Tag Archives: bcrypt KDF

Sovereign SSH Authentication with PassCypher HSM PGP — Zero Key in Clear

Flat graphic poster illustrating SSH key breaches and defense through hardware-anchored SSH authentication using PassCypher HSM PGP, OpenPGP AES-256 encryption, and BLE-HID zero-trust workflows.

SSH Key PassCypher HSM PGP establishes a sovereign SSH authentication chain for zero-trust infrastructures, where keys are generated and sealed inside a hardware HSM under OpenSSH AES-256 encryption. It demonstrates how to secure an SSH key — or, in French, comment sécuriser une clé SSH — by ensuring that the private key is never exposed in the clear, neither on disk nor in memory. Through BLE-HID passphrase injection, it eliminates keylogger risks and enforces a zero-clear-key policy, bringing hardware-anchored SSH security to Debian, macOS, and Windows environments. This sovereign method combines OpenSSH encryption, hardened KDFs such as bcrypt, and NFC-triggered hardware interactions to protect SSH credentials across multi-OS infrastructures.

Express Summary — Sovereign SSH Authentication for All Operating Systems

⮞ In Brief

Quick read (≈ 4 minutes): generate your SSH key pair directly inside PassCypher HSM PGP, export only the public key to the server, and keep the private key sealed in an OpenSSH-encrypted private key file (id_ed25519, id_rsa, etc.). The private key is never stored in the clear. During connection, it is decrypted ephemerally in RAM using a passphrase injected either manually or through the PassCypher NFC HSM via its BLE-HID hardware keyboard emulator. This sovereign SSH authentication model eliminates the risk of keyloggers and clipboard theft while supporting long, post-quantum-ready passphrases (≥256 bits).

⚙ Core Concept

Key generation inside HSM → OpenSSH passphrase encryption (AES-256 + hardened KDF) → export of public key (.pub OpenSSH) → safe storage and duplication of encrypted private key (id_ed25519 (ou id_rsa, selon le cas)) → ephemeral local decryption via NFC / BLE-HID injected passphrase → authenticated SSH session.

Interoperability

Fully compatible with Debian, Ubuntu, Fedora, FreeBSD, macOS, Windows (WSL, PuTTY), Android (Termux) and iOS (Blink Shell). Native OpenSSH format ensures universal portability and sovereign SSH key management across environments.

Reading Parameters

Express summary reading time: ≈ 4 minutes
Advanced summary reading time: ≈ 6 minutes
Full chronicle reading time: ≈ 35 minutes
Last updated: 2025-10-02
Complexity level: Advanced / Expert
Technical density: ≈ 73 %
Languages available: CAT · EN · ES · FR
Linguistic specificity: Sovereign lexicon — high technical density
Reading order: Summary → Architecture → Security → Workflow → Rotation → EviSSH → Resources
Accessibility: Screen-reader optimized — semantic anchors included
Editorial type: Strategic Chronicle — Digital Security · Technical News
Author: Jacques Gascuel — inventor and founder of Freemindtronic Andorra, expert in NFC HSM technologies, embedded cryptography, and zero-trust architectures. His research focuses on digital sovereignty and post-quantum resilience.

Editorial note — This operational guide evolves continuously with field feedback, audits, and PQC developments.
Diagramme fonctionnel illustrant l’architecture SSH Key PassCypher HSM PGP. Le processus inclut la génération locale de la clé SSH dans PassCypher, la protection par passphrase chiffrée AES-256 via OpenPGP, le stockage sécurisé du conteneur *.key.gpg, et l’injection de la passphrase par le module PassCypher NFC HSM via BLE-HID AES-128 CBC vers le serveur SSH. Vue 16/9 sur fond blanc.
✪ Technical Diagram — Sovereign SSH Authentication with PassCypher HSM PGP: generation, OpenSSH AES-256 native encryption, encrypted storage, and passphrase injection via BLE-HID AES-128 CBC.

Advanced Summary — Architecture and Secure SSH Workflow with Sovereign SSH Authentication via PassCypher HSM PGP

⮞ In Detail

The workflow for sovereign SSH authentication follows a secure and repeatable pattern. First, PassCypher HSM PGP generates the SSH key pair internally. Then, the system encrypts the private key in an OpenSSH private key format using AES-256 encryption and a hardened KDF. Only the public key (.pub) is exported for server use. The encrypted private key (id_ed25519 or id_rsa) stays sealed inside the HSM. When needed, the HSM decrypts the key ephemerally in RAM using an injected passphrase via NFC or BLE-HID. The SSH connection then proceeds without exposing any clear-text key. This step-by-step model keeps each process verifiable, auditable, and sovereign.

Hardware-Based SSH Key Management

Unlike cloud solutions, PassCypher HSM PGP provides SSH key management entirely within a hardware module. It enables complete SSH key rotation and ephemeral decryption while maintaining a zero-clear-key security posture. This architecture ensures that SSH private keys never exist in plaintext — not on disk, not in memory, and not in any centralized vault — thereby delivering hardware-anchored sovereignty for critical systems.

Beyond Conventional SSH Key Management Platforms

While many SSH key management solutions rely on cloud-based vaults or software-only zero-knowledge models, PassCypher HSM PGP introduces a sovereign alternative that removes every intermediary layer. All cryptographic operations — from SSH key generation to rotation and lifecycle management — occur inside the hardware HSM. No agent, vault, or remote API ever handles private keys or passphrases.

This approach merges the benefits of zero-knowledge architectures with hardware-level isolation. Each SSH credential is locally created, Encrypted with OpenSSH AES-256 encryption, and stored in a zero-clear-key state. Unlike software-based systems that synchronize secrets through cloud or network vaults, PassCypher’s design ensures no key leaves the trusted hardware perimeter.

The result is a hardware-anchored SSH key management solution that delivers the same usability and automation found in traditional secrets managers — including key rotation, team access control, auditability, and lifecycle orchestration — but under a sovereign, offline-capable, zero-cloud architecture.

Why Secure SSH with a Hardware HSM

Unencrypted SSH keys remain vulnerable to theft, duplication, and accidental backup. Attackers can exploit them silently for persistence. PassCypher HSM PGP solves this by locking the private key inside a hardware-based trust boundary. Each operation requires hardware confirmation. Decryption occurs only when an authenticated passphrase is injected. This removes dependence on software agents and delivers hardware-anchored sovereignty for SSH authentication. As a result, even on untrusted machines, administrators maintain cryptographic control of their access credentials.

HSM PGP Architecture — Technical Components

The sovereign SSH authentication architecture combines proven OpenSSH native encryption with hardware isolation. Each component plays a specific role in the zero-clear-key chain.

  • OpenSSH private key format: Encrypts with AES-256 (CTR, CBC, or GCM) and ensures data integrity with MDC.
  • Hardened KDF: Uses PBKDF2 (≥200k iterations) or bcrypt (default) to resist brute force.
  • Passphrase: Randomly generated inside the HSM. Recommended entropy ≥256 bits for PQC readiness.
  • Injection: Delivered through NFC trigger or BLE-HID emulation. This prevents typing and blocks keyloggers.
  • Secure duplication: The encrypted id_ed25519 or id_rsa can be safely stored on EviKey NFC HSM, USB, or NAS. It remains secure as long as the KDF and passphrase are protected.

Deploying Sovereign SSH Authentication with PassCypher HSM PGP on Debian VPS and Beyond

⮞ TL;DR

This section explains how to deploy SSH Key PassCypher HSM PGP for secure remote access on Debian VPS, OVHcloud, and hybrid infrastructures. The HSM generates SSH key pairs internally and encrypts the private key as id_ed25519 or id_rsa. The system exports only the public key for registration. When connecting, the HSM decrypts the private key temporarily in RAM. A passphrase from PassCypher NFC HSM injects via BLE-HID keyboard emulation using AES-128 CBC encryption. No plaintext key ever touches disk or memory. This design removes keyloggers, clipboard theft, and man-in-the-browser risks.
It guarantees zero-clear-key SSH authentication across platforms.

Operational Alert — BLE-HID Pairing Security

Avoid using the “Just Works” pairing mode in Bluetooth Low Energy. Instead, enforce Secure Connections mode with AES-128 CBC encryption. Always use numeric authentication by PIN or code confirmation. This configuration prevents unauthenticated pairing. It also blocks MITM attacks during BLE initialization. In air-gapped or classified setups, BLE-HID provides direct passphrase transfer with zero dependency on cloud middleware. This maintains operational sovereignty, even under isolation.

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

In sovereign cybersecurity ↑ This chronicle belongs to Digital Security and Tech Fixes & Security Solutions. Explore related content such as EviSSH — SSH Key Management in HSM, EviKey NFC HSM, Secure SSH VPS with PassCypher HSM and PassCypher HSM PGP — Technical Note.

Chronicle — EviSSH: Embedded Engine Inside PassCypher HSM PGP

EviSSH is the embedded technology within PassCypher HSM PGP dedicated to sovereign SSH key generation, management, and storage. It relies on the EviEngine to execute all cryptographic operations locally. Every SSH key pair creation and OpenSSH passphrase encryption happens client-side. No data, keys, or metadata ever leave the user’s environment.

Role and Operation

  • Integrated Interface — EviSSH is directly accessible through the PassCypher HSM PGP browser extension.
  • Local Generation — SSH key pairs are generated using Git for Windows or its Linux/macOS equivalent under EviEngine orchestration.
  • Encryption — The private key is automatically wrapped in an OpenSSH private key format encrypted with AES-256 and a hardened KDF.
  • Sovereign Storage — Users choose the storage path: local .ssh folder, EviKey NFC HSM, NAS, or external drive.
  • Interoperability — Public keys export in standard OpenSSH format and work across Debian, Ubuntu, macOS, Windows, Android, and iOS.

EviEngine — Core Orchestrator

EviEngine coordinates secure communication between the browser, the OS, and HSM components. It generates SSH keys via Git, manages PassCypher extension licensing, and runs entirely offline. Every operation executes locally on the user’s device, ensuring full sovereignty and auditability.

HSM Integration

  • PassCypher NFC HSM — Injects passphrases through a BLE-HID channel encrypted with AES-128 CBC.
  • EviKey NFC HSM — Stores encrypted key containers (id_ed25519 or id_rsa) protected by the user-defined passphrase.
Note: EviSSH is not a standalone tool. It is a native PassCypher HSM PGP component powered by EviEngine. Its purpose is to unify SSH key generation, management, and lifecycle sovereignty in a fully local, auditable environment.

Generating a Sovereign SSH Key with PassCypher HSM PGP

SSH key creation occurs through the EviSSH module embedded in PassCypher HSM PGP using the EviEngine. It leverages Git to build the SSH key pair, then encrypts it instantly through PassCypher HSM PGP. The entire process stays local and offline.

Interface du module PassCypher — création locale d’une clé cryptographique asymétrique avec choix d’algorithme pour accès distant sécurisé
L’extension PassCypher HSM PGP permet de générer une clé SSH sécurisée localement, avec sélection d’algorithme (RSA, ECDSA, EdDSA) et affichage du niveau d’entropie de la passphrase.

Algorithm Selection — Cryptographic Choice within PassCypher

The user selects algorithm and key size directly in the PassCypher HSM PGP interface. Available families include:

  • RSA: 2048 bits · 3072 bits · 4096 bits
  • ECDSA: 256 bits (p-256) · 384 bits (p-384) · 521 bits (p-521)
  • EdDSA: ed25519 — recommended for its robustness, compactness, and native OpenSSH support

Generation Steps — Transparent Workflow

  1. Open the SSH module inside PassCypher HSM PGP.
  2. Define a unique key label, for example pc-hsm-pgp-ssh-key.
  3. Select the desired algorithm (ed25519 or rsa-4096).
  4. Set a passphrase, either typed manually or injected via PassCypher NFC HSM using its BLE-HID AES-128 CBC emulator. This passphrase encrypts the private key container.
  5. Validate the action. EviSSH generates the pair through Git, and PassCypher HSM PGP encrypts the private key. Files save automatically in the chosen path, by default ~/.ssh/ or an EviKey NFC HSM.

Result — Exported Artifacts

  • id_ed25519.pub — public key copied to the remote server.
  • id_ed25519 — private key encrypted by PassCypher HSM PGP in native OpenSSH format (AES-256 + bcrypt KDF)

The passphrase, ideally ≥ 256 bits of entropy, can be typed or injected from the HSM via BLE-HID, avoiding exposure to keyloggers.

Memorable Passphrase Generator — “Two Words + Symbol” Option

✓ Objective: Provide a random yet memorable passphrase by combining two to four random words with special characters as separators. It is ideal for mobile operators who need recall without compromising hardened KDF protection and HSM injection (BLE-HID/NFC).

The built-in generator:

  • Selects random words from an embedded wordlist.
  • Inserts 1–3 special characters between or around words.
  • Displays an estimated entropy score.
  • Optionally stores the passphrase in the HSM or injects it via BLE-HID during container encryption.
⚠ Entropy Alert — Two-word combinations offer limited entropy unless the wordlist is extremely large (≥ 2²⁰ entries). For strong resistance, prefer three to four words from a >10 k entry list, add two random special characters, use non-alphabetic separators, and enable bcrypt with high memory cost. For PQC-aware posture, target ≥ 256 bits of effective entropy or let the HSM generate it randomly.

Practical Example

Generate a 3-word passphrase with two special characters:

# Example (PassCypher interface)
1) Choose wordlist: common-wordlist-16k
2) Words: 3
3) Separator: '-'; special chars: '#!'
→ Example output: atlas-siren#!

Use PassCypher NFC HSM to inject it via BLE-HID during encryption:

ssh-keygen -p -o -a 16 -t ed25519 -f ~/.ssh/id_ed25519 --output id_ed25519.key.gpg --compress-level 0 id_ed25519
# Passphrase is injected by PassCypher BLE-HID at pinentry prompt

Operational Recommendations

  • For critical servers or bastions, prefer HSM generation or increase word count.
  • Enable bcrypt with m ≥ 512 MB, t ≥ 3, p ≥ 4 during encryption.
  • Never store the passphrase in plain text or unprotected form.
  • Check entropy estimation in UI and adjust with extra words or symbols if required.
PassCypher HSM PGP interface showing memorable passphrase generator using two words plus symbols for SSH OpenPGP keys
✪ PassCypher Interface — Memorable passphrase generator (two words + symbols) designed for mobility and usability.
✓ Sovereign Note — The generator assists the operator, but true sovereignty is achieved when the HSM creates or confirms the passphrase. This avoids predictability linked to small wordlists.

ASCII-95 Generator — High-Entropy Password / Passphrase Mode

The interface below creates ultra-secure passwords or passphrases using all 95 printable ASCII characters. Unlike word-based modes, this option targets maximum entropy and granular control over character classes. It provides real-time entropy estimation, often ≥ 256 bits depending on length. It is meant for use cases where the secret remains encrypted (QR or HSM) and is injected via PassCypher ecosystem (BLE-HID / NFC) without screen display.

PassCypher HSM PGP interface generating high-entropy password using all 95 printable ASCII characters for OpenPGP SSH encryption
✪ Advanced Generator — ASCII-95 password builder with configurable length and character classes; supports QR/HSM export for secrets ≥ 256 bits entropy.

QR Code Export — Direct Transfer to PassCypher NFC HSM

Once a high-entropy password or passphrase is generated through the ASCII-95 module, the user can export the secret as an encrypted QR Code. This code can then be scanned by an Android smartphone with NFC running the Freemindtronic app that includes PassCypher NFC HSM. This sovereign interoperability enables direct transfer from the software HSM to the hardware HSM without network exposure or disk writes. Afterward, PassCypher NFC HSM can inject the secret through its Bluetooth HID keyboard emulator for authentication on any SSH client.

PassCypher HSM PGP interface showing encrypted QR Code export for direct import into an NFC HSM via Android smartphone
✪ Sovereign Export — Encrypted QR Code transfer to PassCypher NFC HSM via Android device, without cloud dependency.

Real-World Example — RSA 4096-bit Private Key Protected by Passphrase

Even an RSA 4096-bit key becomes vulnerable if stored unencrypted. Within PassCypher HSM PGP, the key remains encapsulated and protected by a 141-bit entropy passphrase by default, making brute-force or exfiltration mathematically infeasible. Below is what an OpenSSH-formatted RSA 4096-bit private key looks like once encrypted by passphrase:

-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jdHIAAAAGYmNyeXB0AAAAGAAAABA+ghFLmp
Oiw0Z3A4NKn2gHAAAAGAAAAAEAAAIXAAAAB3NzaC1yc2EAAAADAQABAAACAQDK4d0ntIeb
... (truncated for readability) ...
55XA==
-----END OPENSSH PRIVATE KEY-----
💡 Insight — The HSM displays the passphrase entropy in real time (≈ 141 bits default, up to >256 bits depending on length and KDF). This visibility helps assess the secret’s strength. The block starts with BEGIN OPENSSH PRIVATE KEY and a base64-encoded payload. Field b3BlbnNzaC1rZXktdjE= identifies OpenSSH v1 with encryption enabled. Depending on configuration, the engine uses aes256-ctr or aes256-cbc.

After securing key generation and encapsulation, administrators can integrate the sovereign SSH key into their virtual servers. The next section explains how to deploy it on Debian-based VPS instances like OVHcloud.

Integration on VPS (Example – OVH Debian 12)

Integrating a PassCypher HSM PGP SSH key into a VPS involves placing the public key (.pub) inside the server’s authorized_keys file.
OVHcloud allows inserting it directly during VPS creation through its dashboard.

Manual Insertion After Deployment

ssh -p 49152 debian@IPVPS "mkdir -p ~/.ssh && chmod 700 ~/.ssh && cat >> ~/.ssh/authorized_keys" < id_ed25519.pub

Then decrypt the private key locally from its encrypted container:

ssh -i ~/.ssh/id_ed25519 --output ~/.ssh/id_ed25519 ~/.ssh/id_ed25519.key.gpg
chmod 600 ~/.ssh/id_ed25519
ssh -i ~/.ssh/id_ed25519 -p 49152 debian@IPVPS

The decrypted file exists only temporarily. It can self-erase after the SSH session or stay in RAM if mounted on tmpfs.
This “zero-clear-text” approach ensures that no sensitive data persist on disk.

✓ Key Advantage: The encrypted BLE-HID channel injects the passphrase automatically.
No keystroke is capturable. Even on a compromised host, the private key remains unusable without the physical HSM and its secured pairing session.

Once integrated on a server, the same sovereign SSH key can authenticate securely across multiple operating systems.
The following section details how PassCypher HSM PGP maintains this universal compatibility.

Cross-OS compatibility — Universal authentication

The OpenSSH format used by PassCypher HSM PGP guarantees full compatibility with major operating systems. The sovereign design is based on open standards only — no cloud dependencies, no third-party identity services.

