transparencia y Protección de Datos.
  • 🇵🇱 PolognePrawo telekomunikacyjne (Loi sur les télécommunications) : conservation obligatoire de 12 mois, critiquée par la CJUE (affaire C-140/20) pour absence de contrôle judiciaire préalable.
  • 🇨🇦 CanadaCommunications Security Establishment Act (2019) : autorise la collecte et la conservation ciblée, avec supervision du National Security and Intelligence Review Agency (NSIRA).
  • 🇦🇺 AustralieTelecommunications and Other Legislation Amendment (Assistance and Access) Act (2018) : impose aux opérateurs des obligations d’accès technique sans conservation généralisée, sous réserve d’ordre judiciaire spécifique.
  • 🇰🇷 Corée du SudCommunications Secrets Protection Act : permet la rétention des métadonnées pendant un an, mais uniquement pour les affaires de sécurité nationale ou de cybercriminalité grave, avec contrôle de la Personal Information Protection Commission (PIPC).

Durée / Contrôle indépendant

  • États-Unis : 6 mois / contrôle FISA Court
  • Royaume-Uni : 12 mois / Investigatory Powers Commissioner
  • Allemagne : 10 semaines / contrôle Bundesnetzagentur
  • Espagne : 12 mois / contentieux CJUE 2024
  • Pologne : 12 mois / contrôle constitutionnel en cours (CJUE 2025)
  • France : 12 mois / CNCTR + Conseil d’État

Référence complémentaire

La Résolution 2319 (2024) du Conseil de l’Europe sur la surveillance algorithmique et la protection des droits fondamentaux appelle les États membres à encadrer juridiquement toute conservation de données permettant une analyse comportementale automatisée. Ce texte prolonge la jurisprudence de la CEDH en insistant sur la transparence des algorithmes d’analyse et la limitation des durées de rétention.

Lecture comparée :

La France se situe dans un modèle intermédiaire entre les régimes anglo-saxons de conservation large (États-Unis, Royaume-Uni) et les cadres européens de proportionnalité stricte (Allemagne, Espagne). Le décret Lecornu 2025-980 applique la clause de menace grave et actuelle définie par la CJUE, tout en maintenant un contrôle administratif renforcé via la CNCTR et un contrôle juridictionnel par le Conseil d’État.

Les architectures cryptographiques autonomes telles que DataShielder NFC HSM et DataShielder HSM PGP constituent une alternative universelle : elles neutralisent la question de la conservation en éliminant toute production ou journalisation de métadonnées.
Cette approche de conformité par absence de donnée est compatible avec l’ensemble des ordres juridiques démocratiques, et peut servir de modèle de résilience face aux exigences de traçabilité imposées par les États.

Comparatif international — Organisations et jurisprudences convergentes

Plusieurs organisations à travers le monde ont obtenu des résultats juridiques comparables à ceux de La Quadrature du Net, notamment en matière de protection des données personnelles, de limitation de la surveillance de masse, et d’encadrement légal de la conservation des métadonnées.
Ces jurisprudences convergentes confirment que les technologies souveraines comme celles développées par Freemindtronic s’inscrivent dans une dynamique internationale de conformité par conception.

Organisations ayant obtenu des résultats juridiques similaires

Organisation Pays Résultat juridique notable
Privacy International Royaume-Uni Décision de la CEDH en 2021 contre la surveillance de masse par le GCHQ dans l’affaire Big Brother Watch et autres.
CEDH – Big Brother Watch v. UK
Renforce le principe de proportionnalité dans la collecte de données à des fins de renseignement.
Electronic Frontier Foundation (EFF) États-Unis A contribué à l’invalidation de dispositions du Patriot Act et à la jurisprudence sur la collecte de données sans mandat.
EFF – NSA Spying & Patriot Act
Milite pour le chiffrement de bout en bout et la transparence des programmes de surveillance.
Digital Rights Ireland Irlande Affaire C-293/12 devant la CJUE, ayant invalidé la Directive sur la conservation des données (2006/24/CE).
CJUE – C-293/12 Digital Rights Ireland
Fondatrice du principe de “conformité par absence de donnée”.
NOYB – European Center for Digital Rights Autriche À l’origine des arrêts Schrems I et Schrems II, invalidant les accords Safe Harbor et Privacy Shield.
NOYB – Schrems II & Privacy Shield
Défend la souveraineté européenne des données face aux transferts transatlantiques.
Bits of Freedom Pays-Bas Recours constitutionnels contre la loi néerlandaise sur la surveillance et la conservation des données.
Bits of Freedom – Mass Surveillance Cases
Milite pour des technologies non traçantes et un contrôle citoyen des infrastructures numériques.
Access Now International Plaidoyer devant l’ONU et la CEDH pour la reconnaissance du chiffrement comme droit fondamental.
Access Now – Why Encryption Matters
Intervient dans les débats sur la surveillance biométrique et les lois anti-chiffrement.
Fundación Datos Protegidos Chili Décisions constitutionnelles contre la surveillance illégale et la collecte de données sans consentement.
Fundación Datos Protegidos – Site officiel
Active dans la réforme de la loi chilienne sur la cybersécurité.
Panoptykon Foundation Pologne Recours contre les systèmes de scoring social et la surveillance algorithmique.
Panoptykon Foundation – Surveillance & AI
Influence les débats européens sur l’AI Act et les droits numériques.
APC – Association for Progressive Communications Afr. du Sud / Global South Recours devant la Commission africaine des droits de l’homme contre la surveillance numérique non encadrée.
APC – African Commission Resolution
Défend les droits numériques dans les pays du Sud global.
Frënn vun der Ënn Luxembourg Décision du Conseil d’État limitant la rétention des données de connexion dans les services publics.
Frënn vun der Ënn – Site officiel
Milite pour la transparence administrative et la protection des données.