OS SSH client Highlights
Debian / Ubuntu OpenSSH Native support for encrypted private keys.
macOS Built-in OpenSSH Managed via ssh-add or BLE-HID injection.
Windows 10 / 11 PuTTY / OpenSSH Optional conversion via PuTTYgen.
Android Termux / JuiceSSH HID injection support from a paired NFC/BLE device.
iOS Blink Shell Automatic BLE-HID injection after trusted pairing.
Note — permissions & ACL: Linux/macOS rely on POSIX file modes (700/600). Windows relies on NTFS ACLs to restrict access to SSH files (authorized_keys, administrators_authorized_keys).

Official reference — Microsoft: Key-based SSH authentication on Windows (March 10, 2025)

On March 10, 2025 Microsoft updated guidance for OpenSSH key-based authentication on Windows. The document covers creating and managing public/private key pairs and recommends modern asymmetric algorithms (Ed25519, ECDSA, RSA, DSA).

  • Published: March 10, 2025 — Microsoft Learn
  • Scope: OpenSSH key management and secure key storage on Windows
  • Tools & commands: ssh-keygen, ssh-agent, ssh-add, sshd, PowerShell automation, scp, sftp
  • Key files: authorized_keys, administrators_authorized_keys, id_ecdsa.pub, default folder C:\Users\username\.ssh\
  • Algorithms supported: Ed25519, ECDSA, RSA, DSA
  • Best practices: strong passphrase encryption, MFA where applicable, strict file permissions
  • Limitation: passphrases are typically typed or managed by software agents — an exposure vector in conventional setups
administrators_authorized_keys file: On Windows Server 2019 / 2022 / 2025, administrative keys are commonly stored in C:\ProgramData\ssh\administrators_authorized_keys. Protect this file with NTFS ACLs (Administrators & SYSTEM only). In non-localized setups use the SID S-1-5-32-544 to target Administrators.
Read Microsoft — OpenSSH key-based authentication

Sovereign extension of the model

  • Passphrases are injected from hardware (NFC / BLE-HID) — no manual typing, no clipboard exposure.
  • Private keys are protected in an OpenSSH private key format (AES-256 + hardened KDF), preventing any cleartext private key from leaving ephemeral memory.

Combined with OpenSSH on Windows, PassCypher HSM PGP converts Microsoft’s key-based flow into a hardware-anchored sovereign SSH suitable for Zero-Trust and PQ-aware postures.

PowerShell SSH

PowerShell (Windows 11 / Windows Server 2025) includes native OpenSSH integration and automation capabilities. When combined with PassCypher HSM PGP, remote operations can be automated while keeping the passphrase bound to hardware (HSM), avoiding exposure in process memory — an auditable, sovereign automation model.

Sovereign SSH

The hybrid hardware approach embodied by PassCypher HSM PGP implements Sovereign SSH: local key generation inside HSM, OpenSSH passphrase encryption (AES-256), hardened KDFs, typological key rotation — all without cloud or federated identity dependencies. This layer strengthens Microsoft OpenSSH’s trust chain with an auditable, PQ-aware hardware boundary.

Git for Windows integration — SSH key generation

PassCypher HSM PGP uses the Git for Windows environment to generate and manage SSH key pairs. Git for Windows ships ssh-keygen.exe, enabling creation of keys protected by a passphrase. By default keys are placed in the user folder:

C:\Users\\.ssh\

This default placement ensures full compatibility with PowerShell SSH and OpenSSH on Windows while allowing PassCypher to add an additional sovereign protection layer (OpenSSH passphrase encryption + HSM-based passphrase injection), producing a double barrier consistent with the zero-clear-key principle.

Functional SSH Key Separation — Authentication vs Signature

In a sovereign SSH architecture, each key must serve a clearly defined function to minimize exposure risks and enhance traceability. PassCypher HSM PGP enforces this typological separation by encrypting each private key individually within an OpenSSH private key format (AES-256 + hardened KDF), each labeled and fingerprinted according to its role:

  • Authentication key: used exclusively to establish secure SSH connections to remote servers. The private key’s passphrase is injected via BLE-HID from a PassCypher NFC HSM, entered manually, or pasted locally. PassCypher never displays or transmits this passphrase in cleartext—neither on disk nor in persistent memory—ensuring strict compliance with the Zero-Clear-Key principle. The user remains responsible for clipboard and terminal security when typing or pasting manually.
  • Signature key: used for cryptographic validation of files, scripts, or Git commits. It is encapsulated in a separate OpenSSH private key format, traceable and revocable without affecting SSH access.

This encrypted separation enables:

  • Targeted revocation without disrupting active SSH sessions (revocation date management is planned in future PassCypher SSH releases)
  • Enhanced auditability through functional labeling and local logging
  • Native DevSecOps compatibility (Git, CI/CD, signed pipelines)
💡 Best practice: each exported public key should include a typological comment (ssh-keygen -C "auth@vps" or sign@repo") to simplify management within authorized_keys files and PassCypher append-only ledgers.

Server Hardening and Best Practices for SSH Key PassCypher HSM PGP

Even with a PassCypher HSM PGP SSH key, overall security depends on server configuration. Key recommendations for a sovereign posture include:

      • Disable root login: PermitRootLogin no
      • Forbid password authentication: PasswordAuthentication no
      • Restrict SSH users: AllowUsers admin
      • Change default port: use 49152 and block 22 via firewall.
      • Configure UFW or iptables: default DROP policy with targeted exceptions.
      • Enable Fail2ban: maxretry = 3, bantime = 30 min to block brute-force attacks.
      • Activate audit logs: journalctl -u ssh with rotation and ledger tracking.
✓ Sovereignty & Compliance: This configuration aligns with NIS2 and DORA directives. It ensures complete traceability of machine access and identity control within sovereign infrastructures.

FIDO vs SSH — Two Paradigms, Two Security Postures

In the evolving cybersecurity landscape, confusion between FIDO2/WebAuthn and SSH remains common. These two systems rely on fundamentally different trust models and authentication paradigms. FIDO secures a human identity in the browser, while SSH secures a machine identity within the network. Their purposes, exposure surfaces, and sovereignty principles diverge completely.

FIDO2 / WebAuthn — Human-Centric Authentication

      • ↳ Designed to authenticate a user to a web service (browser ↔ server via WebAuthn).
      • ↳ The private key stays sealed within a hardware authenticator (YubiKey, TPM, Secure Enclave, etc.).
      • ↳ Each site or domain creates a unique key pair — ensuring identity isolation.
      • ↳ Relies on an authentication server (RP) and the browser ecosystem.
      • ↳ Requires human presence (biometric, touch, or gesture).
      • ↳ Non-exportable key: strong security but minimal portability.
      • ↳ No local audit trail or autonomous key rotation.

SSH — Machine-Centric Authentication

      • ↳ Designed to authenticate a client system to a remote host (VPS, server, or cluster).
      • ↳ Uses a persistent key, reusable across hosts according to trust policy.
      • ↳ Operates outside browsers — native SSH protocol with encrypted machine-to-machine exchanges.
      • ↳ Allows duplication and backup of keys when securely encrypted.
      • ↳ Relies on a passphrase or hardware HSM for local or injected authentication.
      • ↳ Supports native logging, rotation, and revocation controls.
      • ↳ Fully independent of cloud or third-party identity providers.

⮞ What PassCypher HSM PGP with EviSSH Brings

The SSH Key PassCypher HSM PGP solution extends classic SSH by introducing hardware security and auditability similar to FIDO2 — but within a cloudless sovereign architecture. It brings trust, portability, and compliance into a unified zero-trust framework:

      • → Local SSH key pair generation through PassCypher Engine / EviSSH.
      • → Private key encrypted in its OpenSSH private key format (AES-256 + bcrypt KDF).
      • → Key always encrypted on disk — decryption happens only in volatile memory.
      • Hardware passphrase injection via PassCypher NFC HSM or BLE-HID emulator using AES-128 CBC encryption.
      • → Optional physical presence adds a “sovereign gesture” equivalent to FIDO authentication.
      • → Full cross-platform support: Linux, macOS, Windows, Android, and iOS.
      • → No dependency on browsers, WebAuthn servers, or cloud identity accounts.
      • → Orchestrated key rotation and archival via EviSSH for industrial or defense-grade use.

Strategic Summary

      • FIDO2: Cloud-centric, non-exportable — ideal for web identity, but limited outside browsers.
      • SSH PassCypher: Sovereign, portable — ideal for servers, VPS, and critical infrastructure access.
      • PassCypher merges the hardware assurance of authenticators with the flexibility of native SSH.
      • BLE-HID injected passphrases (≥ 256 bits) ensure post-quantum symmetric resistance.
      • Local audit trails and key rotation enable off-cloud traceability.
      • Both pursue digital trust, but through opposite paths — dependence vs. sovereignty.
Comparative Insight: The AES-128 CBC encrypted BLE-HID channel of PassCypher HSM PGP provides assurance equivalent to a FIDO2 Level 2 authenticator, yet operates without browser or identity server dependency. This hybrid model — hardware-based yet cloud-free — defines PassCypher as a truly post-WebAuthn SSH solution.

Threat Model — Understanding SSH Risks

Before addressing mitigation, it is essential to understand how traditional SSH keys introduce vulnerabilities. Standard SSH connections rely on local files containing private keys. Without hardware protection, these files can be copied, exfiltrated, or reused remotely. The sovereign model deployed in SSH Key PassCypher HSM PGP neutralizes these vectors through zero-clear-key architecture and strict secret segmentation.

Identified Threats

      • Private key theft — exfiltration of ~/.ssh/id_* or cloud-synced copies.
      • Memory dump — retrieval of a key temporarily decrypted in RAM.
      • Keylogger — passphrase capture during manual keyboard entry.
      • BLE MITM — interception during insecure “Just Works” pairing.
      • Unencrypted backup — uncontrolled duplication of the container file.
      • Human error — key reuse or unintended disclosure.
Observation: Most successful attacks exploit a single factor — a private key appearing in plaintext on disk, in memory, or during passphrase input.

SSH Private Key Breaches (2021–2025) — Why OpenSSH AES-256 + HSM-injected passphrase would have prevented them

⮞ Documented Incidents

Codecov — CI Supply Chain Compromise (Jan–Apr 2021)

Lesson: Plaintext secrets in CI pipelines are a critical vulnerability.

PassCypher mitigation: OpenSSH-encrypted keys with HSM-injected passphrases would have rendered exfiltrated keys cryptographically unusable.

Ebury — Persistent SSH Backdoor Campaign (2009–2024)
  • Malware implanted in SSH daemons stole credentials from over 400,000 Linux servers.
  • ESET analysis

Lesson: Keys loaded in memory are vulnerable to persistent malware.

PassCypher mitigation: Keys are decrypted only ephemerally in RAM, never stored persistently.

GitHub — SSH Host Key Exposure (March 2023)
  • An internal SSH host key was accidentally committed to a public repository.
  • GitHub blog

Lesson: Even trusted providers can leak long-lived keys.

PassCypher mitigation: OpenSSH private key formats (id_ed25519 (ou id_rsa, selon le cas)) remain cryptographically inert if published without the HSM.

Cloudflare — Credential Leakage via Logs (2024)
  • A misconfigured worker exposed SSH-related secrets in debug logs.
  • Cloudflare blog

Lesson: Logging and debugging can inadvertently expose secrets.

PassCypher mitigation: Passphrases are injected via BLE-HID and never typed or logged.

OpenSSH — CVE-2025-26465 & CVE-2025-26466 (Feb 2025)

Lesson: Protocol-level flaws can bypass host key trust.

PassCypher mitigation: Host key pinning and hardware-bound passphrase injection neutralize MitM vectors.

GitHub Actions — CI/CD Secret Exposure (Q2 2025)
  • Multiple open-source projects committed `.env` files containing SSH private keys.

Lesson: Plaintext key reuse across environments remains widespread.

PassCypher mitigation: Encrypted key containers (id_ed25519 (ou id_rsa, selon le cas)) are unusable without the physical HSM and injected passphrase.

Operational Conclusion

None of the compromised keys in these incidents were protected by OpenSSH native encryption or hardware-injected passphrases. Each breach exploited plaintext exposure — in scripts, logs, memory, or repositories.

PassCypher HSM PGP Architecture:

  • Private keys are always encrypted at rest (AES-256 OpenSSH)
  • Decryption occurs only ephemerally in RAM
  • Passphrases are injected via sovereign hardware — never typed or logged
  • Even if the encrypted key is exfiltrated, it remains cryptographically inert without the HSM

This model neutralizes every known attack vector used in SSH key compromises to date.

AI-Assisted Breach Vectors — and Why Hardware Sovereignty Matters

Short summary: Since 2021, multiple public incidents have exposed a recurring vulnerability: plaintext secrets or private keys accessible in CI pipelines, memory, or logs. Today, AI-assisted IDEs and Copilot-like assistants extend that exposure surface by indexing local workspace data, terminal outputs, and editor buffers. When an AI assistant can read or summarize visible code or system logs, any plaintext secret becomes an implicit exfiltration vector.

Documented, verifiable examples

      • Codecov supply-chain compromise (2021) — CI scripts leaked plaintext credentials. Hardware encryption (OpenSSH AES-256 + HSM passphrase injection) would have rendered them useless.
      • Ebury SSH backdoors (2009 – 2024) — malware stole SSH keys in memory. Zero-clear-key workflows prevent such exfiltration.
      • Public key leaks (GitHub, 2023 – 2024) — accidental commits of secrets. OpenSSH-encrypted private key files remain inert if exposed.

AI / IDE assistants — new attack surface

Modern code assistants (GitHub Copilot, Amazon CodeWhisperer, etc.) scan active projects and terminals to provide context-aware suggestions. If plaintext secrets exist in that context, they may be processed or exposed inadvertently. Independent audits and vendor advisories highlight potential privacy and data-leak risks when assistants index developer environments without isolation.

Practical takeaway: Any assistant able to read your editor or terminal becomes an additional channel for secret exposure — maliciously or accidentally.

Why hardware sovereignty eliminates this risk

      • Private keys remain sealed in OpenSSH AES-256 containers.
      • Decryption requires a hardware-held passphrase injected via BLE-HID or NFC.
      • No plaintext key or passphrase ever appears on screen, disk, or in clipboard memory.

Even if an AI assistant, IDE plugin, or CI process is compromised, it cannot extract usable secrets — because none exist in cleartext. PassCypher HSM PGP enforces this “zero-clear-key” model from key generation to authentication.

Summary: AI-assisted development expands the attack surface, but hardware-anchored encryption closes it. Sovereign HSM workflows guarantee that sensitive data never enters the scope of software or AI visibility.

Protection Mechanisms — OpenSSH, KDF, and BLE-HID Layers

After defining the threat surface, PassCypher HSM PGP establishes a defense-in-depth model built on three pillars: robust asymmetric encryption, hardened key derivation, and secure physical passphrase injection. Together, these mechanisms ensure that no private key can be extracted — even from a compromised endpoint.

OpenSSH private key format and Integrity Assurance

The private key is stored directly in OpenSSH’s native encrypted format (AES-256 + bcrypt).

      • Encryption: AES-256 (CTR, CBC, or GCM depending on configuration)
      • Integrity: Active MDC (Modification Detection Code).
      • Unique salt: generated by the engine during initial encryption.
      • Optional compression: reduces memory footprint and transmission load.

Key Derivation Function (KDF) and Symmetric Resistance

The OpenSSH encryption key derives from an HSM-generated passphrase:

      • bcrypt: default mode (m=512MB, t=3, p=4) hardened against GPU attacks.
      • PBKDF2 fallback: 250,000 SHA-512 iterations when bcrypt is unavailable.
      • Post-quantum awareness: ≥256-bit entropy ensures symmetric strength equivalent to 2¹²⁸ under Grover’s bound.
⚠ Note: This does not make the system post-quantum proof. Only PQC asymmetric primitives such as CRYSTALS-Dilithium or Kyber will offer long-term quantum resilience.

BLE-HID Injection Channel — Passphrase Security at the Hardware Layer

The passphrase travels through a Bluetooth Low Energy HID channel emulating a hardware keyboard.

      • Secure pairing mode: Secure Connections enforced with numeric authentication (PIN or code), bonding activated for persistence.
      • Communication encryption: AES-128 CBC applied at HID application level.
      • First AES-128 key stored in a secure enclave embedded in the Bluetooth keyboard emulator.
      • Second AES-128 key stored inside Android Keystore (Android ≥ 10) managed by the PassCypher NFC HSM app.
      • Residual risk: a MITM vulnerability can appear if “Just Works” mode is allowed — this mode is strictly forbidden under sovereign policy.
✓ Sovereign Countermeasures: Always enforce Secure Connections, enable bonding, verify BLE key hash integrity, and purge paired devices after use in sensitive environments.
Summary: The combination of OpenSSH + bcrypt + BLE-HID AES-128 forms a coherent ecosystem. Secrets never leave the encrypted perimeter, and the injection vector remains physically controlled.

Rotation and Revocation — SSH Key PassCypher HSM PGP Lifecycle Management

Within sovereign SSH authentication infrastructures, key rotation ensures continuity and traceability without exposing secrets. Unlike simple rotation commands, SSH Key PassCypher HSM PGP follows a four-step operational process: regenerate, deploy, validate, revoke. This method fully preserves the zero-clear-key principle — private keys stay encrypted at rest and are decrypted only in volatile memory.

User Transparency: All operations occur through the PassCypher HSM PGP web extension. EviEngine orchestrates local actions between EviSSH, Git, and PassCypher, performing every step client-side — without hidden or remote processes.

1) Regeneration — Creating a New Sovereign SSH Key Pair

From the integrated EviSSH interface, users regenerate SSH key pairs through Git. The PassCypher Engine automatically encapsulates and encrypts them.

      • Select the algorithm — ed25519 for resilience and interoperability, or rsa-4096 for specific requirements.
      • Assign a distinct label (e.g., pc-hsm-ssh-2025-10) to ensure traceability and simplify future revocation.
      • The private key is encapsulated in an OpenSSH AES-256 encrypted container (id_ed25519 or id_rsa) using a hardened KDF (bcrypt).
      • The public key (*.pub) is generated with a unique comment identifier for use in authorized_keys.
💡 Tip: Every operation runs transparently within PassCypher HSM PGP — no manual entry, no plaintext exposure.

2) Controlled Deployment — Adding Without Downtime

Append the new .pub key to ~/.ssh/authorized_keys on each server without removing the previous one.

# Append-only deployment (port 49152, Debian user)
scp -P 49152 ~/.ssh/id_ed25519_2025-10.pub debian@IPVPS:/tmp/newkey.pub
ssh -p 49152 debian@IPVPS 'umask 077; mkdir -p ~/.ssh; touch ~/.ssh/authorized_keys 
&& grep -qxF -f /tmp/newkey.pub ~/.ssh/authorized_keys || cat /tmp/newkey.pub >> ~/.ssh/authorized_keys 
&& rm -f /tmp/newkey.pub && chmod 600 ~/.ssh/authorized_keys'

3) Validation — Canary Phase

Test connectivity with the new key. The passphrase is injected securely via BLE-HID from the HSM.

ssh -o IdentitiesOnly=yes -i ~/.ssh/id_ed25519_2025-10 -p 49152 debian@IPVPS

Maintain both keys for 24–72 hours to ensure seamless operational continuity.

4) Revocation — Retiring the Old Key

Remove the previous key entry using its label comment.

# Remove key by label match
ssh -p 49152 debian@IPVPS "sed -i.bak '/ pc-hsm-ssh-2025-04$/d' ~/.ssh/authorized_keys"

Repeat across all target hosts. Archive authorized_keys.bak for forensic traceability.

Audit Ledger — Append-Only Record

Maintain a timestamped ledger of key lifecycle operations.

mkdir -p ~/audit && touch ~/audit/ssh-keys-ledger.tsv
printf "%stNEWt%st%sn" "$(date -Iseconds)" 
"$(ssh-keygen -lf ~/.ssh/id_ed25519_2025-10.pub | awk '{print $2}')" "pc-hsm-ssh-2025-10" 
>> ~/audit/ssh-keys-ledger.tsv
printf "%stREVOKEt%st%sn" "$(date -Iseconds)" 
"$(ssh-keygen -lf ~/.ssh/id_ed25519_2025-04.pub | awk '{print $2}')" "pc-hsm-ssh-2025-04" 
>> ~/audit/ssh-keys-ledger.tsv
Summary: Key rotation in PassCypher HSM PGP is procedural, not command-based. You regenerate a new key pair, deploy it, validate access, and retire the old one — all logged locally and executed via the PassCypher extension.

Multi-Host Orchestration Script — Without Third-Party Tools

#!/usr/bin/env bash
set -euo pipefail
PORT=49152
USER=debian
NEWPUB="$HOME/.ssh/id_ed25519_2025-10.pub"
OLD_LABEL="pc-hsm-ssh-2025-04"

while read -r HOST; do
  echo "[*] $HOST :: install new key"
  scp -P "$PORT" "$NEWPUB" "$USER@$HOST:/tmp/newkey.pub"
  ssh -p "$PORT" "$USER@$HOST" '
    umask 077
    mkdir -p ~/.ssh
    touch ~/.ssh/authorized_keys
    grep -qxF -f /tmp/newkey.pub ~/.ssh/authorized_keys || cat /tmp/newkey.pub >> ~/.ssh/authorized_keys
    rm -f /tmp/newkey.pub
    chmod 600 ~/.ssh/authorized_keys
  '
done < hosts.txt

echo "[] Validate the new key on all hosts, then retire the old key:"
while read -r HOST; do
  echo "[] $HOST :: remove old key by label"
  ssh -p "$PORT" "$USER@$HOST" "sed -i.bak '/ ${OLD_LABEL}$/d' ~/.ssh/authorized_keys"
done < hosts.txt
Operational Alert: Keep a fallback access channel (bastion or console) until all hosts validate the new key. Avoid premature deletion.

Sovereign Methods for Passphrase or Password Recovery

PassCypher HSM PGP provides several sovereign recovery mechanisms for SSH authentication secrets. Each method follows the zero-clear-key rule and adapts to operational contexts:

      • Encrypted QR Code (GIF/PNG) — Import a passphrase without display. Ideal for printed backups or planned rotations. → Injects directly into secure input fields.
      • NFC Retrieval from PassCypher HSM — Contactless recovery from sovereign hardware (EviKey or EviPass). → Automatic encrypted injection through BLE-HID channel.
      • Bluetooth or USB Keyboard Emulator (BLE-HID) — AES-128 CBC encrypted keystroke emulation. Works on Linux, macOS, Windows, Android, and iOS, even air-gapped. → Leaves no persistent trace.
      • Manual Memory Entry — Expert-only option: direct entry in secure pinentry. → Sovereign if no autocomplete or logging is active.
PassCypher recovery — import an encrypted QR to restore a passphrase or password without screen exposure
✪ Sovereign Recovery — restore passphrase/password from encrypted QR without screen display before SSH key rotation or revocation.

Recommended Procedure — Restore a Passphrase from a QR Backup

  1. Open the Recovery interface in PassCypher, preferably offline.
  2. Import the QR image (GIF/PNG). Decryption runs locally with no network connection.
  3. Select the usage mode: BLE-HID injection or ephemeral clipboard (auto-clear).
  4. Validate, then purge clipboard memory. Log the action (timestamp, hash, QR source).

Warning: Never paste a passphrase into editors or terminals. Use only ephemeral, auditable input methods.

Summary: PassCypher HSM PGP provides multiple sovereign SSH authentication recovery paths, each compliant with zero-clear-key design. Users can choose based on mobility, auditability, resilience, or maximum sovereignty.

Advanced CLI FIFO Example — For Expert Linux Operators

Use this method only when BLE-HID is unavailable. The FIFO pipe never writes passphrases to disk and prevents shell history leaks.
# 1. Create a secure FIFO
mkfifo /tmp/pc_pass.fifo
chmod 600 /tmp/pc_pass.fifo

# 2. Decrypt via FIFO without storing passphrase
gpg --batch --yes --passphrase-fd 0 --decrypt --output ~/.ssh/id_ed25519 ~/.ssh/id_ed25519.key.gpg < /tmp/pc_pass.fifo & # 3. Write the passphrase transiently, then destroy FIFO printf '%s' "THE_PASSPHRASE" > /tmp/pc_pass.fifo
shred -u /tmp/pc_pass.fifo || rm -f /tmp/pc_pass.fifo

CLI Security Notes:

  • Never store passphrases in environment variables or shell history.
  • Prefer BLE-HID injection via pinentry to avoid process or clipboard exposure.
  • Record each recovery event in the audit ledger (key fingerprint, host, operator, timestamp).

Operational Flow — From Generation to Authentication (SSH Key PassCypher HSM PGP)

The operational flow defines how PassCypher Engine, PassCypher HSM PGP, and optionally the PassCypher NFC HSM with its BLE-HID keyboard emulator collaborate to generate, protect, transport, and authenticate an SSH key whose private component remains encrypted and is only unlocked ephemerally in RAM.
This architecture forms the backbone of the sovereign SSH authentication lifecycle.

⮞ One-Line Summary: Generate → protect private key with passphrase → export .pub → securely store encrypted key → inject passphrase (via PassCypher NFC HSM over BLE-HID or manual input) → decrypt in RAM → SSH connect → immediate purge.

Detailed Steps (Flow)

Generation (EviSSH Integrated in PassCypher HSM PGP, Orchestrated by PassCypher Engine)

▸ The user launches PassCypher Engine or the extension → “SSH Key Generator.”
▸ Selects algorithm (ed25519 recommended).
▸ Defines a label and passphrase method (generated by the HSM or user-specified).
▸ Result: key pair → id_ed25519 (OpenSSH private key encrypted with passphrase) + id_ed25519.pub (public key).
EviSSH suggests secure storage (local folder, EviKey, encrypted NAS). No automatic unlock is performed.

Export & Secure Storage

▸ Export only the public key (.pub) to the server (e.g., OVH, Scaleway, etc.).
▸ Store the encrypted private key (OpenSSH PEM block protected by passphrase) securely: on EviKey NFC, encrypted NAS, or USB drive. The file remains encrypted at rest.

Client Preparation Before Use

▸ Copy the encrypted private key to a controlled directory on the client (e.g., ~/secure/id_ed25519).
▸ Optionally, mount a tmpfs to avoid disk persistence during temporary decryption:

sudo mkdir -p /mnt/ssh-tmp && sudo mount -t tmpfs -o mode=700 tmpfs /mnt/ssh-tmp

▸ Disable or encrypt swap: sudo swapoff -a.

Passphrase Injection (PassCypher NFC HSM → BLE-HID)

▸ The user triggers passphrase injection by bringing the PassCypher NFC HSM near the smartphone or pairing the BLE-HID if not yet bonded.
Security Note — never allow “Just-Works” pairing. Require Secure Connections (Numeric Comparison or PIN) and enforce bonding.
▸ The BLE channel transmits encrypted packets (AES-128 CBC). The device injects the passphrase as a virtual keyboard input — no manual typing.

Ephemeral Decryption in RAM

▸ The OpenSSH prompt requests the passphrase; PassCypher BLE-HID injects it securely.
▸ The private key decrypts only in volatile memory for immediate use.
▸ The id_ed25519 or id_rsa container remains encrypted and intact.
▸ For temporary files, enforce chmod 600 and avoid disk writes when possible.

SSH Authentication

▸ SSH uses the decrypted key in memory:

ssh -i /path/to/id_ed25519 -p 49152 user@IPVPS

▸ Once authenticated, purge the key immediately from memory.

Purge & Post-Usage

▸ If a temporary file was used, delete and unmount it:

shred -u /mnt/ssh-tmp/id_ed25519 || rm -f /mnt/ssh-tmp/id_ed25519
sudo umount /mnt/ssh-tmp

▸ Remove SSH agent sessions: ssh-add -D and eval "$(ssh-agent -k)".
▸ Reactivate swap if needed: sudo swapon -a.

Critical Security Points & Recommendations

  • Never use “Just-Works” BLE pairing — enforce Secure Connections, numeric verification, and bonding.
  • The private key always stays encrypted; only ephemeral RAM decryption occurs.
  • ssh-agent extends exposure time — limit lifetime and purge after use.
  • Disable swap and prevent core dumps: sudo swapoff -a, ulimit -c 0.
  • Enable audit logging for key rotations and passphrase injections.
  • Use hardened cryptography: bcrypt or PBKDF2 with strong parameters and AES-256 encryption. Random ≥256-bit passphrases ensure post-quantum-aware resilience.

Quick Command Examples

# Example: temporary RAM decryption
sudo mkdir -p /mnt/ssh-tmp && sudo mount -t tmpfs -o mode=700 tmpfs /mnt/ssh-tmp
cp /media/evikey/id_ed25519 /mnt/ssh-tmp/id_ed25519
ssh -i /mnt/ssh-tmp/id_ed25519 -p 49152 user@vps.example.com
shred -u /mnt/ssh-tmp/id_ed25519 || rm -f /mnt/ssh-tmp/id_ed25519
sudo umount /mnt/ssh-tmp
💡Final Note: This workflow prioritizes the protection of the private key — encrypted at rest, unlocked only in volatile memory, and controlled through hardware-backed passphrase injection. Security still depends on host integrity and BLE pairing quality — avoid “Just-Works” mode.

EviSSH — Integrated Management & Orchestration

EviSSH is not an external utility but an integrated part of PassCypher HSM PGP. It automates SSH key generation, rotation, and management locally while maintaining universal compatibility across Linux, macOS, and Windows. It operates under EviEngine, orchestrating system-level actions with no cloud or third-party dependency — ensuring trusted and sovereign SSH key management.

Main Capabilities

      • SSH Key Generation via Git, directly within the PassCypher HSM PGP interface.
      • Automatic Encryption of the private key into an OpenSSH private key format (AES-256 + bcrypt).
      • Sovereign Storage on local drives, EviKey NFC HSM, or encrypted NAS devices.
      • Simple Rotation: creation, deployment, and revocation without handling plaintext keys.
      • Full Interoperability: OpenSSH-compatible keys across all major platforms.

Security and Hardware Integration

      • Passphrase Injection via PassCypher NFC HSM using an AES-128 CBC encrypted BLE-HID channel.
      • Optional Hardware Storage on EviKey NFC HSM — encrypted containers remain inaccessible without the defined passphrase.
💡Note: Unlike server-based systems, EviSSH performs no remote decryption or centralized key handling. All operations remain local, auditable, and sovereign — compliant with digital sovereignty standards.

Sovereign Use Case — PassCypher HSM PGP × PassCypher NFC HSM & BLE-HID

This scenario illustrates a full sovereign SSH authentication use case across multi-OS and multi-site environments:

  • PassCypher HSM PGP generates and encapsulates SSH pairs inside an OpenSSH AES-256 container hardened with bcrypt.
  • PassCypher NFC HSM stores and secures the sovereign passphrase, enabling encrypted BLE-HID injection on any compatible system.
  • ✓ The Bluetooth HID emulator acts as an encrypted virtual keyboard (AES-128 CBC), injecting passphrases locally without manual input — eliminating keylogger risk.
  • Example: an administrator connects to a Debian VPS from macOS or Android by simply tapping the PassCypher NFC HSM. The passphrase is securely injected over BLE-HID and decrypted in RAM only.
  • Operational Benefit: portable, audit-ready, and cloud-independent sovereign SSH authentication across Linux, macOS, Windows, Android, and iOS.

This integration — PassCypher HSM PGP × PassCypher NFC HSM & BLE-HID — embodies Freemindtronic’s zero-clear-key model:
no private key ever exists in plaintext on disk or network, and access requires both the physical HSM and secure BLE pairing.

Key Insights

  • PassCypher HSM PGP → zero private key exposure, even temporarily.
  • AES-128 BLE-HID injection → neutralizes keyloggers and keyboard injection attacks.
  • OpenSSH AES-256 + bcrypt → robust symmetric defense, post-quantum-ready posture.
  • Rotation, audit, timestamped ledger → complete traceability of machine identities.
  • EviSSH orchestration → multi-HSM sovereign management, no cloud or third-party dependency.

Weak Signals — Emerging Trends in Sovereign SSH Security

⮞ Weak Signals to Watch

  • Rapid adoption of BLE-HID workflows across multi-OS DevSecOps environments.
  • Early experiments with hardware-accelerated bcrypt KDF inside next-gen HSMs.
  • Growth of OpenPGP v6 projects embedding hybrid PQC-ready modules.
  • Increasing NIS2/DORA regulatory pressure for mandatory machine-access logging.
  • A visible convergence between SSH, FIDO2, and PQC in emerging sovereign access architectures.

What We Haven’t Covered — Beyond SSH Key PassCypher HSM PGP

⧉ Areas Not Covered in This Chronicle

This article focused on sovereign SSH authentication for VPS access and secure key lifecycle management.
However, several advanced topics remain for future deep-dives:

  • Direct integration into CI/CD pipelines and automated DevOps flows.
  • Upcoming FIDO2 extensions and hybrid post-quantum support.
  • Automated BLE security audits on mobile systems.
  • Real-time inter-HSM synchronization for distributed infrastructures.

These aspects will be detailed in the upcoming series Tech Fixes & Security Solutions.

FAQ — SSH Key PassCypher HSM PGP

A Hybrid HSM for Sovereign SSH Key Management

PassCypher HSM PGP is a hybrid hardware/software security module by Freemindtronic.
It generates, encrypts, and protects SSH and OpenPGP keys using AES-256 encryption and memory-hardened KDFs (PBKDF2 or bcrypt).
Through its NFC and BLE-HID interfaces, passphrases are injected securely without ever exposing private keys — ensuring a zero-trust and sovereign SSH authentication posture.

Secure Duplication Without Losing Sovereignty

Yes. The encrypted id_ed25519 or id_rsa file can be copied across multiple sovereign media (EviKey NFC, encrypted NAS, printed QR).
It remains unusable without the matching passphrase and KDF — ensuring secure SSH key storage even under physical breach.

Cryptographic Resilience in a PQ-Aware Context

A random ≥256-bit passphrase combined with a hardened KDF and AES-256 encryption provides strong symmetric resistance, even against Grover-based quantum attacks.
However, it does not replace PQC algorithms for asymmetric operations.
This model offers robust, yet transitional, post-quantum-aware SSH security.

Sovereign Recovery Without Cloud Dependency

If the encrypted key file (id_ed25519 or id_rsa) was backed up — via printed QR, EviKey NFC, or encrypted media — it can be restored.
The passphrase injection via PassCypher NFC HSM enables full recovery without external servers or cloud reliance.

Local Use Only — Maintain Zero-Clear-Key Posture

While `ssh-agent` offers convenience, it increases memory exposure.
It’s safer to rely on direct BLE-HID passphrase injection — ensuring ephemeral decryption only in RAM and compliance with zero-clear-key SSH architecture.

Local Operations, Zero Private-Key Export

Yes. Sensitive operations (signing, partial decryption) execute directly inside the HSM engine.
The private key never leaves the secure process, ensuring full hardware-anchored SSH authentication.

Incompatible with Sovereign SSH Key Architecture

Agent forwarding conflicts with the zero-trust SSH access model.
Passphrases and private keys must never transit remotely.
Keep SSH-agent sessions strictly local, favoring hardware injection over forwarding.

Best Practices for Secure BLE Pairing

Even with Secure Connections Only, downgrade risks exist on some platforms.
To mitigate them:

      • Always require numeric-code authentication (6-digit PIN or comparison).
      • Enforce bonding and store pairing keys securely (Secure Enclave / Android Keystore).
      • Ensure BLE-HID channels use AES-128 CBC encryption.
      • Regularly review paired device lists and revoke unused entries.

This ensures true end-to-end BLE encryption for sovereign SSH workflows.

Multi-Device Backups with Full Sovereignty

Yes — if the passphrase and KDF remain confidential.
The encrypted key file can reside on EviKey NFC, NAS, USB drive, or printed QR.
This enables secure cold backups with zero cloud exposure.

100% Offline Operation — Full Sovereign Mode

Yes. All operations (generation, encryption, injection, rotation) are performed locally, with no network connection required.
Ideal for air-gapped SSH environments or classified infrastructures.

Recommended SSH Key Lifecycle Management

Key rotation every 6–12 months is recommended for administrative access.
PassCypher automates this through its four-step rotation process — each event logged in the local audit ledger for compliance verification.

Full Interoperability with OpenSSH and Industry Standards

Yes. Keys generated by PassCypher follow OpenSSH format standards.
They can be used in PuTTY, Git Bash, Termux, or native OpenSSH clients — maintaining multi-OS SSH key interoperability.