Enjeux communs à ces organisations

  • Contestation de la surveillance généralisée et de la collecte indifférenciée.
  • Défense du chiffrement de bout en bout et des technologies non traçantes.
  • Promotion de la souveraineté numérique et du contrôle individuel des données.
  • Recours stratégiques devant la CJUE, la CEDH ou les cours constitutionnelles nationales.
Lecture parallèle : le Décret Lecornu n° 2025-980 s’inscrit dans un cadre global où la protection des métadonnées devient un champ de tension entre impératifs de sécurité et droit à la vie privée.
Les dispositifs souverains comme CryptPeer®™ HSM PGP et DataShielder™ illustrent une réponse technique conforme à ces exigences internationales. Analyse complète du décret Lecornu

Ce que cette chronique ne traite pas — périmètre et exclusions du décret Lecornu souveraineté numérique

Afin de préserver la rigueur analytique et d’éviter toute confusion, les éléments suivants sont volontairement exclus de la présente chronique. Le décret Lecornu souveraineté numérique y est abordé sous l’angle de la conservation des métadonnées, sans extension à d’autres domaines techniques, judiciaires ou opérationnels.

  • Contenu des communications (écoutes, interceptions légales) — le décret concerne exclusivement la conservation de métadonnées, non l’accès au contenu des échanges.
  • Procédures pénales (perquisitions, saisies numériques, enquêtes judiciaires) — en dehors du champ de compétence du texte analysé.
  • Régimes sectoriels spécialisés (santé, finance, défense, ePrivacy, open data) — uniquement évoqués lorsqu’ils croisent les cadres RGPD, NIS2 ou DORA.
  • Détails techniques d’implémentation (formats de logs, protocoles d’accès, API opérateurs) — non développés pour garantir la neutralité réglementaire.
  • Pratiques internes des plateformes et messageries (WhatsApp, Signal, Telegram, etc.) — mentionnées à titre comparatif, sans évaluation de conformité.
  • Affaiblissements cryptographiques, backdoors ou vecteurs offensifs — exclus pour des raisons éthiques, légales et de souveraineté technique.
  • Conseil juridique individuel, audit RGPD ou accompagnement conformité — non fournis ; la présente analyse ne constitue ni avis juridique, ni service d’expertise.
  • Contrôles export (licences de cryptologie, régimes ITAR, EAR) — cités uniquement par référence réglementaire.
  • Tutoriels produits (installation, configuration, performances des solutions DataShielder) — délibérément exclus pour préserver la neutralité éditoriale et la conformité éthique.
Note de portée — Ce billet se limite à l’analyse de la qualification juridique de la conservation des métadonnées au titre du décret n° 2025-980. Il expose comment et pourquoi les architectures cryptographiques offline — telles que DataShielder NFC HSM et HSM PGP — se situent hors du périmètre d’application, en vertu de leur conception déconnectée et non traçante.

Glossaire souverain — termes liés au Décret LECORNU n°2025-980 et à la cryptologie souveraine

  • ANSSI — Agence nationale de la sécurité des systèmes d’information : autorité française chargée de la certification et de la conformité des produits de cryptologie.
    https://www.ssi.gouv.fr
  • CNCTR — Commission nationale de contrôle des techniques de renseignement : autorité indépendante chargée de la supervision du renseignement en France.
    https://www.cnctr.fr
  • CNIL — Commission nationale de l’informatique et des libertés : autorité de protection des données personnelles.
    https://www.cnil.fr
  • CJUE — Cour de justice de l’Union européenne : juridiction suprême de l’UE garantissant le respect du droit européen.
    https://curia.europa.eu
  • CEDH — Cour européenne des droits de l’homme : contrôle la conformité des législations nationales avec la Convention européenne des droits de l’homme.
    https://www.echr.coe.int
  • RGPD — Règlement général sur la protection des données (UE 2016/679) : cadre européen de référence sur la protection des données personnelles.
    Texte officiel RGPD
  • NIS2 — Directive européenne 2022/2555 : renforce la cybersécurité des opérateurs essentiels et infrastructures critiques.
    Texte officiel NIS2
  • DORA — Règlement européen 2022/2554 : cadre de résilience opérationnelle numérique du secteur financier.
    Texte officiel DORA
  • HSM — Hardware Security Module : dispositif matériel de sécurisation cryptographique isolant les clés de tout environnement logiciel.
  • NFC HSM — Module HSM autonome utilisant la technologie sans contact ISO 15693/14443 pour le chiffrement matériel local.
  • Privacy by design — Principe du RGPD selon lequel la confidentialité doit être intégrée dès la conception d’un produit ou service.
  • Conformité par absence de donnée — Doctrine Freemindtronic : concept de souveraineté numérique consistant à garantir la conformité légale par non-existence du secret stocké.

FAQ express — Décret LECORNU n°2025-980 : métadonnées et cryptologie souveraine

Un cadre légal en évolution constante

Depuis 2015, la France renforce progressivement un cadre de surveillance encadrée et contrôlée. D’abord par la création du CNCTR, ensuite par les décisions du Conseil constitutionnel, et enfin par l’adaptation aux directives européennes. C’est dans cette dynamique que le décret Lecornu souveraineté numérique s’inscrit, en imposant une conservation ciblée, limitée et supervisée des métadonnées.

Vers une cryptologie souveraine déconnectée

Parallèlement, l’évolution des technologies de chiffrement a permis l’émergence d’une cryptologie souveraine. Grâce aux HSM autonomes, au stockage local sécurisé et à l’absence de journalisation, un écosystème offline s’est formé. Celui-ci reste, par conception, hors du champ d’application du décret Lecornu souveraineté numérique. C’est précisément le socle de la doctrine Freemindtronic : sécuriser sans surveiller.

Jalons réglementaires et inflexions européennes

    • 2015 – Loi n° 2015-912 : légalisation des techniques de renseignement, création du CNCTR.
    • 2016 → 2018 – CJUE Tele2 Sverige / Watson : interdiction de la rétention généralisée.
    • 2021 – Décision n° 2021-808 DC : validation conditionnelle, exigence de proportionnalité. Source officielle
    • 2022 – Directive NIS2 et Règlement DORA : résilience et sécurité opérationnelle européenne.
    • 2024 – Révision du Livre VIII du Code de la sécurité intérieure : intégration des principes européens.
    • 2025 – Décret Lecornu n° 2025-980 : conservation temporaire d’un an des métadonnées, sous contrôle CNCTR.Texte officiel

Deux logiques, un point d’équilibre

Le décret Lecornu souveraineté numérique incarne un point d’équilibre entre deux dynamiques :

  • La logique étatique : anticiper les menaces via une traçabilité temporaire, proportionnée et encadrée.
  • La logique souveraine : restaurer la confidentialité et l’autonomie des utilisateurs grâce à la cryptologie locale et décentralisée.