Real-World Key Theft Techniques & Incidents

Several incident reports and security analyses reveal how SSH private keys have been compromised:

      • Malware / Rootkit extraction: Once an attacker achieves code execution or root privileges, they can exfiltrate key files (commonly stored in ~/.ssh). Notable examples include Careto and Windigo malware.
      • Memory scraping of ssh-agent: An attacker with root or debugging privileges can dump memory and recover decrypted private keys or agent cache. > “If you can run code as root, it’s game over”
      • Accidental public exposure (git commits): A well-known case: a deploy SSH private key got committed via a CI/CD auto-format script.
      • Malicious packages stealing credentials: Some npm / PyPI trojan packages have been observed harvesting SSH keys from developers’ workstations. :contentReference
      • Fault / side-channel recovery: Researchers recovered SSH private keys from ephemeral computational errors during protocol execution over multiple captures.
      • Insider threats or misconfiguration: In compromised SSH host reports, malicious keys added to `authorized_keys` allowed lateral movement.

These cases illustrate high-risk attack vectors such as memory dumps, keylogging bypass, supply chain trojans, protocol-level flaws, and insider injection.
Incorporating defense against them is critical for any robust SSH key architecture.

SSH Protocol Weaknesses & Attacks

Yes — recent academic work shows that subtle protocol-level flaws can be exploited:

      • Terrapin Attack (prefix truncation): Allows partial truncation of encrypted SSH packets during handshake, enabling attacker to downgrade public-key authentication or hijack sessions.
      • Strict KEX violations: Some SSH server implementations do not enforce the “strict key exchange” mode, making them vulnerable to handshake manipulations or rogue session takeover.
      • Weak randomness or biased nonce reuse: In ECDSA or deterministic signature schemes, poorly generated nonces or biases may leak private key bits. A recent study revealed even PuTTY keys became recoverable from just 58 signatures.

These attacks underscore the importance of using hardened, current SSH versions, enforcing latest mitigations (strict KEX), and avoiding signature schemes with weak nonce behaviors.

Public Key Theft is Harmless (if private key and passphrase are safe)

No — possessing the public key alone does not enable SSH login. The public key is, by design, meant to be shared.

However, public-key knowledge can aid an attacker in:

      • Performing cryptanalysis or side-channel attacks if private key generation was flawed.
      • Launching chosen-ciphertext or protocol downgrade attacks — e.g., leveraging protocol flaws like Terrapin to force weaker algorithms.

Therefore, the core protection lies in safeguarding the private key and controlling its exposure.

Memory & Agent Exposure — Key Risk in Conventional SSH

Using `ssh-agent` or unencrypted key caching often increases exposure risk because:

      • The agent stores decrypted keys in memory (RAM), which can be dumped by a local attacker with high privileges.
      • Agent forwarding can propagate that risk across hops if an intermediary is compromised.
      • Even if the key is encrypted at rest, once loaded into agent, subsequent use is vulnerable.

Thus, many advanced architectures avoid persistent agent usage, instead relying on ephemeral decryption and non-forwardable injected secrets.

Supply Chain & Library Backdoor Risks

Yes — indirect attacks via compromised software are a known vector:

      • Backdoored compression library (XZ Utils): In 2024, a malicious backdoor was injected into the `xz` utility which, under specific conditions, could hijack `sshd` authentication to allow remote root compromise.
      • Trojanized OSS dependencies: Attackers may infiltrate software libraries used in buildchains or CI/CD to introduce key leakage routines or drift into binaries.

To defend, one must enforce supply chain assurance, reproducible builds, binary verification, and minimal trusted dependencies.

Real incidents and evidence

Yes. See documented cases and official reports in the section Documented SSH / Credential Breaches.

Glossary — SSH Key PassCypher HSM PGP

SSH Key Pair

A cryptographic identity composed of a public and a private key. PassCypher generates them locally using Ed25519, ECDSA, or RSA.
The private key is encrypted directly by OpenSSH using a passphrase (bcrypt KDF + AES-256), while the public key is exported in OpenSSH format for use in authorized_keys or administrators_authorized_keys.

Authorized Keys

OpenSSH file used to validate public keys during authentication. On Linux it resides under ~/.ssh/authorized_keys; on Windows, under C:\Users\username\.ssh\. PassCypher supports hardware-based injection into this file.

administrators_authorized_keys

File used by Windows Server 2019 / 2022 / 2025 for administrative SSH access, located in C:\ProgramData\ssh\. It must be protected by NTFS ACLs allowing access only to Administrators and SYSTEM. The SID S-1-5-32-544 corresponds to the Administrators group.

SSH Key Management

Lifecycle of key identities — generation, encryption, injection, rotation, and recovery — performed locally without cloud dependency.
PassCypher manages OpenSSH-encrypted keys and injects passphrases via NFC or BLE-HID hardware channels.

SSH Key Rotation

Lifecycle of SSH credentials (generate → deploy → validate → revoke). Managed by PassCypher’s append-only ledger for full traceability across Ed25519, ECDSA, and RSA formats.

SSH Key Recovery

Sovereign restoration of encrypted SSH keys or passphrases using QR codes, NFC HSM, or BLE-HID injection — without plaintext exposure, fully compatible with OpenSSH workflows.

SSH Key Injection

Hardware-based transmission of encrypted passphrases via BLE-HID or NFC.
Reduces interception risks during authentication, compatible with scp, sftp, and OpenSSH clients across Windows and Linux.

SSH Key Security

Best practices for SSH hardening: AES-256 encryption, bcrypt KDF, local key generation, audit trails, and enforcement of zero-clear-key.
Avoids unsupported directives (AuthorizedKeysCommand) on Windows.

SSH-Agent / ssh-add

Volatile memory service that temporarily caches decrypted keys. PassCypher replaces this with hardware injection and ephemeral decryption, ensuring no keys persist in memory.

ssh-keygen

Standard OpenSSH utility for key generation. PassCypher automates it through its EviEngine, producing OpenSSH-native private keys encrypted by passphrase, and OpenSSH-compatible public keys.

Public Key Authentication

Login mechanism based on asymmetric cryptography.
PassCypher enhances it with hardware-based passphrase delivery, sovereign audit logging, and offline key generation (no OpenSSH passphrase encryption).

Fingerprint

SHA-256 hash uniquely identifying an SSH key. Used for authenticity verification and recorded in PassCypher’s audit ledger. Matches ssh-keygen -lf output.

Tmpfs

RAM-based filesystem used for temporary decryption, ensuring no persistent storage of decrypted keys.

Zero-Clear-Key

Freemindtronic’s sovereign principle: private keys never exist unencrypted on disk or network.
Decryption occurs only in volatile memory (RAM).

Secure VPS Access

Remote server authentication using locally generated and encrypted OpenSSH keys.
Removes the need for SSH agent forwarding, fully offline and cross-platform.

SSH Key Audit Trail

Append-only chronological record of SSH key events — generation, rotation, revocation, recovery — providing local forensic traceability.

ACL (Access Control List)

Windows NTFS security model defining granular file access. PassCypher enforces restrictive ACLs on SSH key files (authorized_keys, administrators_authorized_keys) to align with Microsoft OpenSSH guidelines.

SID (Security Identifier)

Windows internal numeric identifier representing users or groups. The SID S-1-5-32-544 designates the Administrators group. Used by PassCypher to assign access in non-localized systems.

Git for Windows

Windows environment bundling ssh-keygen.exe and OpenSSH utilities. Used by PassCypher to generate SSH key pairs natively and store them in C:\Users\\.ssh\, maintaining compatibility with PowerShell SSH.

PowerShell SSH

Native Windows 11 / Server 2025 module allowing SSH automation through PowerShell. Integrated with PassCypher HSM for secure remote execution while retaining passphrase protection inside hardware.

Sovereign SSH

Freemindtronic’s sovereign model for SSH identity management — local generation, OpenSSH AES-256 encryption, bcrypt KDF, typological key rotation, and auditability, fully cloud-independent and sovereignty-compliant.

Windows Server 2025 / 2022 / 2019

Microsoft server platforms with native OpenSSH integration. PassCypher extends their capabilities with hardware-based passphrase management and OpenSSH-native key encryption for sovereign compliance.

OpenSSH for Windows

Microsoft-integrated implementation of OpenSSH. Fully compatible with PassCypher’s sovereign modules, enhancing key-based authentication via secure BLE-HID/NFC passphrase delivery.

💡 Note: This glossary is part of Freemindtronic’s sovereign terminology corpus.
It ensures semantic alignment across the PassCypher, EviKey, and DataShielder ecosystems, supporting technical precision and sovereign consistency within this chronicle.

Strategic Outlook — Toward Post-Quantum Sovereign SSH Authentication

The SSH Key PassCypher HSM PGP framework anticipates the next evolution of secure access: a convergence between hardware sovereignty, quantum-resilient cryptography, and zero-trust architectures. By merging hardware-backed SSH authentication, memory-hardened encryption, and physical key injection, PassCypher bridges classical cryptography with future PQC-hybrid designs.

Future versions will introduce:

      • Hybrid primitives (ed25519 + CRYSTALS-Dilithium) for quantum-safe SSH signatures.
      • BLE 5.3 channels with AES-256 GCM encryption.
      • Native signed-ledger integration using embedded blockchain audit trails.

Until PQC becomes mainstream, the zero-clear-key model remains the strongest defense: never let a private key exist outside encrypted volatile memory.

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

Illustration cyber réaliste représentant SSH Key PassCypher HSM PGP, avec un ordinateur affichant un terminal SSH, un HSM USB et un environnement de serveurs OVHcloud en arrière-plan

SSH Key PassCypher HSM PGP fournit une chaîne souveraine : génération locale de clés SSH au format natif OpenSSH, directement chiffrées par passphrase lors de leur création, injectée via PassCypher NFC HSM ou saisie clavier. La protection repose sur le chiffrement interne d’OpenSSH (AES-256-CBC. Cette méthode zéro-clé-en-clair permet des passphrases longues (≥256 bits) injectées via BLE-HID pour éliminer les risques de keyloggers lors d’accès à VPS Debian, macOS ou Windows.

Résumé express — Une authentification SSH souveraine pour tous les OS

⮞ En bref

Lecture rapide (≈ 5 minutes) : générez votre paire SSH dans PassCypher HSM PGP, exportez la seule clé publique vers le serveur, et conservez la clé privée au format OpenSSH natif (id_rsa, id_ecdsa, id_ed25519), directement chiffrée par passphrase lors de sa création (aucun conteneur OpenPGP). Le déchiffrement est éphémère, déclenché par une passphrase fournie manuellement ou injectée par PassCypher NFC HSM (émulateur BLE-HID).
Cette méthode garantit une authentification SSH totalement souveraine et une sécurité sans exposition de la clé privée, même sur disque ou en transfert.

⚙ Concept clé

Comment sécuriser une clé SSH ?
Freemindtronic répond à cette question par une approche souveraine : génération locale dans le HSM, encapsulation OpenPGP (AES-256 + KDF durci) et passphrase injectée via PassCypher NFC HSM ou saisie clavier. Cette architecture zéro-clé-en-clair permet des passphrases longues (≥ 256 bits) injectées via BLE-HID, éliminant les risques de keyloggers lors des accès à des VPS Debian, macOS ou Windows.

Interopérabilité

Compatible : Debian / Ubuntu / Fedora / FreeBSD / macOS / Windows (WSL, PuTTY) / Android (Termux, clients SSH) / iOS (Blink, etc.).
Format OpenSSH natif = portabilité maximale.

Paramètres de lecture

Temps de lecture résumé express : ≈ 5 minutes
Temps de lecture résumé avancé : ≈ 7 minutes
Temps de lecture chronique complète : ≈ 39 minutes
Dernière mise à jour : 2025-10-02
Niveau de complexité : Avancé / Expert
Densité technique : ≈ 73 %
Langues disponibles : CAT · EN · ES · FR
Spécificité linguistique : Lexique souverain — densité technique élevée
Ordre de lecture : Résumé → Architecture → Sécurité → Flux → Rotation → EviSSH → Ressources
Accessibilité : Optimisé pour lecteurs d’écran — ancres sémantiques incluses
Type éditorial : Chronique stratégique — Sécurité numérique ·Actualités techniques
À propos de l’auteur : Jacques Gascuel, inventeur et fondateur de Freemindtronic Andorra, spécialiste des technologies HSM NFC, de la cryptographie embarquée et des architectures zero trust. Ses travaux visent la souveraineté numérique et la préparation aux ruptures post-quantiques.

Note éditoriale — Ce guide opérationnel est maintenu : il évoluera avec les retours terrain, audits et avancées PQC.

"Diagramme

Résumé avancé — Architecture et flux SSH sécurisé via SSH Key PassCypher HSM PGP

⮞ En détail

Flux opérationnel : Génération (PassCypher HSM PGP — recommandation ed25519) → Chiffrement natif OpenSSH (AES-256-CTR + bcrypt KDF) → Export de la clé publique (.pub OpenSSH) → Stockage de la clé privée chiffrée au format OpenSSH (`id_*`) — duplications sûres possibles → Usage (décryptage éphémère local déclenché par passphrase fournie par le HSM ou saisie) → Connexion SSH (ssh -i ~/.ssh/id_* -p [port]).

Au-delà des plateformes classiques de gestion des clés SSH

Alors que la plupart des solutions de gestion des clés SSH reposent sur des infrastructures logicielles centralisées, des coffres-forts cloud ou des architectures dites zero-knowledge, PassCypher HSM PGP introduit une approche souveraine et matérielle. Toutes les opérations cryptographiques — de la génération à la rotation et à la gestion du cycle de vie des clés — sont réalisées localement dans le module HSM, sans intermédiaire logiciel ni dépendance réseau.

Cette conception combine les avantages des architectures zero-knowledge avec ceux de l’isolement matériel. Chaque clé SSH est générée au sein du HSM, encapsulée dans un conteneur OpenPGP AES-256 et conservée dans un état zéro clé en clair. Contrairement aux solutions logicielles qui synchronisent les secrets via un serveur ou un cloud, PassCypher garantit qu’aucune clé privée ni passphrase ne quitte jamais le périmètre matériel de confiance.

Cette gestion matérielle souveraine des clés SSH offre les mêmes capacités d’automatisation que les gestionnaires de secrets traditionnels — notamment la rotation des clés, le partage sécurisé au sein d’une équipe, la traçabilité complète et l’audit en temps réel — tout en assurant une indépendance totale vis-à-vis des services cloud. Le résultat est une solution zero cloud, zero clear key et post-quantum ready adaptée aux environnements souverains et critiques.

Pourquoi sécuriser SSH avec un HSM

Les clés SSH non chiffrées sont exposées au vol, aux copies et aux sauvegardes non souhaitées. PassCypher change le paradigme : la clé privée est encapsulée dans un conteneur chiffré et ne peut être utilisée qu’après un déchiffrement contrôlé. L’injection matérielle de la passphrase (NFC / BLE-HID) supprime le besoin de taper la passphrase sur un clavier exposé aux keyloggers.

Architecture HSM PGP — éléments techniques

  • Format natif OpenSSH : AES-256-CBC selon implémentation, avec dérivation bcrypt intégrée ;
  • Aucune encapsulation OpenPGP : la clé privée reste autonome et directement utilisable sur tout système compatible OpenSSH  ;
  • Passphrase : génération aléatoire dans le HSM (recommandation ≥ 256 bits pour posture « PQ-aware ») ;
  • Injection : NFC pour déclenchement + émulateur BLE-HID pour saisie automatique et protection anti-keylogger ;
  • Duplication sûre : fichiers *.key.gpg copiables (EviKey NFC HSM, clé USB, SD, NAS, QR imprimé) —
    sécurisés tant que la passphrase/KDF restent protégés.

Utiliser SSH Key PassCypher HSM PGP sur un VPS Debian et au-delà

⮞ TL;DR

Cette section détaille la mise en œuvre concrète : génération d’une paire SSH via PassCypher HSM PGP, export dans un dossier comprenant la clé privée sécurisée (*.key.gpg) avec un mot de passe et sa clé publique. Lors de l’utilisation de la clé privée depuis un support de stockage même non sécurisé, le déchiffrement est réalisé de manière éphémère en mémoire volatile (RAM). La passphrase/mot de passe de la clé privée est obligatoire.
Elle peut être saisie au clavier ou, avantageusement, injectée depuis PassCypher NFC HSM via son émulateur de clavier Bluetooth sécurisé (BLE-HID) chiffré en AES-128 CBC. Cette méthode fluide, sans saisie manuelle, permet une authentification SSH totalement souveraine
sur VPS Debian (OVH) et autres environnements Linux, macOS ou Windows. Elle inclut également les bonnes pratiques de durcissement serveur (sshd_config, iptables, Fail2ban) et d’audit (journaux, rotation des clés, traçabilité horodatée).

Note :
L’utilisation d’un émulateur de clavier BLE-HID pour l’injection de passphrases complexes (> 256 bits) remplace avantageusement les solutions par QR code ou agents logiciels. Elle garantit à la fois la mobilité, la compatibilité multi-OS et une résistance native aux enregistreurs de frappe et aux attaques par injection réseau.

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

In sovereign cybersecurity ↑ Chronique appartenant aux rubriques Digital Security et Tech Fixes & Security Solutions. Voir les dossiers connexes : EviSSH — gestion SSH HSM, EviKey NFC HSM, SSH VPS Sécurisé — PassCypher HSM, PassCypher HSM PGP — note technique.

Chronique – EviSSH — Moteur embarqué dans PassCypher HSM PGP

EviSSH est la technologie embarquée dans PassCypher HSM PGP dédiée à la génération, la gestion et le stockage souverain des clés SSH.
Elle s’appuie sur le moteur EviEngine pour exécuter localement les opérations cryptographiques nécessaires à la création d’une paire de clés SSH et à son encapsulation chiffrée.
Aucune donnée, clé ni métadonnée n’est transmise à un serveur ou service cloud : toutes les opérations sont réalisées localement, côté client.

Rôle et fonctionnement

  • Interface intégrée — EviSSH est accessible directement depuis l’extension web PassCypher HSM PGP.
  • Génération locale — Les paires de clés SSH sont générées à l’aide de Git for Windows (ou de l’équivalent natif sous Linux/macOS) via l’orchestration d’EviEngine.
  • Chiffrement — La clé privée est générée et chiffrée directement par OpenSSH via passphrase (AES-256 + bcrypt KDF) la clé reste dans son format OpenSSH natif.
  • Stockage souverain — L’utilisateur choisit librement l’emplacement d’enregistrement : local (dossier .ssh), EviKey NFC HSM, NAS ou support externe.
  • Interopérabilité — Les clés publiques sont exportées au format OpenSSH standard, pleinement compatibles avec Debian, Ubuntu, macOS, Windows, Android et iOS.

EviEngine — cœur d’orchestration

EviEngine assure la communication entre le navigateur, le système et les composants matériels HSM.
Il orchestre la génération de clés via Git, gère les licences d’extension PassCypher et assure l’exécution locale sans serveur.
Chaque action est réalisée directement sur la machine de l’utilisateur, garantissant la souveraineté totale du processus.

 Intégration HSM

  • PassCypher NFC HSM — Injection matérielle de la passphrase via canal BLE-HID chiffré (AES-128 CBC).
  • EviKey NFC HSM — Stockage matériel sécurisé des fichiers de clés encapsulées (*.key.gpg), protégés par la passphrase définie dans PassCypher.

Note : EviSSH n’est pas un outil séparé ; c’est une brique native de PassCypher HSM PGP reposant sur EviEngine. Son rôle est d’unifier la génération, la gestion et la souveraineté du cycle de vie des clés SSH dans un environnement 100 % local et auditable.

Génération d’une clé SSH souveraine avec PassCypher HSM PGP

La génération d’une clé SSH est effectuée par le module EviSSH intégré à PassCypher HSM PGP, via le moteur EviEngine. Cette opération repose sur Git pour la création native de la paire de clés SSH, immédiatement encapsulée et chiffrée par PassCypher HSM PGP. Aucune donnée n’est transmise à un service tiers : tout le processus est exécuté localement.

Interface PassCypher HSM PGP — génération de clé SSH sécurisée avec sélection d’algorithme

Sélection d’algorithme — Choix cryptographique dans l’extension PassCypher

L’utilisateur sélectionne l’algorithme et la taille de clé directement depuis l’interface de l’extension web PassCypher HSM PGP. Les options disponibles sont regroupées par famille :

  • RSA : 2048 bits · 3072 bits · 4096 bits
  • ECDSA : 256 bits (p-256) · 384 bits (p-384) · 521 bits (p-521)
  • EdDSA : ed25519 — recommandé pour sa robustesse, sa compacité et sa compatibilité native avec OpenSSH

Étapes de génération — Processus transparent via l’extension web

  1. Ouvrir le module SSH dans PassCypher HSM PGP.
  2. Choisir un nom de clé (label) unique, par ex. pc-hsm-pgp-ssh-key.
  3. Sélectionner l’algorithme souhaité (ed25519 ou rsa-4096 selon le cas).
  4. Définir la passphrase : saisie manuellement par l’utilisateur ou injectée via PassCypher NFC HSM avec son émulateur BLE-HID sécurisé AES-128 CBC). Cette passphrase est celle utilisée pour chiffrer la clé privée encapsulée par PassCypher HSM PGP.
  5. Valider : EviSSH génère la paire SSH via Git, puis PassCypher HSM PGP chiffre la clé privée. Les fichiers sont automatiquement enregistrés dans le dossier défini par l’utilisateur (par défaut : ~/.ssh/ ou sur un support matériel tel qu’un EviKey NFC HSM).

Résultat — Artefacts exportés

  • id_ed25519.pub — la clé publique, à copier sur le serveur distant.
  • id_ed25519 — la clé privée SSH au format OpenSSH natif, chiffrée par passphrase (AES-256-CBC + bcrypt KDF).

La passphrase, de préférence ≥256 bits d’entropie, peut être saisie depuis la mémoire humaine ou injectée automatiquement depuis le HSM via BLE-HID — évitant toute saisie sur un clavier exposé aux keyloggers.

Générateur de passphrase mémorisable — option « deux-mots + symbole »

✓ Objectif : Proposer une passphrase aléatoire mais facile à retenir : génération de 2 à 4 mots choisis au hasard dans une liste large + injection de caractères spéciaux séparateurs. Utile pour les usages mobiles ou opérateurs où la mémorisation est requise sans sacrifier l’usage d’un KDF durci et de l’injection HSM (BLE-HID / NFC).

Le générateur intégré permet :

  • de tirer n mots aléatoires depuis une wordlist embarquée (taille configurable) ;
  • d’insérer automatiquement 1–3 caractères spéciaux entre les mots ou en suffixe/prefixe ;
  • d’afficher une estimation d’entropie (indicative) ;
  • d’enregistrer la passphrase dans le HSM (optionnel) ou de l’injecter via BLE-HID au moment du chiffrement du conteneur *.key.gpg.

⚠ Alerte entropie2 mots seuls offrent une entropie limitée sauf si la wordlist est très large (≥ 2²⁰ entrées). Pour une résistance robuste :

  • préférer 3–4 mots issus d’une large wordlist (ex. > 10k entrées) ;
  • ajouter au moins 2 caractères spéciaux aléatoires et un séparateur non alphabétique ;
  • utiliser Argon2id (m élevé) dans PassCypher pour durcir la dérivation avant AES-256 ;
  • pour posture « PQ-aware » : privilégier une passphrase d’entropie effective ≥ 256 bits ou confier la génération aléatoire au HSM.

Exemple pratique

Générer une passphrase mémorisable à 3 mots + 2 caractères spéciaux :

# Exemple conceptuel (interface PassCypher) 1) Choisir wordlist : « common-wordlist-16k » 2) Nombre de mots : 3 3) Séparateur : '-' ; caractères spéciaux aléatoires : '#!' → Exemple généré : atlas-siren#! 

Utilisation : injecter via PassCypher NFC HSM (BLE-HID) au moment du chiffrement du conteneur :

gpg --symmetric --cipher-algo AES256 --output id_ed25519.key.gpg --compress-level 0 id_ed25519 # la passphrase est fournie par PassCypher BLE-HID au prompt pinentry 

Recommandations opérationnelles

  • Si la clef protège un accès critique (production, bastion) : préférer la génération HSM ou augmenter le nombre de mots ;
  • Activer Argon2id (m >= 512MB, t >= 3, p >= 4) côté PassCypher lors du chiffrement ;
  • Ne jamais conserver la passphrase en clair ni la noter sans protection matérielle ;
  • Vérifier l’estimation d’entropie affichée dans l’UI et ajuster (mots supplémentaires / spéciaux) si nécessaire.
Interface PassCypher HSM PGP — génération de passphrase sécurisée avec caractères spéciaux pour clé SSH OpenPGP
✪ Interface PassCypher — générateur de passphrase mémorisable (ex. : « academic*physical ») — option deux-mots + caractères spéciaux pour facilité de mémorisation.
✓ Note souveraine — Le générateur aide l’opérateur, mais la souveraineté est maximale quand la passphrase est produite ou confirmée par le HSM : on évite ainsi tout risque de prédictibilité liée à une wordlist trop petite.

Générateur ASCII-95 — mot de passe / passphrase haute-entropie

L’interface illustrée ci-dessous permet de générer des mots de passe ou passphrases à très haute entropie, en s’appuyant sur l’ensemble complet des 95 caractères ASCII imprimables.Contrairement à un générateur « mots » mémorisables, ce mode vise la sécurité maximale : longueur libre, activation/désactivation fine des classes (majuscules, minuscules, chiffres, symboles) et estimation d’entropie en temps réel — souvent ≥ 256 bits selon la longueur choisie. Ce flux est destiné aux scénarios où la passphrase sera stockée de façon chiffrée (QR chiffré, HSM) et injectée via l’écosystème PassCypher (BLE-HID / NFC) sans affichage en clair à l’écran.

Interface PassCypher HSM PGP montrant la génération d’un mot de passe de haute entropie utilisant les 95 caractères ASCII imprimables (≈256 bits ou plus)
✪ Générateur avancé — mot de passe/passphrase basé sur l’ensemble ASCII-95 (caractères imprimables). Longueur et classes de caractères configurables ; export QR/HSM possible. Conçu pour produire des secrets ≥256 bits d’entropie selon les paramètres choisis.

Export QR Code — transfert direct vers un HSM NFC PassCypher

Une fois le mot de passe ou la passphrase haute entropie généré via le module ASCII-95, l’utilisateur peut exporter le secret au format QR Code chiffré. Ce code peut ensuite être scanné depuis un smartphone Android NFC utilisant l’application Freemindtronic embarquant PassCypher NFC HSM. Cette interopérabilité souveraine permet le transfert d’un secret du HSM logiciel vers le HSM matériel sans exposition réseau ni enregistrement sur disque. Ensuite vous pouvez utiliser PassCypher NFC HSM avec l’émulateur de clavier Bluetooth pour saisir le mot de passe ou la passphrase haute entropie.

Interface PassCypher HSM PGP affichant un QR Code d’export de mot de passe pour import direct dans un HSM NFC via smartphone Android
✪ Export souverain — génération d’un QR Code chiffré pour transfert direct vers un HSM NFC PassCypher via smartphone Android, sans passage par le cloud.

Exemple réel — Clé privée RSA 4096 bits protégée par passphrase

Même une clé RSA 4096 bits, si stockée en clair, reste vulnérable. Dans PassCypher HSM PGP, elle est encapsulée et protégée par une passphrase de 141 bits d’entropie par défaut, rendant toute exfiltration ou brute-force mathématiquement irréaliste.

Voici à quoi ressemble une clé privée SSH RSA 4096 bits encapsulée au format OpenSSH, chiffrée par passphrase :

plaintext
-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jdHIAAAAGYmNyeXB0AAAAGAAAABA+ghFLmp
Oiw0Z3A4NKn2gHAAAAGAAAAAEAAAIXAAAAB3NzaC1yc2EAAAADAQABAAACAQDK4d0ntIeb
... (contenu tronqué pour lisibilité) ...
55XA==
-----END OPENSSH PRIVATE KEY-----
💡 Bon à savoir — Le HSM affiche en temps réel le niveau d’entropie de la passphrase (≈ 141 bits par défaut, jusqu’à >256 bits selon la longueur et le KDF choisi), offrant une visibilité directe sur la robustesse du secret généré. Cette structure commence par BEGIN OPENSSH PRIVATE KEY, suivie d’un bloc base64 chiffré. Le champ b3BlbnNzaC1rZXktdjE= indique une version OpenSSH v1 avec chiffrement activé. Le mot-clé aes256-ctr ou aes256-cbc est implicite selon la configuration du moteur.

Intégration sur VPS (ex. OVH Debian 12)

L’intégration d’une clé SSH PassCypher HSM PGP à un VPS s’effectue en insérant la clé publique (.pub) dans le fichier authorized_keys du serveur. OVH permet de le faire directement lors de la création du VPS via son tableau de bord.

Insertion manuelle post-déploiement

ssh -p 49152 debian@IPVPS "mkdir -p ~/.ssh && chmod 700 ~/.ssh && cat >> ~/.ssh/authorized_keys" < id_ed25519.pub

Ensuite, déchiffrez localement la clé privée depuis son conteneur chiffré :

ssh-keygen -p -f ~/.ssh/id_ed25519
chmod 600 ~/.ssh/id_ed25519
ssh -i ~/.ssh/id_ed25519 -p 49152 debian@IPVPS
ACL & permissions (Linux Debian / VPS OVH) — Vérifie que ~/.ssh est en 700 et authorized_keys en 600. Les ACL Linux ne sont généralement pas nécessaires ici, mais toute ACL résiduelle doit rester au moins équivalente aux permissions POSIX strictes.

Le fichier déchiffré n’existe que temporairement : il peut être auto-effacé à la fin de la session SSH, ou conservé dans la RAM si l’environnement est chiffré (tmpfs). Cette approche « zero-clear-text » garantit
qu’aucune donnée sensible ne subsiste sur disque.

✓ Avantage clé — Grâce à l’injection automatique de la passphrase via le canal BLE-HID chiffré, aucune frappe n’est capturable. Même sur une machine compromise, la clé privée reste inutilisable sans l’accès physique au HSM et à la session d’appairage sécurisée.

Compatibilité multi-OS — Authentification universelle

Le format OpenSSH utilisé par PassCypher HSM PGP assure une compatibilité complète avec les principaux systèmes d’exploitation. L’approche souveraine repose sur des standards ouverts sans dépendance cloud ni service tiers.

OS Client SSH Particularités
Debian / Ubuntu OpenSSH Support natif de la clé privée chiffrée.
macOS OpenSSH intégré Gestion par ssh-add ou injection BLE-HID.
Windows 10 / 11 PuTTY / OpenSSH Conversion facultative via PuTTYgen.
Android Termux / JuiceSSH Support injection HID (smartphone couplé NFC).
iOS Blink Shell Injection BLE-HID automatique (si appairage valide).
Note permissions & ACL : Linux/macOS s’appuient sur les permissions POSIX (700/600), tandis que Windows utilise des ACL NTFS pour restreindre l’accès aux fichiers SSH (authorized_keys, administrators_authorized_keys).

Référence officielle — Microsoft : Authentification par clé SSH sous Windows (30 juin 2025)

En juin 2025, Microsoft a publié une mise à jour majeure sur l’authentification basée sur les clés SSH (Key-based authentication) intégrée nativement à Windows. Ce guide décrit la création et la gestion de paires de clés publiques/privées et recommande l’usage d’algorithmes cryptographiques asymétriques (Ed25519, ECDSA, RSA, DSA).

Cette mise à jour s’applique à Windows Server 2025 / 2022 / 2019, ainsi qu’à Windows 11 et Windows 10. Elle intègre OpenSSH et ses outils : ssh-keygen, ssh-agent, ssh-add, scp / sftp.

  • Publication : 10 mars 2025 — Microsoft Learn
  • Objet : gestion et protection des clés SSH via OpenSSH intégré à Windows et PowerShell
  • Bonnes pratiques : stockage local chiffré, passphrase obligatoire, ACL restrictives sur authorized_keys et administrators_authorized_keys
Fichier administrators_authorized_keys : Sous Windows Server 2019 / 2022 / 2025, les comptes administratifs utilisent le fichier C:\ProgramData\ssh\administrators_authorized_keys pour stocker les clés publiques SSH autorisées.
Protégé par des ACL NTFS — accès Administrators et SYSTEM uniquement.
Les droits peuvent être attribués via leur SID : *S-1-5-32-544 (groupe Administrators).
Documentation officielle Microsoft

Extension souveraine du modèle

  • La passphrase est injectée matériellement via BLE-HID ou NFC, sans saisie clavier.
  • Le chiffrement AES-256 OpenPGP empêche toute sortie de clé privée hors mémoire éphémère.

Ainsi, le flux Microsoft « Key-based authentication » devient, grâce à PassCypher, une authentification SSH matériellement souveraine, compatible Windows/Linux, conforme au modèle Zero-Trust et aux exigences post-quantiques.

PowerShell SSH

Depuis Windows Server 2025 et Windows 11, PowerShell intègre nativement le module PowerShell-SSH, permettant l’exécution distante de commandes via le moteur OpenSSH.
Couplé à PassCypher HSM PGP, il exécute des opérations sans exposer la passphrase en mémoire, assurant une automatisation auditable et souveraine.

Sovereign SSH

La mise en œuvre hybride et matérielle via PassCypher HSM PGP incarne le modèle de gestion SSH souveraine.
Elle combine génération locale, chiffrement des clés privées en AES-256 OpenPGP, dérivation KDF durcie et rotation typologique, sans dépendance cloud ni identité fédérée.
Ce modèle renforce la chaîne de confiance Microsoft OpenSSH par une couche souveraine, auditable et post-quantique.

Intégration Git for Windows

PassCypher HSM PGP exploite Git for Windows pour générer et gérer les paires de clés SSH compatibles avec OpenSSH.
Git for Windows intègre ssh-keygen.exe pour créer des clés SSH protégées par passphrase, stockées par défaut dans C:\Users\<username>\.ssh\.
Ce mode garantit la compatibilité totale avec PowerShell SSH et OpenSSH pour Windows, tout en ajoutant une couche de chiffrement matériel souveraine (Zero-Clear-Key).
Clé d’authentification : utilisée exclusivement pour établir des connexions SSH sécurisées vers des serveurs distants. Injectée la passphrase de la clé privé SSH matériellement via BLE-HID depuis un NFC HSM PassCypher ou saisi manuel ou copier/coller par l’utilisateur, elle ne s’affiche ni ne transite jamais en clair ni sur disque ni en mémoire persistante.

Séparation fonctionnelle des clés SSH — authentification vs signature

Dans une architecture souveraine, chaque clé SSH doit être affectée à un usage précis afin de limiter les risques d’exposition et renforcer la traçabilité. PassCypher HSM PGP met en œuvre cette séparation typologique en chiffrant individuellement chaque clé privée dans un conteneur OpenPGP (AES-256 + KDF durci), avec label et empreinte distincts selon la fonction :

  • Clé d’authentification : utilisée pour établir des connexions SSH sécurisées. La passphrase est injectée via BLE-HID depuis un HSM NFC PassCypher, saisie manuellement ou collée localement. Elle n’est jamais exposée en clair — ni sur disque, ni en mémoire persistante — conformément au principe Zero-Clear-Key. L’utilisateur reste responsable en cas de saisie ou collage manuel.
  • Clé de signature : dédiée à la validation cryptographique de fichiers, scripts ou commits Git. Elle est encapsulée dans un conteneur OpenPGP distinct, traçable et révoquable sans impact sur les accès SSH actifs.

Cette séparation chiffrée permet :

  • Une révocation ciblée sans perturber les connexions SSH actives (la gestion des dates de révocation figure parmi les évolutions prévues du module SSH PassCypher)
  • Une auditabilité renforcée via les labels fonctionnels et l’historisation locale
  • Une interopérabilité native avec les workflows DevSecOps (Git, CI/CD, pipelines signés)
💡 Bonnes pratiques : chaque clé publique exportée doit inclure un commentaire typologique (ssh-keygen -C "auth@vps" ou sign@repo) afin de faciliter la gestion dans les fichiers authorized_keys et les registres append-only de PassCypher.

Durcissement et bonnes pratiques SSH Key PassCypher HSM PGP

Même avec une clé SSH PassCypher HSM PGP, la sécurité globale dépend du durcissement serveur. Voici les recommandations clés pour une posture souveraine :

  • Désactiver l’accès root : PermitRootLogin no
  • Interdire les connexions par mot de passe : PasswordAuthentication no
  • Limiter les utilisateurs SSH : AllowUsers admin
  • Changer le port SSH : (ex. 49152) et bloquer le 22 par firewall
  • Configurer UFW/iptables : politique DROP par défaut + exceptions ciblées
  • Installer Fail2ban : (maxretry=3, bantime=30m) pour bloquer le brute-force
  • Activer les journaux d’audit : journalctl -u ssh, rotation et ledger des connexions
  • ACL / permissions strictes : sur Linux, ~/.ssh = 700, authorized_keys = 600 ; sur Windows, restreindre via ACL NTFS (Administrators, SYSTEM) pour authorized_keys et administrators_authorized_key.
✓ Souveraineté & conformité — Cette approche s’inscrit dans les exigences NIS2/DORA, garantissant une traçabilité totale des accès et un contrôle des identités machine.