Ainsi, la traçabilité ciblée devient un instrument de sécurité publique légitime. Toutefois, les architectures autonomes offline (à l’image de DataShielder NFC HSM et DataShielder HSM PGP) permettent d’en préserver l’équilibre sans entrer dans le champ de rétention légale.

Une inversion stratégique du paradigme

Entre 2015 et 2025, la France est passée d’un paradigme de rétention préventive à une résilience juridique et technique. Tandis que le décret Lecornu souveraineté numérique concentre l’analyse de proportionnalité, Freemindtronic illustre une solution inverse : éliminer la traçabilité par conception. Cette dualité dessine, en conséquence, le futur de la souveraineté numérique européenne.

Un quadrillage doctrinal à quatre niveaux

Niveau 1 : encadrement national (Décret Lecornu 2025-980).
Niveau 2 : supervision indépendante (CNCTR, Conseil d’État).
Niveau 3 : conformité européenne (CJUE, CEDH, RGPD, NIS2, DORA).
Niveau 4 : innovation souveraine (DataShielder – conformité par absence de donnée).
Ce quadrillage doctrinal structure désormais la politique de traçabilité ciblée et de souveraineté cryptographique dans l’Union européenne.

Portée technique du décret

Non. Les communications P2P auto-hébergées, sans serveur tiers ni infrastructure centralisée, ne génèrent pas de métadonnées exploitables par les opérateurs. Elles échappent donc au périmètre d’application du décret Lecornu souveraineté numérique.

Fragmentation et non-reconstructibilité

Non. Les technologies à clé segmentée, comme celles de Freemindtronic, reposent sur une dissociation entre éléments matériels, logiciels et cognitifs. Cette architecture rend la clé non-reconstructible sans le contexte complet, ce qui exclut toute conservation légale ou technique.

Compatibilité avec le droit européen

Oui, partiellement. Bien que le décret respecte les exigences de proportionnalité, il est surveillé par la CJUE et la CEDH pour garantir qu’il ne constitue pas une rétention généralisée.

Auditabilité sans exposition

Les entreprises peuvent documenter leur architecture technique (absence de journalisation, auto-hébergement, fragmentation des clés) via des schémas typologiques. Ces preuves permettent de démontrer la non-applicabilité du décret sans divulguer de données sensibles.

Contrôle réglementaire ANSSI

Les technologies de cryptologie souveraine relèvent du régime de contrôle des biens à double usage. Elles doivent être déclarées à l’ANSSI, mais ne sont pas soumises à la rétention si elles ne génèrent pas de métadonnées exploitables. Source officielle ANSSI

Définition réglementaire

Selon la CNCTR, une technique de renseignement est un moyen de surveillance permettant, en portant atteinte à la vie privée, d’obtenir à l’insu de la personne des renseignements la concernant. Source officielle CNCTR

Bibliothèque juridique de référence — Décret Lecornu n° 2025-980

Ce corpus documentaire rassemble l’ensemble des textes légaux, décisions et sources officielles citées dans cette chronique, afin de garantir la traçabilité et la vérifiabilité des informations présentées.

🇫🇷 Cadre juridique national — France

🇪🇺 Cadre juridique européen — Union européenne

🇪🇺 Jurisprudence et doctrine européenne — CEDH

Produits et conformité — Cryptologie et souveraineté

Documentation complémentaire

En définitive, le décret Lecornu souveraineté numérique illustre la convergence entre conformité légale et autonomie cryptographique.
Par leur conception déconnectée et sans journalisation, les architectures DataShielder et CryptPeer®™ HSM PGP incarnent une véritable conformité par conception, où la sécurité découle non de la contrainte, mais de la non-traçabilité souveraine elle-même. Ce modèle, fondé sur la doctrine Freemindtronic, préfigure une Europe de la cryptologie souveraine — respectueuse du droit, indépendante des infrastructures et protectrice des libertés numériques.

WebAuthn API Hijacking: A CISO’s Guide to Nullifying Passkey Phishing

Movie poster-style image of a cracked passkey and fishing hook. Main title: 'WebAuthn API Hijacking', with secondary phrases: 'Passkeys Vulnerability', 'DEF CON 33', and 'Why PassCypher Is Not Vulnerable'. Relevant for cybersecurity in Andorra.

WebAuthn API Hijacking: A critical vulnerability, unveiled at DEF CON 33, demonstrates that synced passkeys can be phished in real time. Indeed, Allthenticate proved that a spoofable authentication prompt can hijack a live WebAuthn session.

Executive Summary — The WebAuthn API Hijacking Flaw

▸ Key Takeaway — WebAuthn API Hijacking

We provide a dense summary (≈ 1 min) for decision-makers and CISOs. For a complete technical analysis (≈ 13 min), however, you should read the full article.

Imagine an authentication method lauded as phishing-resistant — namely, synced passkeys — and then exploited live at DEF CON 33 (August 8–11, 2025, Las Vegas). So what was the vulnerability? It was a WebAuthn API Hijacking flaw (an interception attack on the authentication flow), which allowed for passkeys real-time prompt spoofing.

This single demonstration, in fact, directly challenges the proclaimed security of cloud-synced passkeys and opens the debate on sovereign alternatives. We saw two key research findings emerge at the event: first, real-time prompt spoofing (a WebAuthn interception attack), and second, DOM extension clickjacking. Notably, this article focuses exclusively on prompt spoofing because it undeniably undermines the “phishing-resistant” promise for vulnerable synced passkeys.

▸ Summary

The weak link is no longer cryptography; instead, it is the visual trigger. In short, attackers compromise the interface, not the cryptographic key.