FIDO vs SSH — Deux paradigmes, deux postures

Dans le paysage actuel de la cybersécurité, la confusion entre FIDO2/WebAuthn et SSH persiste, alors que ces technologies reposent sur des modèles d’authentification et de confiance fondamentalement différents. FIDO sécurise une identité humaine dans le navigateur. SSH, lui, sécurise une identité machine dans le réseau.Leur finalité, leur surface d’exposition et leur posture souveraine s’opposent dans la conception même.

FIDO2 / WebAuthn — Authentification centrée sur l’humain

  • ↳ Conçu pour authentifier un utilisateur auprès d’un service Web (navigateur ↔ serveur via WebAuthn) ;
  • ↳ La clé privée reste enfermée dans un authenticator matériel (YubiKey, TPM, Secure Enclave, etc.) ;
  • ↳ Chaque site ou domaine crée une paire de clés unique — isolation des identités ;
  • ↳ Dépendance à un serveur d’authentification (RP) et à l’écosystème navigateur ;
  • ↳ Présence humaine obligatoire (biométrie, geste, contact) ;
  • ↳ Clé non exportable : excellente sécurité, mais portabilité quasi nulle ;
  • ↳ Pas de journal d’audit local ni de rotation autonome.

SSH — Authentification centrée sur la machine

  • ↳ Conçu pour authentifier un système client auprès d’un hôte distant (VPS, serveur, cluster) ;
  • ↳ Utilise une clé persistante, réutilisable sur plusieurs hôtes selon la politique de confiance ;
  • ↳ Fonctionne sans navigateur : protocole SSH natif, échanges chiffrés machine ↔ machine ;
  • ↳ Permet la duplication et la sauvegarde des clés (si chiffrées correctement) ;
  • ↳ L’authentification repose sur une passphrase ou sur un HSM matériel (injection ou saisie locale) ;
  • ↳ Journalisation native possible (logs SSH), rotation et révocation maîtrisées ;
  • ↳ Indépendant du cloud, sans serveur d’identité tiers.

⮞ Ce que fait PassCypher HSM PGP avec EviSSH

La solution SSH Key PassCypher HSM PGP étend le modèle SSH classique en y intégrant des éléments de sécurisation matérielle et de traçabilité analogue à FIDO, mais dans une approche souveraine et sans cloud :

  • → Génération locale de la paire SSH via PassCypher Engine / EviSSH ;
  • → Clé privée encapsulée dans un conteneur OpenPGP (AES-256 + KDF Argon2id/PBKDF2) ;
  • → Clé toujours chiffrée sur disque, jamais en clair : le déchiffrement est éphémère, en mémoire volatile uniquement ;
  • Injection matérielle de la passphrase via PassCypher NFC HSM ou émulateur BLE-HID (canal AES-128 CBC sécurisé) ;
  • → Présence physique facultative mais possible : le NFC HSM devient l’équivalent d’un “geste FIDO” souverain ;
  • → Compatibilité totale multi-OS : Linux, macOS, Windows, Android, iOS ;
  • → Aucune dépendance à un navigateur, un serveur WebAuthn, ou un compte cloud ;
  • → Orchestration, rotation et sauvegarde via EviSSH pour usage industriel et défense.

Synthèse stratégique

  • FIDO2 : modèle cloud-centré et non-exportable — pour les services Web, mais limité hors navigateur ; SSH PassCypher : modèle souverain et portable — idéal pour les accès serveurs, VPS, ou environnements critiques ;
  • PassCypher combine la sécurité matérielle d’un authenticator et la souplesse du SSH natif ;
  • Les passphrases (≥ 256 bits) injectées via BLE-HID assurent une résistance post-quantique symétrique ;
  • Les journaux d’audit et la rotation de clés offrent une traçabilité locale — hors des clouds FIDO ;
  • Une même finalité : la confiance numérique, mais deux chemins : dépendance vs souveraineté.

Note comparative : Le canal BLE-HID chiffré AES-128 CBC de PassCypher HSM PGP offre un niveau d’assurance équivalent à un authenticator FIDO2 niveau L2, mais sans dépendance au navigateur ni serveur d’identité. Cette approche hybride, matérielle et logicielle, fait de PassCypher une solution SSH véritablement <strong>post-WebAuthn.

Modèle de menace ⇢ comprendre les risques liés à SSH

Les connexions SSH classiques reposent sur des fichiers locaux contenant des clés privées. Sans protection matérielle, ces fichiers peuvent être copiés, exfiltrés ou utilisés à distance. Le modèle souverain mis en œuvre par SSH Key PassCypher HSM PGP vise à neutraliser ces risques par une approche dite zéro-clé-en-clair et une segmentation stricte des secrets.

Menaces identifiées

  • Vol de clé privée → exfiltration du fichier ~/.ssh/id_* ou de ses copies cloud.
  • Dump mémoire → récupération en RAM d’une clé temporairement déchiffrée.
  • Keylogger → capture de la passphrase lors d’une saisie clavier classique.
  • MITM BLE → interception du signal lors d’un appairage “Just Works”.
  • Sauvegarde non chiffrée → duplication accidentelle du conteneur sans contrôle d’accès.
  • Erreur humaine → réutilisation ou diffusion non intentionnelle d’une clé.

Observation: ⮞ Observation : la plupart des attaques réussies exploitent un seul facteur : la présence d’une clé privée en clair sur disque, en mémoire ou pendant la saisie.

Compromissions de clés SSH — Cas européens et français & leçons tirées

⮞ Incidents documentés en Europe (2021–2025)

  • Vulnérabilités critiques dans OpenSSH (France – février 2025) — Deux failles majeures (CVE-2025-26465 et CVE-2025-26466) ont été identifiées par le CERT-FR, exposant les serveurs SSH à des attaques par déni de service (DoS) et à des détournements de session (MitM).
    • Les versions antérieures à OpenSSH 9.9p2 sont vulnérables. Avis CERT-FR
    • Ces failles permettent de contourner la vérification des clés hôtes et de perturber les connexions SSH.

    Leçon : même les implémentations de confiance peuvent contenir des failles latentes.

    Protection PassCypher : la clé privée reste chiffrée dans un conteneur OpenPGP et n’est jamais exposée en clair, même en cas d’attaque MitM.

  • Fuite de clés SSH dans des pipelines CI/CD open source (Europe – T2 2025) — Plusieurs projets hébergés sur GitHub ont accidentellement publié des fichiers `.env` contenant des clés privées SSH dans leurs workflows.
    • Des serveurs de staging ont été compromis suite à l’utilisation de ces clés exposées.
    • Les logs publics ont révélé des secrets non chiffrés.

    Leçon : les clés privées ne doivent jamais être stockées en clair dans des environnements CI/CD.

    Protection PassCypher : même si le fichier est publié, le conteneur OpenPGP (*.key.gpg) reste inutilisable sans la phrase secrète injectée par HSM.

  • Campagne Ebury en Europe (2024) — Le malware Ebury a compromis plus de 400 000 serveurs Linux en Europe, insérant des portes dérobées SSH pour voler des identifiants.

    Leçon : les clés chargées en mémoire vive peuvent être détournées par des malwares persistants.

    Protection PassCypher : la clé est déchiffrée uniquement en RAM, de manière éphémère, et jamais persistée — même en cas de compromission système.

Conclusion opérationnelle : Aucun des cas recensés n’impliquait une protection par chiffrement OpenPGP ni une injection matérielle de la phrase secrète. Tous ont exploité des vecteurs classiques : clés en clair, logs non filtrés, mémoire persistante ou failles protocolaires.

Une architecture PassCypher HSM PGP — combinant chiffrement OpenPGP AES-256, KDF renforcé (Argon2id), et injection de phrase secrète via HSM NFC/BLE-HID — aurait neutralisé ces vecteurs :

  • Clé privée toujours chiffrée au repos
  • Déchiffrement uniquement en mémoire vive, jamais sur disque
  • Phrase secrète injectée par matériel, jamais tapée ni loggée
  • Même si le fichier est volé, il reste inutilisable sans le HSM physique

Ce modèle garantit une authentification SSH souveraine, conforme aux exigences de résilience post-quantique et aux directives européennes (NIS2, DORA).

Mécanismes de protection SSH Key PassCypher HSM PGP — OpenPGP, KDF et BLE-HID

Le modèle SSH Key PassCypher HSM PGP repose sur une défense en profondeur articulée autour de trois piliers : chiffrement asymétrique robuste, dérivation de clé renforcée et injection physique sécurisée. Ces mécanismes agissent conjointement pour garantir qu’aucune clé privée ne puisse être exfiltrée, même sur un poste compromis.

Conteneur OpenPGP et intégrité

Le fichier de clé privée (id_rsa, id_ecdsa, id_ed25519) est chiffré directement par OpenSSH via passphrase (AES-256 + bcrypt KDF). Aucun conteneur OpenPGP n’est impliqué :

  • Chiffrement : AES-256 (CBC ou GCM selon implémentation) ;
  • Intégrité : MDC (Modification Detection Code) actif ;
  • Salt unique : généré par le moteur lors du chiffrement initial ;
  • Compression : optionnelle, pour réduire les empreintes mémoire.

Dérivation de clé (KDF) et résistance symétrique

La clé de session OpenPGP découle d’une passphrase issue du HSM via :

  • Argon2id : configuration par défaut (m=512 MB, t=3, p=4), résistant aux attaques GPU ;
  • Fallback PBKDF2 : 250 000 itérations SHA-512 si Argon2id indisponible ;
  • Posture PQ-aware : entropie ≥ 256 bits → résistance symétrique équivalente à 2¹²⁸ (Grover).

⚠ Cette protection ne rend pas le système « post-quantum proof » : seules les primitives asymétriques PQC (CRYSTALS-Dilithium, Kyber) le permettront à terme.

Canal d’injection BLE-HID — Sécurisation de la passphrase

La passphrase est transmise via un canal Bluetooth Low Energy HID, émulant un clavier sécurisé.

  • Appairage sécurisé : mode Secure Connections avec code PIN ou authentification par code numérique obligatoire, et bonding activé pour verrouiller l’association.
  • Chiffrement des communications BLE : AES-128 CBC, appliqué au niveau de l’application HID.
  • Stockage de la première clé AES-128 CBC : conservée dans une enclave électronique sécurisée intégrée à l’émulateur de clavier Bluetooth USB.
  • Stockage de la seconde clé AES-128 CBC : protégée dans le Keystore Android (Android ≥ 10), via l’application PassCypher NFC HSM embarquée dans l’application Android Freemindtronic.
  • Risque résiduel : une vulnérabilité MITM subsiste si le mode d’appairage « Just-Works » est autorisé — ce mode est strictement interdit dans la posture souveraine.
✓ Sovereign Countermeasures: Toujours forcer le mode Secure Connections, exiger le bonding, vérifier le hash de clé BLE, et purger les appareils appairés après usage en environnement critique.
⮞ Summary : La combinaison OpenPGP + Argon2id + BLE-HID AES-128 constitue un écosystème cohérent : les secrets ne quittent jamais le périmètre chiffré, et le vecteur d’injection reste matériellement contrôlé.

Rotation et révocation — cycle de vie des clés SSH Key PassCypher HSM PGP

La rotation d’une clé SSH Key PassCypher HSM PGP ne repose pas sur une commande de rotation de PassCypher Engine. Elle s’effectue selon un processus opératoire en quatre temps : régénérer, déployer, valider, retirer. Le tout en maintenant l’approche zero-clear-key (clé privée toujours chiffrée au repos, déverrouillage éphémère en RAM).

Transparence utilisateur : toutes les opérations décrites ci-dessous sont réalisées via l’interface extension web PassCypher HSM PGP. L’orchestration est assurée par EviEngine, qui pilote les actions locales entre EviSSH, Git et PassCypher HSM PGP. Toutes les étapes sont réalisées côté client sans processus caché ni exécution distante.

1) Régénération (nouvelle paire)

Depuis l’interface EviSSH intégrée à PassCypher HSM PGP, l’utilisateur régénère une paire de clés SSH via Git, encapsulée et chiffrée automatiquement par le moteur PassCypher. Voici comment :

  • Sélectionner l’algorithme souhaité (recommandé : ed25519 pour robustesse et compatibilité ; rsa-4096 en cas de contrainte spécifique).
  • Définir un label distinctif pour la paire (ex. : pc-hsm-ssh-2025-10) afin de faciliter la traçabilité et la révocation future.
  • la clé privée est générée au format natif OpenSSH (id_rsa, id_ecdsa, id_ed25519), directement chiffrée par passphrase lors de sa création.
  • La clé publique (*.pub) est générée séparément et annotée avec un commentaire unique (ex. : pc-hsm-ssh-2025-10) pour identification dans authorized_keys.
💡 Bon à savoir — Toutes ces étapes sont réalisées de manière transparente via l’extension web PassCypher HSM PGP, sans saisie manuelle ni exposition de la clé privée en clair.

2) Déploiement contrôlé (ajout sans coupure)

Ajouter la nouvelle .pub dans ~/.ssh/authorized_keys sur chaque serveur, sans supprimer l’ancienne (phase de chevauchement).

# Exemple de déploiement “append-only” (port 49152, utilisateur debian)
scp -P 49152 ~/.ssh/id_ed25519_2025-10.pub debian@IPVPS:/tmp/newkey.pub
ssh -p 49152 debian@IPVPS 'umask 077; mkdir -p ~/.ssh; touch ~/.ssh/authorized_keys 
&& grep -qxF -f /tmp/newkey.pub ~/.ssh/authorized_keys || cat /tmp/newkey.pub >> ~/.ssh/authorized_keys 
&& rm -f /tmp/newkey.pub && chmod 600 ~/.ssh/authorized_keys'

3) Validation (canary)

Tester la connexion avec la nouvelle clé (passphrase injectée via BLE-HID) :

ssh -o IdentitiesOnly=yes -i ~/.ssh/id_ed25519_2025-10 -p 49152 debian@IPVPS

Conserver les deux clés en parallèle sur une période courte (T + 24–72 h) pour absorber les aléas opérationnels.

4) Retrait de l’ancienne clé (révocation effective)

Retirer l’ancienne ligne d’authorized_keys par commentaire/label :

# Exemple : suppression par label de fin de ligne
ssh -p 49152 debian@IPVPS "sed -i.bak '/ pc-hsm-ssh-2025-04$/d' ~/.ssh/authorized_keys"

Répéter sur l’ensemble des hôtes cibles (bastion / nœuds). Archiver les fichiers authorized_keys.bak pour traçabilité.

Journal d’audit (append-only, côté admin)

Tenir un registre horodaté des opérations (empreintes, labels, hôtes) — simple, lisible, diff-able.

mkdir -p ~/audit && touch ~/audit/ssh-keys-ledger.tsv
printf "%stNEWt%st%sn" "$(date -Iseconds)" 
"$(ssh-keygen -lf ~/.ssh/id_ed25519_2025-10.pub | awk '{print $2}')" "pc-hsm-ssh-2025-10" 
>> ~/audit/ssh-keys-ledger.tsv
printf "%stREVOKEt%st%sn" "$(date -Iseconds)" 
"$(ssh-keygen -lf ~/.ssh/id_ed25519_2025-04.pub | awk '{print $2}')" "pc-hsm-ssh-2025-04" 
>> ~/audit/ssh-keys-ledger.tsv
⮞ Synthèse
La rotation est procédurale : on ne “rotate” pas dans PassCypher Engine par commande, on régénère une nouvelle paire, on déploie la clé publique, on valide l’accès, puis on retire l’ancienne — le tout tracé dans un journal d’audit local. L’utilisateur n’a jamais à interagir avec le moteur : tout est piloté via l’extension web PassCypher HSM PGP.

Script d’orchestration (multi-hôtes, sans outil tiers)

#!/usr/bin/env bash
set -euo pipefail
PORT=49152
USER=debian
NEWPUB="$HOME/.ssh/id_ed25519_2025-10.pub"
OLD_LABEL="pc-hsm-ssh-2025-04"

while read -r HOST; do
  echo "[*] $HOST :: install new key"
  scp -P "$PORT" "$NEWPUB" "$USER@$HOST:/tmp/newkey.pub"
  ssh -p "$PORT" "$USER@$HOST" '
    umask 077
    mkdir -p ~/.ssh
    touch ~/.ssh/authorized_keys
    grep -qxF -f /tmp/newkey.pub ~/.ssh/authorized_keys || cat /tmp/newkey.pub >> ~/.ssh/authorized_keys
    rm -f /tmp/newkey.pub
    chmod 600 ~/.ssh/authorized_keys
  '
done < hosts.txt

echo "[] Validate the new key on all hosts, then retire the old key:"
while read -r HOST; do
  echo "[] $HOST :: remove old key by label"
  ssh -p "$PORT" "$USER@$HOST" "sed -i.bak '/ ${OLD_LABEL}$/d' ~/.ssh/authorized_keys"
done < hosts.txt
Alerte opérationnelle : conservez un accès de secours (bastion/console) tant que la nouvelle clé n’est pas validée sur 100 % des hôtes. Éviter toute suppression prématurée.

Méthodes souveraines de récupération d’une passphrase ou d’un mot de passe (QR, NFC HSM, BLE-HID, saisie de mémoire)

La récupération d’une passphrase ou d’un mot de passe dans PassCypher HSM PGP repose sur plusieurs mécanismes souverains, complémentaires et adaptés à différents contextes d’usage :

  • QR code chiffré (GIF/PNG) — Permet d’importer une passphrase sans affichage à l’écran. Idéal pour les sauvegardes imprimées ou les rotations planifiées. → Injection directe dans le champ sécurisé, sans saisie ni exposition.
  • Lecture NFC depuis un HSM PassCypher — Récupération sans contact depuis un support matériel souverain (EviKey / EviPass). → Injection automatique et chiffrée via canal BLE-HID sécurisé.
  • Émulateur de clavier Bluetooth ou USB (BLE-HID) — Simulation de saisie clavier chiffrée AES-128 CBC. Fonctionne sur Linux, macOS, Windows, Android, iOS, y compris en environnement isolé (air-gapped). → Zéro trace persistante, aucune frappe réelle.
  • Saisie manuelle de mémoire — Option ultime pour utilisateurs avancés : saisie directe dans le champ sécurisé (pinentry). → Reste souveraine si sans autocomplétion ni log clavier.
Récupération PassCypher — importer un QR pour restaurer passphrase/mot de passe sans affichage à l’écran
✪ Récupération souveraine — importer un QR chiffré pour restaurer une passphrase ou un mot de passe sans affichage en clair, avant rotation ou révocation d’une clé SSH.

Procédé recommandé — Restaurer une passphrase depuis un QR de sauvegarde

  1. Ouvrir l’interface Récupération de PassCypher (hors ligne de préférence).
  2. Importer l’image QR (GIF/PNG) — le déchiffrement est local, sans connexion distante.
  3. Choisir l’option d’usage : injection BLE-HID dans le champ sécurisé, ou copie dans un presse-papier éphémère (auto-effacement).
  4. Valider, puis purger immédiatement le presse-papier. Consigner l’opération dans le ledger (horodatage, empreinte, origine QR).