Strategic Insight This demonstration, therefore, exposes a historical flaw: attackers can perfectly abuse an authentication method called “phishing-resistant” if they can spoof and exploit the prompt at the right moment.

Chronique à lire
Article to Read
Estimated reading time: ≈ 13 minutes (+4–5 min if you watch the embedded videos)
Complexity level: Advanced / Expert
Available languages: CAT · EN · ES · FR
Accessibility: Optimized for screen readers
Type: Strategic Article
Author: Jacques Gascuel, inventor and founder of Freemindtronic®, designs and patents sovereign hardware security systems for data protection, cryptographic sovereignty, and secure communications. As an expert in ANSSI, NIS2, GDPR, and SecNumCloud compliance, he develops by-design architectures capable of countering hybrid threats and ensuring 100% sovereign cybersecurity.

Official Sources

TL; DR

  • At DEF CON 33 (August 8–11, 2025), Allthenticate researchers demonstrated a WebAuthn API Hijacking path: attackers can hijack so-called “phishing-resistant” passkeys via real-time prompt spoofing.
  • The flaw does not reside in cryptographic algorithms; rather, it’s found in the user interface—the visual entry point.
  • Ultimately, this revelation demands a strategic revision: we must prioritize device-bound passkeys for sensitive use cases and align deployments with threat models and regulatory requirements.

2025 Digital Security

Persistent OAuth Flaw: How Tycoon 2FA Hijacks Cloud Access

2026 Crypto Currency Cryptocurrency Digital Security

Ledger Security Breaches from 2017 to 2026: How to Protect Yourself from Hackers

2025 Cyberculture Digital Security

Browser Fingerprinting Tracking: Metadata Surveillance in 2026

2025 Digital Security

Bot Telegram Usersbox : l’illusion du contrôle russe

2026 Awards Cyberculture Digital Security Distinction Excellence EviOTP NFC HSM Technology EviPass EviPass NFC HSM technology EviPass Technology finalists PassCypher PassCypher

Quantum-Resistant Passwordless Manager — PassCypher finalist, Intersec Awards 2026 (FIDO-free, RAM-only)

2025 Cyberculture Cybersecurity Digital Security EviLink

CryptPeer messagerie P2P WebRTC : appels directs chiffrés de bout en bout

2025 CyptPeer Digital Security EviLink

Missatgeria P2P WebRTC segura — comunicació directa amb CryptPeer

2025 Digital Security

Russia Blocks WhatsApp: Max and the Sovereign Internet

2025 Digital Security

Spyware ClayRat Android : faux WhatsApp espion mobile

2025 Digital Security

Android Spyware Threat Clayrat : 2025 Analysis and Exposure

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2025 Digital Security Technical News

Sovereign SSH Authentication with PassCypher HSM PGP — Zero Key in Clear

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Digital Security Technical News

Générateur de mots de passe souverain – PassCypher Secure Passgen WP

2025 Digital Security Technical News

Quantum computer 6100 qubits ⮞ Historic 2025 breakthrough

2025 Digital Security Technical News

Ordinateur quantique 6100 qubits ⮞ La percée historique 2025

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2025 Digital Security

Email Metadata Privacy: EU Laws & DataShielder

2025 Digital Security

Chrome V8 confusió RCE — Actualitza i postura Zero-DOM

2025 Digital Security

Chrome V8 confusion RCE — Your browser was already spying

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

In Sovereign Cybersecurity ↑ This article is part of our Digital Security section, continuing our research on zero-trust hardware exploits and countermeasures.

 ▸ Key Points

  • Confirmed Vulnerability: Cloud-synced passkeys (Apple, Google, Microsoft) are not 100% phishing-resistant.
  • New Threat: Real-time prompt spoofing exploits the user interface rather than cryptography.
  • Strategic Impact: Critical infrastructure and government agencies must migrate to device-bound credentials and sovereign offline solutions (NFC HSM, segmented keys).

What is a WebAuthn API Hijacking Attack?

A WebAuthn interception attack via a spoofable authentication prompt (WebAuthn API Hijacking) consists of imitating in real time the authentication window displayed by a system or browser. Consequently, the attacker does not seek to break the cryptographic algorithm; instead, they reproduce the user interface (UI) at the exact moment the victim expects to see a legitimate prompt. Visual lures, precise timing, and perfect synchronization make the deception indistinguishable to the user.

Simplified example:
A user thinks they are approving a connection to their bank account via a legitimate Apple or Google system prompt. In reality, they are interacting with a dialog box cloned by the attacker. As a result, the adversary captures the active session without alerting the victim.
▸ In short: Unlike “classic” phishing attacks via email or fraudulent websites, the real-time prompt spoofing takes place during authentication, when the user is most confident.

History of Passkey / WebAuthn Vulnerabilities

Despite their cryptographic robustness, passkeys — based on the open standards WebAuthn and FIDO2 from the FIDO Alliance — are not invulnerable. The history of vulnerabilities and recent research confirms that the key weakness often lies in the user interaction and the execution environment (browser, operating system). The industry officially adopted passkeys on May 5, 2022, following a commitment from Apple, Google, and Microsoft to extend their support on their respective platforms.

Timeline illustrating the accelerated evolution of Passkey and WebAuthn vulnerabilities from 2012 to 2025, including FIDO Alliance creation, phishing methods, CVEs, and the WebAuthn API Hijacking revealed at DEF CON 33.
Accelerated Evolution of Passkey and WebAuthn Vulnerabilities (2012-2025): A detailed timeline highlighting key security events, from the foundation of the FIDO Alliance to the emergence of AI as a threat multiplier and the definitive proof of the WebAuthn API Hijacking at DEF CON 33.

Timeline of Vulnerabilities

  • SquareX – Compromised Browsers (August 2025):

    At DEF CON 33, a demonstration showed that a malicious extension or script can intercept the WebAuthn flow to substitute keys. See the TechRadar analysis and the SecurityWeek report.

  • CVE-2025-31161 (March/April 2025):

    Authentication bypass in CrushFTP via a race condition. Official NIST Source.