Attention : ne jamais coller la passphrase dans un éditeur ou un terminal. Utiliser exclusivement des mécanismes éphémères et auditables.

En résumé : PassCypher HSM PGP offre une pluralité de méthodes de récupération, toutes conformes à la logique zéro-clé-en-clair. L’utilisateur choisit selon son contexte : mobilité, auditabilité, résilience ou souveraineté maximale.

Exemple CLI « FIFO » (option avancée — pour utilisateurs Linux expérimentés)

Utiliser cette méthode uniquement si l’interface BLE-HID n’est pas disponible. Cette méthode n’écrit jamais la passphrase sur disque (FIFO = pipe) et interdit l’enregistrement dans l’historique shell.

# 1. Créer un FIFO sécurisé
mkfifo /tmp/pc_pass.fifo
chmod 600 /tmp/pc_pass.fifo

# 2. Dans un shell, lancer gpg en lisant la passphrase depuis le FIFO (ne pas laisser d’espace)
# Remplacez les chemins par les vôtres
gpg –batch –yes –passphrase-fd 0 –decrypt –output ~/.ssh/id_ed25519 ~/.ssh/id_ed25519.key.gpg < /tmp/pc_pass.fifo & # 3. Dans un autre terminal (ou via l’interface de récupération), écrire la passphrase dans le FIFO # IMPORTANT: écriture ponctuelle puis suppression immédiate du FIFO printf ‘%s’ “LA_PASS_POUR_GPG” > /tmp/pc_pass.fifo

# 4. Supprimer le FIFO et s’assurer qu’aucune trace ne subsiste
shred -u /tmp/pc_pass.fifo || rm -f /tmp/pc_pass.fifo

⚠️ Remarques sécurité CLI

  • Ne jamais écrire la passphrase dans une variable d’environnement ou dans l’historique du shell.
  • Préférer l’injection BLE-HID (pinentry) : aucune exposition dans les processus ni le presse-papier.
  • Consigner chaque opération dans un registre d’audit local (empreinte de clé, hôte, opérateur, horodatage).

Flux opérationnel — de la génération à l’authentification (SSH Key PassCypher HSM PGP)

On entend par flux opérationnel l’étape et la façon opérationnelle, de réaliser le flux réel utilisé par PassCypher Engine + PassCypher HSM PGP et éventuelement PassCypher NFC HSM et son l’émulateur de clavier bluetooth (BLE-HID) pour produire, protéger, transporter et utiliser une clé SSH dont la clé privée reste chiffrée et n’est déverrouillée qu’éphémèrement en RAM.

⮞ Résumé en une ligne: Génération → clé privée OpenSSH protégée par passphrase → export .pub → stockage de la clé privée chiffrée sur le support souhaité → injection sécurisée de la passphrase (PassCypher NFC HSM via BLE-HID ou saisie) → déverrouillage éphémère en mémoire → connexion SSH → purge immédiate.

Étapes détaillées (flow)

Génération (EviSSH intégré à PassCypher HSM PGP, orchestré par PassCypher Engine)

▸ L’utilisateur lance PassCypher Engine / extension → « SSH Key Generator ».
▸ Choix de l’algorithme (recommandé : ed25519).
▸ Définit un label et la méthode de passphrase (générée aléatoirement par le HSM ou fournie par l’utilisateur).
▸ Résultat : une paire → id_ed25519 (clé privée OpenSSH chiffrée par passphrase) + id_ed25519.pub (clé publique OpenSSH).
▸ EviSSH, via PassCypher Engine, propose l’emplacement d’enregistrement (dossier local, EviKey, NAS). Il n’effectue aucun déverrouillage automatique.

Export & stockage

▸ Exportez uniquement la clé publique (.pub) vers le serveur (ex. : OVH cloud panel ou copie manuelle dans ~/.ssh/authorized_keys).
▸ Stockez la clé privée chiffrée (bloc PEM OpenSSH protégé par passphrase) où vous voulez : EviKey NFC, NAS chiffré, clé USB chiffrée. Le fichier reste chiffré au repos.

Préparation client avant usage

▸ Copier (si nécessaire) la clé privée chiffrée sur la machine client dans un dossier contrôlé : ex. ~/secure/id_ed25519.
▸ Créer un tmpfs pour réduire la persistance sur disque si un déchiffrement temporaire est nécessaire :

sudo mkdir -p /mnt/ssh-tmp && sudo mount -t tmpfs -o mode=700 tmpfs /mnt/ssh-tmp

▸ S’assurer que le swap est chiffré ou désactivé si possible : sudo swapoff -a.

Injection de la passphrase (PassCypher NFC HSM → BLE-HID)

▸ L’utilisateur déclenche l’injection : rapprocher le PassCypher NFC HSM du smartphone/appairer le BLE HID si non déjà apparié.
▸ IMPORTANT — sécurité BLE : n’autorisez pas le pairing « Just-Works ». Exiger Secure Connections (Numeric Comparison / authentification par code numérique) ou pairing par PIN ; forcer bonding et stockage sécurisé de la clé d’appairage. Le canal BLE transporte des paquets chiffrés (AES-128 CBC dans l’implémentation actuelle du HID) : le dispositif présente la passphrase au système client comme une saisie clavier virtuelle, sans frappe physique.

Déverrouillage éphémère en RAM

▸ L’invite OpenSSH demande la passphrase ; PassCypher BLE-HID injecte la passphrase dans la boîte de dialogue (ou dans pinentry).
▸ Le client OpenSSH déchiffre la clé privée en mémoire volatile (RAM) uniquement pour l’utilisation immédiate. Le fichier de clé privée encapsulé (*.key.gpg) reste inchangé et chiffré ; seul son contenu est déchiffré en mémoire volatile (RAM) pour la session SSH.
▸ Vérifier permissions : chmod 600 /mnt/ssh-tmp/id_ed25519 si un fichier temporaire est créé. Préférer rester en RAM (pinentry/ssh prompt) plutôt que d’écrire sur disque.

Authentification SSH

▸ L’appel SSH utilise la clé déverrouillée en RAM :

ssh -i /chemin/vers/id_ed25519 -p 49152 user@IPVPS

▸ Après l’authentification, la clé en mémoire doit être purgée immédiatement (cf. point suivant).

Purge & post-usage

▸ Si une copie temporaire (chiffrée) de la clé privée a été montée sur un volume RAM (tmpfs) pour un usage isolé, la supprimer et démonter après utilisation. Aucune version déchiffrée ne doit être écrite sur disque. :

shred -u /mnt/ssh-tmp/id_ed25519 || rm -f /mnt/ssh-tmp/id_ed25519 sudo umount /mnt/ssh-tmp

▸ Effacer l’agent si utilisé : ssh-add -D et arrêter l’agent : eval "$(ssh-agent -k)".

▸ Réactiver swap si nécessaire : sudo swapon -a.

Points de sécurité critiques et recommandations

  • Jamais utiliser BLE pairing en « Just-Works ». Forcer Secure Connections / authentification par code numérique / PIN et bonding.
  • La clé privée reste chiffrée sur le support ; seul le déchiffrement éphémère en RAM est utilisé. Ceci réduit fortement le risque mais n’annule pas l’exposition si la machine cliente est déjà compromise (dump mémoire, rootkit).
  • ssh-agent augmente la fenêtre d’exposition (clé en mémoire plus longtemps). Si confort nécessaire → limiter la durée (-t) et purger systématiquement.
  • Protéger swap et empêcher core dumps : sudo swapoff -a, ulimit -c 0, vérifier politique de dump système.
  • Journalisation & audit : journaliser les opérations de rotation et les injections (rotation.log, known_hosts.audit). Note : PassCypher Engine orchestre la génération et l’enregistrement des fichiers privés chiffrés ; l’audit applicatif doit rester côté serveur/administration (journalisation SSH / Fail2ban / rotation).
  • Cryptographie : utiliser un KDF durci (Argon2id si disponible, sinon PBKDF2 avec paramètres élevés) et AES-256 pour le conteneur OpenSSH. Une passphrase aléatoire ≥ 256 bits augmente la résistance symétrique (Grover) mais n’élimine pas la nécessité de primitives asymétriques post-quantiques pour la couche signature à terme.

Exemples rapides de commandes utiles

# Example: temporary RAM decryption
sudo mkdir -p /mnt/ssh-tmp && sudo mount -t tmpfs -o mode=700 tmpfs /mnt/ssh-tmp
cp /media/evikey/id_ed25519 /mnt/ssh-tmp/id_ed25519
ssh -i /mnt/ssh-tmp/id_ed25519 -p 49152 user@vps.example.com
shred -u /mnt/ssh-tmp/id_ed25519 || rm -f /mnt/ssh-tmp/id_ed25519
sudo umount /mnt/ssh-tmp
💡Note finale— Ce flow place la protection de la clé privée au centre : la clé reste chiffrée au repos, l’accès passe par une passphrase matérielle injectée, et le déchiffrement est temporaire et limité. La sécurité globale dépend cependant toujours de l’intégrité du poste client et de la qualité du pairing BLE (éviter « Just-Works »).

EviSSH — Gestion et orchestration intégrée

EviSSH n’est pas un outil externe ; il fait partie intégrante de PassCypher HSM PGP. Sa fonction est d’automatiser la génération, la gestion et la rotation des clés SSH locales, tout en assurant leur compatibilité universelle avec les environnements Linux, macOS et Windows. Il repose sur EviEngine pour orchestrer les actions du navigateur et du système, sans dépendance cloud ni service centralisé.

Fonctions principales

  • Génération de clés SSH via Git, directement depuis l’interface PassCypher HSM PGP.
  • Encapsulation automatique de la clé privée dans un conteneur chiffré OpenPGP (AES-256 + Argon2id/PBKDF2).
  • Stockage souverain sur le support choisi : disque local, EviKey NFC HSM, NAS chiffré, etc.
  • Rotation simplifiée : création, déploiement et révocation manuelle sans manipulation de fichier sensible.
  • Interopérabilité totale : clés compatibles OpenSSH pour toutes plateformes majeures.

Sécurité et intégrations matérielles

  • Injection de passphrase via PassCypher NFC HSM et canal BLE-HID chiffré (AES-128 CBC).
  • Stockage matériel optionnel sur EviKey NFC HSM : les conteneurs chiffrés y sont inaccessibles sans la passphrase définie dans PassCypher.

💡Note : Contrairement à une solution serveur, EviSSH</strong> n’exécute ni déchiffrement distant ni gestion centralisée des clés. Tout est local, auditable et compatible avec une posture de souveraineté numérique complète.

Cas d’usage souverain — PassCypher HSM PGP · PassCypher NFC HSM & HID BLE

Ce scénario illustre un usage souverain complet de PassCypher HSM PGP dans un environnement multi-OS et multi-site :

  • PassCypher HSM PGP génère une paire SSH au format OpenSSH (id_*), directement chiffrée par passphrase (AES-256-CTR + bcrypt KDF). Aucune encapsulation OpenPGP n’est utilisée.
  • PassCypher NFC HSM stocke et protège la passphrase souveraine, permettant son injection sécurisée sur tout système compatible via son émulateur BLE-HID.
  • ✓ L’émulateur Bluetooth HID agit comme un clavier virtuel chiffré (AES-128 CBC) injectant la passphrase localement sans frappe physique, éliminant tout risque de keylogger.
  • Usage concret : un administrateur se connecte à un VPS Debian depuis macOS ou Android en approchant simplement son PassCypher NFC HSM — la passphrase est transmise via le lien BLE-HID sécurisé et le déchiffrement s’effectue en RAM uniquement.
  • Bénéfice opérationnel : authentification SSH souveraine, portable et sans saisie, fonctionnant sur Linux, Windows, macOS, Android et iOS, sans dépendance cloud.

Cette intégration PassCypher HSM PGP × PassCypher NFC HSM & BLE-HID constitue la base du modèle “zero-clear-key</strong>” de Freemindtronic : aucune clé privée n’existe jamais en clair sur disque ou réseau, et l’accès est conditionné à la possession physique du HSM et à l’appairage BLE sécurisé.

Points clés

  • PassCypher HSM PGP → zéro clé privée en clair sur disque, même temporairement.
  • Injection BLE-HID AES-128 → neutralise les keyloggers et les scripts d’injection clavier.
  • OpenSSH AES-256 + bcrypt KDF → chiffrement natif robuste, posture souveraine et portable.
  • Rotation, audit et registre horodaté → traçabilité complète des identités machine.
  • EviSSH orchestration → multi-HSM souveraine sans dépendance cloud ni serveur tiers.

Fuites et compromissions documentées — Pourquoi la souveraineté logicielle compte

Depuis 2021, plusieurs incidents majeurs ont montré la fragilité des systèmes reposant sur des secrets stockés ou manipulés en clair. Ces compromissions, souvent issues de chaînes d’intégration continue (CI/CD), de dépôts publics ou de scripts non isolés, ont mis en évidence la nécessité d’adopter des architectures « zéro-clé-en-clair ».

  • Codecov (janvier–avril 2021) — modification du script Bash Uploader pour exfiltrer des variables d’environnement et des identifiants depuis les pipelines CI des clients.
    Post-mortem officiel CodecovAlerte CISA
  • Campagne Ebury / SSH backdoor (2009 → 2024) — plus de 400 000 serveurs Linux et BSD compromis. Les attaquants interceptaient les clés privées SSH présentes en mémoire ou sur disque.
    Rapport ESET / WeLiveSecurity 2024
  • Fuites de clés sur GitHub (2023–2024) — plusieurs fournisseurs ont révélé des erreurs de commits contenant des clés ou certificats privés. Ces cas illustrent l’importance d’empêcher toute exposition en clair.
    GitHub Secret Scanning – Push Protection</li>

Ces exemples démontrent que la simple génération sécurisée d’un secret ne suffit pas : c’est toute la chaîne de vie du secret (génération, utilisation, stockage, destruction

Vecteurs d’exfiltration assistés par IA — et pourquoi la souveraineté matérielle compte

⮞ Contexte

Les assistants d’IA intégrés aux IDE, navigateurs et outils de productivité (Copilot, CodeWhisperer, etc.) indexent et analysent le contenu local pour générer des suggestions.
En accédant aux fichiers ouverts, sorties de terminal ou logs, ils créent un nouveau vecteur d’exfiltration potentielle de secrets — parfois sans interaction humaine directe.

Accroissement de la surface d’exfiltration

Tout assistant capable de lire l’éditeur, le presse-papier ou le terminal devient un canal de sortie supplémentaire. Une requête mal formulée ou un prompt partagé peut révéler du contenu sensible.

Risque de compromission

Un plugin IA compromis peut être détourné pour extraire automatiquement des secrets présents dans le workspace ou injecter du code de surveillance passif.

Exemples concrets

Suggestion de code contenant des clés API, affichage de variables d’environnement ou réinjection accidentelle de secrets dans des templates publics.

Pourquoi la souveraineté matérielle change le modèle de menace

Une architecture purement logicielle laisse les secrets exposés aux processus de l’OS. En revanche, une approche ancrée matériellement (HSM, NFC, BLE-HID) isole le secret opérationnel de tout accès logiciel non autorisé.

Conteneur chiffré + HSM

Le secret stocké (fichier chiffré OpenPGP) est inutilisable sans la passphrase détenue dans le HSM souverain. Même exfiltré, il reste cryptographiquement inerte.

Injection physique (BLE-HID / NFC)

La passphrase n’est jamais tapée ni copiée : elle est injectée comme entrée matérielle éphémère, réduisant les risques de keyloggers ou d’interception logicielle.

Éphémérité

Le déchiffrement ne s’effectue qu’en mémoire volatile. Aucun secret n’est écrit sur disque, même temporairement.

Application concrète : PassCypher Secure Passgen WP est déjà 100 % client-side et offline-ready. Couplé à un HSM PassCypher (ou EviKey), il devient la première brique d’un écosystème de génération et d’usage de secrets totalement souverain.

Bonnes pratiques immédiates

  • Évitez tout stockage de secrets en clair dans dépôts, CI ou logs.
  • Considérez les assistants IA comme des composants privilégiés et restreignez leurs accès.
  • Privilégiez les conteneurs chiffrés et l’usage d’un HSM pour toute clé persistante.

Signaux faibles — tendances à surveiller

⮞ Weak Signals Identified
– Adoption croissante de BLE-HID dans les workflows DevSecOps multi-OS ;
– Expérimentations d’Argon2id matériellement accéléré dans certains HSM ;
– Émergence de projets OpenPGP v6 intégrant des modules PQC hybrides ;
– Pression normative croissante autour de NIS2/DORA → journalisation obligatoire des accès machine ;
– Vers une convergence SSH / FIDO2 / PQC dans les architectures souveraines d’accès distant.

Ce que nous n’avons pas couvert au sujet SSH Key PassCypher HSM PGP

⧉ Ce que nous n’avons pas couvert
Cette chronique s’est concentrée sur l’usage de SSH Key PassCypher HSM PGP pour la sécurisation des connexions VPS et la gestion de la clé privée. Nous n’avons pas abordé :

  • l’intégration directe dans des pipelines CI/CD ;
  • les extensions FIDO2 ou post-quantum en préparation ;
  • l’audit automatisé de la chaîne BLE sur systèmes mobiles ;
  • les mécanismes de synchronisation inter-HSM en temps réel.

Ces aspects feront l’objet d’une étude complémentaire dans la série Tech Fixes & Security Solutions.

FAQ — SSH Key PassCypher HSM PGP

Un HSM hybride pour une sécurité souveraine

PassCypher HSM PGP est un module de sécurité matériel/logiciel développé par Freemindtronic. Il permet de générer, chiffrer et protéger des clés SSH et OpenPGP via AES-256 et KDF mémoire-dur (PBKDF2 ou Argon2id). Grâce à ses interfaces NFC et BLE-HID, il injecte les passphrases sans jamais exposer la clé privée en clair. Cette approche garantit une posture zero-trust et une souveraineté numérique totale.

Duplication sécurisée sans perte de souveraineté

Oui. Le fichier chiffré *.key.gpg peut être copié sur plusieurs supports souverains (EviKey NFC, NAS chiffré, QR code imprimé). Toutefois, il reste inutilisable sans la passphrase et le KDF, ce qui garantit une sécurité forte même en cas de fuite physique ou de compromission matérielle.