  • CVE-2024-9956 (March 2025):

    Account takeover via Bluetooth on Android. This attack demonstrated that an attacker can remotely trigger a malicious authentication via a FIDO:/ intent. Analysis from Risky.Biz. Official NIST Source.

  • CVE-2024-12604 (March 2025):

    Cleartext storage of sensitive data in Tap&Sign, exploiting poor password management. Official NIST Source.

  • CVE-2025-26788 (February 2025):

    Authentication bypass in StrongKey FIDO Server. Detailed Source.

  • Passkeys Pwned – Browser-based API Hijacking (Early 2025):

    A research study showed that the browser, as a single mediator, can be a point of failure. Read the Security Boulevard analysis.

  • CVE-2024-9191 (November 2024):

    Password exposure via Okta Device Access. Official NIST Source.

  • CVE-2024-39912 (July 2024):

    User enumeration via a flaw in the PHP library web-auth/webauthn-lib. Official NIST Source.

  • CTRAPS-type Attacks (2024):

    These protocol-level attacks (CTAP) exploit authentication mechanisms for unauthorized actions. For more information on FIDO protocol-level attacks, see this Black Hat presentation on FIDO vulnerabilities.

  • First Large-Scale Rollout (September 2022):

    Apple was the first to deploy passkeys on a large scale with the release of iOS 16, making this technology a reality for hundreds of millions of users. Official Apple Press Release.

  • Industry Launch & Adoption (May 2022):

    The FIDO Alliance, joined by Apple, Google, and Microsoft, announced an action plan to extend passkey support across all their platforms. Official FIDO Alliance Press Release.

  • Timing Attacks on keyHandle (2022):

    A vulnerability allowing account correlation by measuring time variations in the processing of keyHandles. See IACR ePrint 2022 article.

  • Phishing of Recovery Methods (since 2017):

    Attackers use AitM proxies (like Evilginx, which appeared in 2017) to hide the passkey option and force a fallback to less secure methods that can be captured. More details on this technique.

AI as a Threat Multiplier

Artificial intelligence is not a security flaw, but a catalyst that makes existing attacks more effective. Since the emergence of generative AI models like GPT-3 (2020) and DALL-E 2 (2022), new capabilities for automating threats have appeared. These developments notably allow for:

  • Large-scale Attacks (since 2022): Generative AI enables attackers to create custom authentication prompts and phishing messages for a massive volume of targets, increasing the effectiveness of phishing of recovery methods.
  • Accelerated Vulnerability Research (since 2023): AI can be used to automate the search for security flaws, such as user enumeration or the detection of logical flaws in implementation code.
Historical Note — The risks associated with spoofable prompts in WebAuthn were already raised by the community in W3C GitHub issue #1965 (before the DEF CON 33 demonstration). This shows that the user interface has long been recognized as a weak link in so-called “phishing-resistant” authentication.

“These recent and historical vulnerabilities highlight the critical role of the browser and the deployment model (device-bound vs. synced). They reinforce the call for sovereign architectures that are disconnected from these vectors of compromise.”

Vulnerability of the Synchronization Model

One of the most debated passkeys security vulnerabilities does not concern the WebAuthn protocol itself, but its deployment model. Most publications on the subject differentiate between two types of passkeys:

  • Device-bound passkeys: Stored on a physical device (like a hardware security key or Secure Enclave). This model is generally considered highly secure because it is not synchronized via a third-party service.
  • Synced passkeys: Stored in a password manager or a cloud service (iCloud Keychain, Google Password Manager, etc.). These passkeys can be synchronized across multiple devices. For more details on this distinction, refer to the FIDO Alliance documentation.

The vulnerability lies here: if an attacker manages to compromise the cloud service account, they could potentially gain access to the synced passkeys across all the user’s devices. This is a risk that device-bound passkeys do not share. Academic research, such as this paper published on arXiv, explores this issue, highlighting that “the security of synced passkeys is primarily concentrated with the passkey provider.”

This distinction is crucial because the implementation of vulnerable synced passkeys contradicts the very spirit of a so-called phishing-resistant MFA, as synchronization introduces an intermediary and an additional attack surface. This justifies the FIDO Alliance’s recommendation to prioritize device-bound passkeys for maximum security.

The DEF CON 33 Demonstration – WebAuthn API Hijacking in Action

WebAuthn API Hijacking is the central thread of this section: we briefly explain the attack path shown at DEF CON 33 and how a spoofable prompt enabled real-time session takeover, before detailing the live evidence and the video highlights.

Passkeys Pwned — DEF CON 33 Talk on WebAuthn

During DEF CON 33, the Allthenticate team presented a talk titled “Passkeys Pwned: Turning WebAuthn Against Itself.”
This session demonstrated how attackers could exploit WebAuthn API Hijacking to
compromise synced passkeys in real time using a spoofable authentication prompt.

By using the provocative phrase “Passkeys Pwned,” the researchers deliberately emphasized that even so-called phishing-resistant credentials can be hijacked when the user interface itself is the weak link.

Evidence of WebAuthn API Hijacking at DEF CON 33

In Las Vegas, at the heart of DEF CON 33 (August 8–11, 2025), the world’s most respected hacker community witnessed a demonstration that made many squirm. In fact, researchers at Allthenticate showed live that a vulnerable synced passkey – despite being labeled “phishing-resistant” – could be tricked. So what did they do? They executed a WebAuthn API Hijacking attack (spoofing the system prompt) of the spoofable authentication prompt type (real-time prompt spoofing). They created a fake authentication dialog box, perfectly timed and visually identical to the legitimate UI. Ultimately, the user believed they were validating a legitimate authentication, but the adversary hijacked the session in real time. This proof of concept makes the “Passkeys WebAuthn Interception Flaw” tangible through a real-time spoofable prompt.

Video Highlights — WebAuthn API Hijacking in Practice

To visualize the sequence, watch the clip below: it shows how WebAuthn API Hijacking emerges from a simple UI deception that aligns timing and look-and-feel with the expected system prompt, leading to seamless session capture.

Official Authors & Media from DEF CON 33
▸ Shourya Pratap Singh, Jonny Lin, Daniel Seetoh — Allthenticate researchers, authors of the demo “Your Passkey is Weak: Phishing the Unphishable”.
Allthenticate Video on TikTok — direct explanation by the team.
DEF CON 33 Las Vegas Video (TikTok) — a glimpse of the conference floor.
Highlights DEF CON 33 (YouTube) — including the passkeys flaw.

▸ Summary

DEF CON 33 demonstrated that vulnerable synced passkeys can be compromised live when a spoofable authentication prompt is inserted into the WebAuthn flow.

Comparison – WebAuthn Interception Flaw: Prompt Spoofing vs. DOM Clickjacking

At DEF CON 33, two major research findings shook confidence in modern authentication mechanisms. Indeed, both exploit flaws related to the user interface (UX) rather than cryptography, but their vectors and targets differ radically.

Architecture comparison of PassCypher vs FIDO WebAuthn authentication highlighting phishing resistance and prompt spoofing risks
Comparison of PassCypher and FIDO WebAuthn architectures showing why Passkeys are vulnerable to WebAuthn API hijacking while PassCypher eliminates prompt spoofing risks.

Real-Time Prompt Spoofing

  • Author: Allthenticate (Las Vegas, DEF CON 33).
  • Target: vulnerable synced passkeys (Apple, Google, Microsoft).
  • Vecteur: spoofable authentication prompt, perfectly timed to the legitimate UI (real-time prompt spoofing).
  • Impact: WebAuthn interception attack that causes “live” phishing; the user unknowingly validates a malicious request.

DOM Clickjacking

  • Authors: Another team of researchers (DEF CON 33).
  • Target: Credential managers, extensions, stored passkeys.
  • Vecteur: invisible iframes, Shadow DOM, malicious scripts to hijack autofill.
  • Impact: Silent exfiltration of credentials, passkeys, and crypto-wallet keys.

▸ Key takeaway: This article focuses exclusively on prompt spoofing, which illustrates a major WebAuthn interception flaw and challenges the promise of “phishing-resistant passkeys.” For a complete study on DOM clickjacking, please see the related article.

Strategic Implications – Passkeys and UX Vulnerabilities

As a result, the “Passkeys WebAuthn Interception Flaw” forces us to rethink authentication around prompt-less and cloud-less models.

  • We should no longer consider vulnerable synced passkeys to be invulnerable.
  • We must prioritize device-bound credentials for sensitive environments.
  • We need to implement UX safeguards: detecting anomalies in authentication prompts and using non-spoofable visual signatures.
  • We should train users on the threat of real-time phishing via a WebAuthn interception attack.
▸ Insight
It is not cryptography that is failing, but the illusion of immunity. WebAuthn interception demonstrates that the risk lies in the UX, not the algorithm.

Regulations & Compliance – MFA and WebAuthn Interception

Official documents such as the CISA guide on phishing-resistant MFA or the OMB M-22-09 directive insist on this point: authentication is “phishing-resistant” only if no intermediary can intercept or hijack the WebAuthn flow.
In theory, WebAuthn passkeys respect this rule. In practice, however, the implementation of vulnerable synced passkeys opens an interception flaw that attackers can exploit via a spoofable authentication prompt.

In Europe, both the NIS2 directive and the SecNumCloud certification reiterate the same requirement: no dependence on un-mastered third-party services.

As such, the “Passkeys WebAuthn Interception Flaw” contradicts the spirit of a so-called phishing-resistant MFA, because synchronization introduces an intermediary.

In other words, a US cloud managing your passkeys falls outside the scope of strict digital sovereignty.

▸ Summary

A vulnerable synced passkey can compromise the requirement for phishing-resistant MFA (CISA, NIS2) when a WebAuthn interception attack is possible.

European & Francophone Statistics – Real-time Phishing and WebAuthn Interception

Public reports confirm that advanced phishing attacks — including real-time techniques — represent a major threat in the European Union and the Francophone area.

  • European Union — ENISA: According to the Threat Landscape 2024 report, phishing and social engineering account for 38% of reported incidents in the EU, with a notable increase in Adversary-in-the-Middle methods and real-time prompt spoofing, associated with WebAuthn interception. Source: ENISA Threat Landscape 2024
  • France — Cybermalveillance.gouv.fr: In 2023, phishing generated 38% of assistance requests, with over 1.5M consultations related to this type of attack. Fake bank advisor scams jumped by +78% vs. 2022, often via spoofable authentication prompts. Source: 2023 Activity Report
  • Canada (Francophone) — Canadian Centre for Cyber Security: The National Cyber Threat Assessment 2023-2024 indicates that 65% of businesses expect to experience a phishing or ransomware attack. Phishing remains a preferred vector for bypassing MFA, including via WebAuthn flow interception. Source: Official Assessment
▸ Strategic Reading
Real-time prompt spoofing is not a lab experiment; it is part of a trend where phishing targets the authentication interface rather than algorithms, with increasing use of the WebAuthn interception attack.

Sovereign Use Case – Neutralizing WebAuthn Interception

In a practical scenario, a regulatory authority reserves synced passkeys for low-risk public portals. Conversely, the PassCypher choice eliminates the root cause of the “Passkeys WebAuthn Interception Flaw” by removing the prompt, the cloud, and any DOM exposure.
For critical systems (government, sensitive operations, vital infrastructure), it deploys PassCypher in two forms:

  • PassCypher NFC HSM — offline hardware authentication, with no server and BLE AES-128-CBC keyboard emulation. Consequently, no spoofable authentication prompt can exist.
  • PassCypher HSM PGP — sovereign management of inexportable segmented keys, with cryptographic validation that is cloud-free and synchronization-free.
    ▸ Result
    In this model, the prompt vector exploited during the WebAuthn interception attack at DEF CON 33 is completely eliminated from critical pathways.

Why PassCypher Eliminates the WebAuthn Interception Risk

PassCypher solutions stand in radical contrast to FIDO passkeys that are vulnerable to the WebAuthn interception attack:

  • No OS/browser prompt — thus no spoofable authentication prompt.
  • No cloud — no vulnerable synchronization or third-party dependency.
  • No DOM — no exposure to scripts, extensions, or iframes.
✓ Sovereignty: By removing the prompt, cloud, and DOM, PassCypher eliminates any anchor point for the WebAuthn interception flaw (prompt spoofing) revealed at DEF CON 33.