Résilience cryptographique face aux menaces quantiques

Une passphrase aléatoire ≥ 256 bits, combinée à un KDF mémoire-dur et à un chiffrement AES-256, offre une résistance élevée aux attaques symétriques, y compris celles basées sur l’algorithme de Grover. Cela dit, elle ne remplace pas les futurs algorithmes asymétriques post-quantiques nécessaires pour contrer les attaques de type Shor. En somme, c’est une protection robuste mais non exhaustive.

Récupération souveraine sans dépendance cloud

Si vous avez sauvegardé le fichier *.key.gpg (via QR imprimé, EviKey ou autre support sécurisé), vous pouvez restaurer la clé en injectant la passphrase via PassCypher HSM. Cette architecture permet une récupération sans perte, à condition que les backups aient été correctement gérés et conservés hors ligne.

Usage local recommandé pour préserver la posture souveraine

Bien que `ssh-agent` puisse améliorer le confort d’usage, il augmente la surface d’exposition en mémoire. Il est donc préférable de privilégier l’injection directe via PassCypher HSM PGP (BLE-HID), garantissant un déchiffrement éphémère, local et conforme à la logique zéro-clé-en-clair.

Opérations locales, zéro export

Oui. Comme tout HSM souverain, PassCypher HSM PGP ne transmet jamais la clé privée au client. Les opérations sensibles (signature, déchiffrement partiel) sont exécutées localement dans le moteur ou l’extension. Le client ne reçoit que le résultat chiffré, à l’image des HSM utilisés pour TLS ou PKI.

Incompatibilité avec la logique zéro-clé-en-clair

Le forwarding SSH-agent est incompatible avec la posture souveraine de PassCypher. La passphrase et la clé privée ne doivent jamais quitter le client ni transiter vers un hôte distant. Dans cette architecture, l’agent SSH reste strictement local à la session. Il est donc recommandé d’éviter le forwarding et de privilégier l’injection directe via BLE-HID sécurisé.

Appairage BLE sécurisé : bonnes pratiques

Même si PassCypher impose le mode Secure Connections Only, certaines plateformes (Android, iOS) ou piles Bluetooth peuvent être vulnérables à des attaques de rétrogradation vers un mode moins sûr comme Just Works.
Il est donc essentiel de :

  • exiger une authentification par code numérique (saisie ou comparaison) ;
  • forcer le bonding et stocker la clé d’appairage dans un coffre sécurisé (Secure Enclave / Android Keystore) ;
  • vérifier que le canal BLE-HID utilise bien le chiffrement AES-128 CBC ;
  • surveiller la liste des périphériques appairés et supprimer tout appareil inconnu ou inactif.

Comparez toujours les codes affichés avant validation. Cette étape garantit un canal chiffré de bout en bout.

Sauvegarde multi-supports sans compromis

Oui, à condition que la passphrase et le KDF restent confidentiels. Le fichier *.key.gpg peut être stocké sur EviKey NFC, NAS chiffré, USB ou QR code imprimé. Cette approche permet un “cold backup” souverain, sans aucune dépendance à un service cloud.

Vérification d’empreinte et confiance croisée

Avant d’insérer une clé publique dans authorized_keys, comparez son empreinte SHA-256 à celle affichée dans l’interface PassCypher. Pour renforcer la confiance, vous pouvez également vérifier le label/commentaire ou utiliser le ledger d’audit local.

Fonctionnement 100 % hors ligne

Oui. PassCypher HSM PGP est conçu pour fonctionner en environnement totalement déconnecté. Toutes les opérations (génération, chiffrement, injection, rotation) sont locales, garantissant une posture zero-trust et une souveraineté absolue.

Compatibilité universelle avec les VPS SSH

Oui. La clé publique est copiée sur le serveur distant (authorized_keys), tandis que la clé privée reste chiffrée localement. L’authentification s’effectue via injection BLE-HID, sans jamais exposer le secret.

Comparatif souverain : FIDO vs PassCypher

FIDO est adapté à l’authentification web sans mot de passe, mais ne permet ni usage SSH natif ni duplication. PassCypher HSM PGP, en revanche, offre une authentification SSH souveraine, avec clé exportable chiffrée, injection matérielle, et audit local. C’est la solution idéale pour les environnements critiques et multi-OS.

Rotation souveraine en 4 étapes

La rotation s’effectue en quatre étapes :

  1. Générer une nouvelle paire via PassCypher HSM PGP
  2. Déployer la nouvelle clé publique sur les serveurs
  3. Valider l’accès avec la nouvelle clé
  4. Retirer l’ancienne clé de authorized_keys

Chaque action est consignée dans un ledger d’audit local, assurant une traçabilité complète.

Automatisation sécurisée dans les workflows DevOps

Oui. Grâce à l’orchestration par EviSSH, il est possible d’intégrer PassCypher HSM PGP dans un pipeline CI/CD sans compromettre la sécurité. La clé privée reste encapsulée dans son conteneur OpenPGP, et seule la passphrase est injectée via BLE-HID ou NFC. Cette méthode permet d’exécuter des actions cryptographiques à distance, tout en respectant la logique zéro-clé-en-clair et en maintenant une traçabilité locale.

Gestion des identités et cloisonnement des accès

Oui. PassCypher HSM PGP permet de gérer plusieurs identités cryptographiques sur un même terminal, chacune encapsulée dans son propre conteneur chiffré. Cela facilite le cloisonnement des accès SSH, la rotation des clés par utilisateur, et la journalisation indépendante des opérations. Cette modularité est particulièrement utile dans les environnements partagés ou administrés à distance.

Journalisation locale et vérification manuelle

Oui. Chaque opération (génération, rotation, révocation) peut être consignée dans un journal d’audit local, sous forme de fichier append-only. Ce fichier contient les empreintes, labels, horodatages et hôtes cibles. Il peut être vérifié manuellement ou intégré dans un système de supervision souverain. Cette approche garantit une traçabilité sans dépendance à un service tiers.

Transmission sécurisée sans clavier physique

L’injection BLE-HID simule une saisie clavier, mais via un canal Bluetooth sécurisé. La passphrase est transmise depuis le HSM vers le terminal, sans passer par le clavier physique ni par le système d’exploitation. Cela permet d’éviter les keyloggers, les hooks système et les interceptions réseau. Le canal est chiffré en AES-128 CBC, et l’appairage est validé par code numérique.

Fonctionnement hors ligne et autonomie complète

Oui. PassCypher HSM PGP est entièrement fonctionnel dans un environnement isolé du réseau. Toutes les opérations (génération, injection, rotation, sauvegarde) sont locales et ne nécessitent aucune connexion Internet. Cela en fait une solution idéale pour les infrastructures critiques, les serveurs sensibles ou les environnements militaires.

Rotation périodique et stratégie de révocation

La durée de vie dépend du contexte d’usage. En général, une rotation tous les 6 à 12 mois est recommandée pour les accès administratifs. PassCypher facilite cette rotation via un processus en quatre étapes : génération, déploiement, validation, retrait. Chaque étape est documentée et peut être automatisée via EviSSH. La révocation est effectuée par suppression ciblée dans authorized_keys.

Interopérabilité native et conformité technique

Oui. Les clés générées par PassCypher HSM PGP sont compatibles avec OpenSSH, PuTTY, Termux, Git Bash et autres clients SSH standards. Le format de la clé publique respecte les spécifications OpenSSH, et la clé privée encapsulée peut être utilisée après déchiffrement local. Cela garantit une compatibilité multi-OS sans adaptation technique.

Gestion typologique sans agent ni cloud

La gestion souveraine des clés SSH repose sur une architecture locale, sans agent ssh-agent, ni dépendance à un service cloud. PassCypher HSM PGP encapsule la clé privée dans un conteneur OpenPGP chiffré, injecté à la demande via NFC ou BLE-HID. Cette approche garantit une traçabilité complète, une rotation maîtrisée et une posture zéro-clé-en-clair.

Rotation typologique avec journal local append-only

La rotation s’effectue par régénération d’une nouvelle paire, déploiement de la clé publique, validation de l’accès, puis révocation de l’ancienne clé. Chaque étape est consignée dans un journal local append-only (ssh-keys-ledger.tsv), assurant une traçabilité horodatée et vérifiable.

Récupération sans affichage via QR, NFC ou BLE-HID

PassCypher HSM PGP propose plusieurs méthodes souveraines de récupération : QR chiffré (GIF/PNG), lecture NFC depuis un HSM physique, ou injection via émulateur de clavier BLE-HID. Aucune de ces méthodes n’expose la passphrase en clair, garantissant une restauration sécurisée sans saisie manuelle.

Accès multi-OS via clé OpenPGP encapsulée

La clé publique est copiée sur le VPS distant (OVH, Scaleway, etc.), tandis que la clé privée reste encapsulée localement. L’authentification s’effectue via injection matérielle (BLE-HID ou NFC), sans forwarding ni exposition du secret. Compatible Linux, Windows, macOS, Android, iOS.

Injection sans saisie clavier ni clipboard

PassCypher HSM PGP permet l’injection directe de la passphrase via NFC ou émulateur BLE-HID, simulant une saisie clavier sécurisée. Cette méthode évite toute saisie manuelle, tout stockage en mémoire vive, et tout usage du presse-papiers. Elle est idéale pour les environnements critiques ou air-gapped.

Conformité renforcée avec les standards cryptographiques

Oui. PassCypher HSM PGP intègre les meilleures pratiques SSH : usage de clés ed25519 ou RSA ≥4096 bits, encapsulation OpenPGP AES-256, KDF mémoire-dur (Argon2id), rotation typologique, journalisation locale, et injection matérielle. Il dépasse les standards classiques en proposant une posture souveraine et post-quantique.

Glossaire — SSH Key PassCypher HSM PGP & OpenSSH pour Windows / Linux VPS

ACL (liste de contrôle d’accès)

Définit les autorisations d’accès à un fichier ou répertoire. Sous Windows, les fichiers authorized_keys et administrators_authorized_keys doivent être limités à Administrators et SYSTEM. Sous Linux (Debian / VPS OVH), les droits 600 sont requis pour les clés SSH.

Air-gapped

Environnement totalement déconnecté du réseau. Les modules EviSSH et PassCypher HSM PGP peuvent fonctionner en mode air-gapped, garantissant qu’aucune clé ni flux BLE/NFC ne quitte le périmètre matériel souverain.

Authentification par clé publique

Méthode d’accès SSH reposant sur une paire de clés asymétriques (publique/privée). Supportée par OpenSSH pour Windows et Debian, elle supprime la nécessité d’un mot de passe et renforce la sécurité des VPS OVH.

Authentification par code numérique

Appairage sécurisé BLE fondé sur la saisie d’un code à six chiffres. Garantit un canal chiffré AES-CCM (niveau link layer) conforme à Bluetooth LE Secure Connections, évitant le mode non sécurisé “Just Works”.

BLE-HID (Bluetooth Low Energy — Human Interface Device)

Canal Bluetooth émulant un clavier physique. Dans PassCypher, il sert à injecter des passphrases chiffrées, réduisant les risques de keylogger matériels, mais ne protégeant pas un poste déjà compromis (hook clavier ou rootkit).

Bonding

Association persistante entre périphériques BLE. Dans PassCypher, permet la reconnexion sécurisée sans réappairage manuel.

Clé privée SSH

Fichier confidentiel d’authentification SSH stocké sous C:\Users\username\.ssh (Windows) ou ~/.ssh/id_ed25519 (Linux Debian VPS). Chiffré directement par OpenSSH lors de sa création via passphrase (bcrypt KDF + AES-256), ou protégé matériellement via HSM PassCypher.

Clé publique SSH

Fichier partageable copié sur le serveur dans authorized_keys (utilisateur standard) ou administrators_authorized_keys (administrateur). Utilisé pour valider les connexions SSH sans mot de passe.

Clé SSH OpenSSH chiffrée

Fichier natif (id_rsa, id_ecdsa, id_ed25519) protégé par passphrase via chiffrement interne OpenSSH (AES-256 + bcrypt KDF). Aucune encapsulation OpenPGP n’est utilisée.

EviEngine

Moteur cryptographique local développé par Freemindtronic. Orchestre la génération, la dérivation et la rotation des clés sans dépendance cloud.

EviKey NFC HSM

Clé matérielle NFC Freemindtronic servant de coffre-fort portable. Permet le stockage sécurisé des identités et passphrases SSH, PGP ou système. Peut injecter des secrets de manière souveraine via NFC sans contact.

EviSSH

Module intégré à PassCypher HSM PGP dédié à la gestion des clés SSH (génération, rotation, auditabilité). Compatible Windows et Linux.

Empreinte

Hash SHA-256 identifiant une clé SSH. Vérifiable par ssh-keygen -lf dans OpenSSH. Sert à valider la correspondance entre clé privée et clé publique avant déploiement.

Gestion des clés SSH

Processus d’administration des identités SSH sur Windows, Debian ou VPS OVH. PassCypher gère les clés SSH au format OpenSSH natif, chiffrées par passphrase, et injecte les passphrases via NFC ou BLE-HID souverain. Aucune encapsulation OpenPGP n’est utilisée.

KDF (Key Derivation Function)

Fonction de dérivation cryptographique (Argon2id, PBKDF2). Transforme une passphrase en clé robuste contre les attaques GPU/ASIC.

Ledger

Journal d’audit append-only des clés SSH générées, déployées ou révoquées. Permet la traçabilité complète dans PassCypher.

Linux Debian / VPS OVH

Environnement serveur courant pour héberger des services SSH. Compatible OpenSSH, PassCypher et EviSSH. Les fichiers clés se trouvent dans /home/username/.ssh avec droits stricts.

Man-in-the-Middle (MITM)

Attaque d’interception des communications. Neutralisée par vérification d’empreinte et chiffrement BLE sécurisé.

OpenSSH pour Windows

Version native d’OpenSSH intégrée à Windows 10, 11 et Server 2019–2025. Inclut ssh-keygen, ssh-agent, ssh-add, scp, sftp, et PowerShell SSH.

Pairing / Secure Connections

Procédure d’appairage Bluetooth sécurisée par ECDH (P-256) et chiffrement AES-CCM 128 bits au niveau du link layer.

PassCypher HSM PGP

HSM hybride (logiciel + matériel) développé par Freemindtronic pour générer, chiffrer et injecter des clés SSH au format OpenSSH natif, ainsi que des passphrases ou clés PGP, via canaux NFC ou BLE-HID souverains.

Passphrase (phrase secrète)

Phrase longue utilisée pour chiffrer la clé privée SSH. Demandée par ssh-keygen ou stockée via ssh-add. Composant essentiel de l’authentification à deux facteurs OpenSSH / PassCypher.

PBKDF2 / Argon2id

Algorithmes de dérivation de clé servant à durcir les passphrases. Argon2id est privilégié pour sa résistance aux attaques GPU.

Posture PQ-aware

Approche Freemindtronic anticipant les menaces quantiques par l’usage d’algorithmes symétriques résistants (≥ AES-256) et de passphrases à haute entropie. Les primitives asymétriques SSH (RSA, ECDSA, Ed25519) restent classiquement vulnérables à Shor — cette posture est donc symétrique-robuste, non PQC complète.

PowerShell SSH

Interface de commande native Windows permettant d’administrer OpenSSH (ssh-keygen, ssh-agent, scp) et d’automatiser la gestion des clés par script.

Rotation des clés SSH

Cycle de renouvellement souverain des clés (génération, déploiement, validation, retrait). Dans PassCypher, chaque action est consignée dans le ledger.

scp / sftp

Utilitaires OpenSSH servant à transférer des clés ou fichiers entre client et serveur. Compatibles avec Windows, Debian et OVH VPS.

Secure Enclave / Android Keystore

Modules matériels sécurisés pour le stockage des clés d’appairage BLE ou AES sur terminaux mobiles.

Service sshd

Service Windows gérant les connexions SSH entrantes. Peut être configuré pour démarrer automatiquement via PowerShell : Set-Service -Name sshd -StartupType Automatic.

SID (Security Identifier)

Identifiant unique Windows des comptes ou groupes utilisateurs. Recommandé pour configurer des ACL précises sur administrators_authorized_keys.

Sovereign SSH

Modèle souverain d’administration SSH fondé sur le chiffrement matériel, la traçabilité et l’indépendance cloud. Les clés SSH sont chiffrées nativement par OpenSSH avec passphrase, sans encapsulation OpenPGP. Compatible OpenSSH sur Debian, Windows et OVH VPS.

ssh-add

Commande OpenSSH qui charge une clé privée dans ssh-agent. Permet les connexions automatiques sans ressaisie de passphrase.

ssh-agent

Service en mémoire stockant temporairement les clés privées chargées. Dans PassCypher, remplacé par un déchiffrement éphémère local pour usage hors ligne.

ssh-keygen

Outil de génération de paires de clés SSH (RSA, ECDSA, Ed25519). Chiffre directement la clé privée avec une passphrase (bcrypt KDF + AES-256). Recommandé d’utiliser Ed25519 avec passphrase forte et stockage HSM souverain.

Tmpfs

Système de fichiers temporaire en RAM. Utilisé pour éviter toute écriture persistante de clés déchiffrées.

Windows 10 / 11

Systèmes d’exploitation intégrant nativement OpenSSH Client et Server. Compatibles avec les solutions HSM PassCypher et EviSSH.

Windows Server 2019 / 2022 / 2025

Versions serveur prenant en charge OpenSSH et PowerShell SSH. Permettent la configuration d’accès sans mot de passe via ACL et SID sécurisés.

Zero-clear-key

Principe souverain interdisant toute clé privée en clair sur disque ou réseau. Implémenté dans PassCypher et conforme aux standards OpenSSH.

Zero-trust

Approche de sécurité consistant à valider chaque action même dans un environnement maîtrisé. Appliquée à l’ensemble des solutions Freemindtronic.

💡Note : Ce glossaire fait partie du corpus terminologique souverain Freemindtronic. Il garantit la cohérence sémantique entre les gammes PassCypher, EviKey, DataShielder, EviSSH et les environnements OpenSSH (Windows, Debian, VPS OVH).

Strategic Outlook — vers une souveraineté post-quantique

L’approche SSH Key PassCypher HSM PGP préfigure la convergence entre sécurité d’accès et résilience post-quantique.
En combinant stockage matériel, chiffrement symétrique renforcé et injection physique souveraine, elle construit un pont entre la cryptographie classique et les architectures hybrides PQC à venir.
Les prochaines itérations intégreront :

  • des primitives hybrides (ed25519 + Dilithium) ;
  • un canal BLE 5.3 avec chiffrement AES-256 GCM ;
  • un support natif des journaux signés sur blockchain interne ;
  • une compatibilité FIDO2 pour unifier SSH et authentification Web.

En attendant la généralisation des algorithmes PQC, la posture zero-clear-key demeure la défense la plus efficace : ne jamais laisser une clé privée exister ailleurs qu’en RAM chiffrée et temporaire.