PassCypher NFC HSM — Eliminating the WebAuthn Prompt Spoofing Attack Vector

Allthenticate’s attack at DEF CON 33 proves that attackers can spoof any system that depends on an OS/browser prompt. PassCypher NFC HSM removes this vector: there is no prompt, no cloud sync, secrets are encrypted for life in a nano-HSM NFC, and validated by a physical tap. User operation:

  • Mandatory NFC tap — physical validation with no software interface.
  • HID BLE AES-128-CBC Mode — out-of-DOM transmission, resistant to keyloggers.
  • Zero-DOM Ecosystem — no secret ever appears in the browser.

▸ Summary

Unlike vulnerable synced passkeys, PassCypher NFC HSM neutralizes the WebAuthn interception attack because a spoofable authentication prompt does not exist.

WebAuthn API Hijacking Neutralized by PassCypher NFC HSM

Attack Type Vector Status
Prompt Spoofing Fake OS/browser dialog Neutralized (zero prompt)
Real-time Phishing Live-trapped validation Neutralized (mandatory NFC tap)
Keystroke Logging Keyboard capture Neutralized (encrypted HID BLE)

PassCypher HSM PGP — Segmented Keys Against Phishing

The other pillar, PassCypher HSM PGP, applies the same philosophy: no exploitable prompt.
Secrets (credentials, passkeys, SSH/PGP keys, TOTP/HOTP) reside in AES-256 CBC PGP encrypted containers, protected by a patented system of segmented keys.

  • No prompt — so there is no window to spoof.
  • Segmented keys — they are inexportable and assembled only in RAM.
  • Ephemeral decryption — the secret disappears immediately after use.
  • Zero cloud — there is no vulnerable synchronization.

▸ Summary

PassCypher HSM PGP eliminates the attack surface of the real-time spoofed prompt: it provides hardware authentication, segmented keys, and cryptographic validation with no DOM or cloud exposure.

Attack Surface Comparison

Criterion Synced Passkeys (FIDO) PassCypher NFC HSM PassCypher HSM PGP
Authentication Prompt Yes No No
Synchronization Cloud Yes No No
Exportable Private Key No (attackable UI) No No
WebAuthn Hijacking/Interception Present Absent Absent
FIDO Standard Dependency Yes No No
▸ Insight By removing the spoofable authentication prompt and cloud synchronization, the WebAuthn interception attack demonstrated at DEF CON 33 disappears completely.

Weak Signals – Trends Related to WebAuthn Interception

▸ Weak Signals Identified

  • The widespread adoption of real-time UI attacks, including WebAuthn interception via a spoofable authentication prompt.
  • A growing dependency on third-party clouds for identity, which increases the exposure of vulnerable synced passkeys.
  • A proliferation of bypasses through AI-assisted social engineering, applied to authentication interfaces.

Strategic Glossary

A review of the key concepts used in this article, for both beginners and advanced readers.

  • Passkey / Passkeys

    A passwordless digital credential based on the FIDO/WebAuthn standard, designed to be “phishing-resistant.

    • Passkey (singular): Refers to a single digital credential stored on a device (e.g., Secure Enclave, TPM, YubiKey).
    • Passkeys (plural): Refers to the general technology or multiple credentials, including synced passkeys stored in Apple, Google, or Microsoft clouds. These are particularly vulnerable to WebAuthn API Hijacking (real-time prompt spoofing demonstrated at DEF CON 33).
  • Passkeys Pwned

    Title of the DEF CON 33 talk by Allthenticate (“Passkeys Pwned: Turning WebAuthn Against Itself”). It highlights how WebAuthn API Hijacking can compromise synced passkeys in real time, proving that they are not 100% phishing-resistant.

  • Vulnerable synced passkeys

    Stored in a cloud (Apple, Google, Microsoft) and usable across multiple devices. They offer a UX advantage but a strategic weakness: dependence on a spoofable authentication prompt and the cloud.

  • Device-bound passkeys

    Linked to a single device (TPM, Secure Enclave, YubiKey). More secure because they lack cloud synchronization.

  • Prompt

    A system or browser dialog box that requests a user’s validation (Face ID, fingerprint, FIDO key). This is the primary target for spoofing.

  • WebAuthn Interception Attack

    Also known as WebAuthn API Hijacking, this attack manipulates the authentication flow by spoofing the system/browser prompt and imitating the user interface in real time. The attacker does not break cryptography, but intercepts the WebAuthn process at the UX level (e.g., a cloned fingerprint or Face ID prompt). See the official W3C WebAuthn specification and FIDO Alliance documentation.

  • Real-time prompt spoofing

    The live spoofing of an authentication window, which is indistinguishable to the user.

  • DOM Clickjacking

    An attack using invisible iframes and Shadow DOM to hijack autofill and steal credentials.

  • Zero-DOM

    A sovereign architecture where no secret is exposed to the browser or the DOM.

  • NFC HSM

    A secure hardware module that is offline and compatible with HID BLE AES-128-CBC.

  • Segmented keys

    Cryptographic keys that are split into segments and only reassembled in volatile memory.

  • Device-bound credential

    A credential attached to a physical device that is non-transferable and non-clonable.

▸ Strategic Purpose: This glossary shows why the WebAuthn interception attack targets the prompt and UX, and why PassCypher eliminates this vector by design.

Technical FAQ (Integration & Use Cases)

  • Q: Are there any solutions for vulnerable passkeys?

    A: Yes, in a hybrid model. Keep FIDO for common use cases and adopt PassCypher for critical access to eliminate WebAuthn interception vectors.

  • Q: What is the UX impact without a system prompt?

    A: The action is hardware-based (NFC tap or HSM validation). There is no spoofable authentication prompt or dialog box to impersonate, resulting in a total elimination of the real-time phishing risk.

  • Q: How can we revoke a compromised key?

    A: You simply revoke the HSM or the key itself. There is no cloud to purge and no third-party account to contact.

  • Q: Does PassCypher protect against real-time prompt spoofing?

    A: Yes. The PassCypher architecture completely eliminates the OS/browser prompt, thereby removing the attack surface exploited at DEF CON 33.

  • Q: Can we integrate PassCypher into a NIS2-regulated infrastructure?

    A: Yes. The NFC HSM and HSM PGP modules comply with digital sovereignty requirements and neutralize the risks associated with vulnerable synced passkeys.

  • Q: Are device-bound passkeys completely inviolable?

    A: No, but they do eliminate the risk of cloud-based WebAuthn interception. Their security then depends on the hardware’s robustness (TPM, Secure Enclave, YubiKey) and the physical protection of the device.

  • Q: Can a local malware reproduce a PassCypher prompt?

    A: No. PassCypher does not rely on a software prompt; the validation is hardware-based and offline, so no spoofable display exists.

  • Q: Why do third-party clouds increase the risk?

    A: Vulnerable synced passkeys stored in a third-party cloud can be targeted by Adversary-in-the-Middle or WebAuthn interception attacks if the prompt is compromised.

CISO/CSO Advice – Universal & Sovereign Protection

To learn how to protect against WebAuthn interception, it’s important to know that EviBITB (Embedded Browser-In-The-Browser Protection) is a built-in technology in PassCypher HSM PGP, including its free version. t automatically or manually detects and removes redirection iframes used in BITB and prompt spoofing attacks, thereby eliminating the WebAuthn interception vector.

  • Immediate Deployment: It is a free extension for Chromium and Firefox browsers, scalable for large-scale use without a paid license.
  • Universal Protection: It works even if the organization has not yet migrated to a prompt-free model.
  • Sovereign Compatibility: It works with PassCypher NFC HSM Lite (99 €) and the full PassCypher HSM PGP (129 €/year).
  • Full Passwordless: Both PassCypher NFC HSM and HSM PGP can completely replace FIDO/WebAuthn for all authentication pathways, with zero prompts, zero cloud, and 100% sovereignty.

Strategic Recommendation:
Deploy EviBITB immediately on all workstations to neutralize BITB/prompt spoofing, then plan the migration of critical access to a full-PassCypher model to permanently remove the attack surface.

Frequently Asked Questions for CISOs/CSOs

Q: What is the regulatory impact of a WebAuthn interception attack?

A: This type of attack can compromise compliance with “phishing-resistant” MFA requirements defined by CISA, NIS2, and SecNumCloud. In case of personal data compromise, the organization faces GDPR sanctions and a challenge to its security certifications.

Q: Is there a universal and free protection against BITB and prompt spoofing?

A: Yes. EviBITB is an embedded technology in PassCypher HSM PGP, including its free version. It blocks redirection iframes (Browser-In-The-Browser) and removes the spoofable authentication prompt vector exploited in WebAuthn interception. It can be deployed immediately on a large scale without a paid license.

Q: Are there any solutions for vulnerable passkeys?

A: Yes. PassCypher NFC HSM and PassCypher HSM PGP are complete sovereign passwordless solutions: they allow authentication, signing, and encryption without FIDO infrastructure, with zero spoofable prompts, zero third-party clouds, and a 100% controlled architecture.

Q: What is the average budget and ROI of a migration to a prompt-free model?

A: According to the Time Spent on Authentication study, a professional loses an average of 285 hours/year on classic authentications, representing an annual cost of about $8,550 (based on $30/h). PassCypher HSM PGP reduces this time to ~7 h/year, and PassCypher NFC HSM to ~18 h/year. Even with the full model (129 €/year) or the NFC HSM Lite (99 € one-time purchase), the breakeven point is reached in a few days to a few weeks, and net savings exceed 50 times the annual cost in a professional context.

Q: How can we manage a hybrid fleet (legacy + modern)?

A: Keep FIDO for low-risk uses while gradually replacing them with PassCypher NFC HSM and/or PassCypher HSM PGP in critical environments. This transition removes exploitable prompts and maintains application compatibility.

Q: What metrics should we track to measure the reduction in attack surface?

A: The number of authentications via system prompts vs. hardware authentication, incidents related to WebAuthn interception, average remediation time, and the percentage of critical accesses migrated to a sovereign prompt-free model.

CISO/CSO Action Plan

Priority Action Expected Impact
Implement solutions for vulnerable passkeys by replacing them with PassCypher NFC HSM (99 €) and/or PassCypher HSM PGP (129 €/year) Eliminates the spoofable prompt, removes WebAuthn interception, and enables sovereign passwordless access with a payback period of days according to the study on authentication time
Migrate to a full-PassCypher model for critical environments Removes all FIDO/WebAuthn dependency, centralizes sovereign management of access and secrets, and maximizes productivity gains measured by the study
Deploy EviBITB (embedded technology in PassCypher HSM PGP, free version included) Provides immediate, zero-cost protection against BITB and real-time phishing via prompt spoofing
Harden the UX (visual signatures, non-cloneable elements) Complicates UI attacks, clickjacking, and redress
Audit and log authentication flows Detects and tracks any attempt at flow hijacking or Adversary-in-the-Middle attacks
Align with NIS2, SecNumCloud, and GDPR Reduces legal risk and provides proof of compliance
Train users on spoofable interface threats Strengthens human vigilance and proactive detection

Strategic Outlook

The message from DEF CON 33 is clear: authentication security is won or lost at the interface. In other words, as long as the user validates graphical authentication prompts synchronized with a network flow, real-time phishing and WebAuthn interception will remain possible.

Thus, prompt-free and cloud-free models — embodied by sovereign HSMs like PassCypher — radically reduce the attack surface.

In the short term, generalize the use of device-bound solutions for sensitive applications. In the medium term, the goal is to eliminate the spoofable UI from critical pathways. Ultimately, the recommended trajectory will permanently eliminate the “Passkeys WebAuthn Interception Flaw” from critical pathways through a gradual transition to a full-PassCypher model, providing a definitive solution for vulnerable passkeys in a professional context.