Category Archives: Digital Security

Digital security is the process of protecting your online identity, data, and other assets from intruders, such as hackers, scammers, and fraudsters. It is essential for trust in the digital age, as well as for innovation, competitiveness, and growth. This field covers the economic and social aspects of cybersecurity, as opposed to purely technical aspects and those related to criminal law enforcement or national and international security.

In this category, you will find articles related to digital security that have a direct or indirect connection with the activities of Freemindtronic Andorra or that may interest the readers of the article published in this category. You will learn about the latest trends, challenges, and solutions in this field, as well as the best practices and recommendations from experts and organizations such as the OECD. You will also discover how to protect your personal data from being used and sold by companies without your consent.

Whether you are an individual, a business owner, or a policy maker, you will benefit from reading these articles and gaining more knowledge and awareness about this topic and its importance for your online safety and prosperity. Some of the topics that you will find in this category are:

  • How to prevent and respond to cyberattacks
  • How to use encryption and cryptography to secure your data
  • How to manage risks and vulnerabilities
  • How to comply with laws and regulations
  • How to foster a culture of security in your organization
  • How to educate yourself and others about this topic

We hope that you will enjoy reading these articles and that they will inspire you to take action to improve your security. If you have any questions or feedback, please feel free to contact us.

Authentification multifacteur : anatomie, OTP, risques

Schéma explicatif de l’Authentification Multifacteur illustrant les étapes 0FA, 1FA, 2FA et MFA sur fond blanc

Authentification Multifacteur : Anatomie souveraine Explorez les fondements de l’authentification numérique à travers une typologie rigoureuse — de 0FA à MFA — pour comprendre les enjeux de souveraineté, de sécurité et de résilience face aux menaces modernes.

Résumé express — Authentification Multifacteur de 0FA à MFA

Tu entres ton identifiant. Tu ajoutes un mot de passe. L’écran s’ouvre. Tu crois avoir franchi une barrière de sécurité, mais aucun facteur n’a vraiment été vérifié. C’est le royaume du 0FA — une authentification sans facteur, exposée aux attaques les plus triviales. À l’autre bout du spectre, on t’annonce le MFA comme une forteresse. Mais si les facteurs sont injectés dans le DOM, synchronisés dans le cloud ou répétés dans la même catégorie, cette forteresse est en carton. Entre ces extrêmes, 1FA et 2FA tracent des lignes de défense fragiles ou minimales. Cette chronique requalifie chaque méthode selon sa véritable anatomie, en intégrant les angles morts laissés par les référentiels classiques (CNIL, NIST, ENISA).

🚨 Message direct : Tant que vos secrets résident dans le navigateur, vous êtes en 0FA déguisé. Le seul chemin vers la souveraineté passe par des flux Zero-DOM matériels (NFC, HSM, sandbox hors-OS).

Schéma pédagogique illustrant l’Authentification Multifacteur avec la progression de 0FA, 1FA, 2FA jusqu’à MFA Zero-DOM

Paramètre de lecture

Temps de lecture résumé express : ≈ 3 minutes
Temps de lecture résumé avancé : ≈ 5 minutes
Temps de lecture complet : ≈ 31 minutes
Date de mise à jour : 2025-09-26
Niveau de complexité : Avancé / Expert
Densité technique : ≈ 72 % Langues : CAT · EN · ES · FR
Spécificité linguistique : Lexique souverain — densité technique élevée
Accessibilité : Optimisé lecteurs d’écran — ancres sémantiques incluses
Type éditorial : Chronique stratégique — Digital Security — (Cyberculture)
À propos de l’auteur : Jacques Gascuel, inventeur et fondateur de Freemindtronic®, spécialiste de la cybersécurité embarquée et pionnier de solutions souveraines basées sur le NFC, le Zero-DOM et le chiffrement matériel. Ses travaux portent sur la protection des données sensibles et l’authentification multifacteur sans dépendance cloud.

Note éditoriale — Cette chronique est vivante : elle évoluera avec les nouvelles attaques, normes et démonstrations techniques. Revenez la consulter.

Points clés

  • 0FA : identifiant + mot de passe ≠ facteur → aucune barrière réelle.
  • 1FA : un seul facteur (souvent le mot de passe) → vulnérable au phishing, au DOM et au cloud.
  • 2FA : le rempart minimal → deux facteurs distincts, résistance moyenne si séparation réelle.
  • MFA : forteresse adaptative → robuste seulement si les facteurs sont indépendants et hors-DOM.
  • Identifiant privé avancé : peut devenir un facteur de possession uniquement s’il est attribué, non devinable, et vérifié hors-DOM.
  • DEF CON 33 : a démontré l’exfiltration invisible de mots de passe, TOTP et passkeys synchronisés.
  • Zero-DOM : la seule voie souveraine — NFC, HSM, sandbox matérielle, hors navigateur et hors cloud.
Il vous reste trois minutes ? Lisez la suite du resumé : l’instant où la compromission devient routinière.

Résumé avancé — Anatomie Zero-DOM pour l’Authentification Multifacteur

Depuis deux décennies, les institutions (CNIL, NIST, ENISA) décrivent l’authentification comme une juxtaposition de facteurs. Mais cette lecture oublie deux réalités structurelles : 0FA (authentification sans facteur) et 1FA (authentification monofactorielle), pourtant omniprésentes dans les usages. Un identifiant seul ne prouve rien ; un mot de passe injecté dans le DOM n’est pas un facteur ; un MFA basé sur des secrets synchronisés reste vulnérable aux exfiltrations invisibles.

⮞ Doctrine — Un facteur n’est valide que s’il est :
• Vérifiable indépendamment
• Attribué exclusivement
• Non devinable
• Hors DOM, hors OS, hors cloud

Pourquoi c’est critique

  • 0FA se cache derrière la majorité des accès courants : identifiant + mot de passe.
  • 1FA n’apporte qu’une barrière symbolique, vulnérable au phishing et aux injections locales.
  • 2FA devient robuste uniquement si les facteurs sont réellement indépendants (pin code + mot de passe, par ex.).
  • MFA n’est pas synonyme de forteresse : mal segmentée, elle se réduit à une illusion de sécurité.

Leviers souverains

L’authentification forte repose sur une architecture Zero-DOM : garder les secrets hors du navigateur, valider localement via HSM ou NFC, et démontrer l’attribution exclusive. C’est le seul moyen de rendre les FA auditables et durables, dans un cadre Zero Trust ou SecNumCloud.

⮞ Synthèse — Multiplier les facteurs ne suffit pas. Seule leur indépendance et leur environnement souverain garantissent une sécurité réelle.

2025 Digital Security

Persistent OAuth Flaw: How Tycoon 2FA Hijacks Cloud Access

2025 Digital Security

Spyware ClayRat Android : faux WhatsApp espion mobile

2025 Digital Security

Android Spyware Threat Clayrat : 2025 Analysis and Exposure

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2025 Digital Security Technical News

Sovereign SSH Authentication with PassCypher HSM PGP — Zero Key in Clear

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Digital Security Technical News

Générateur de mots de passe souverain – PassCypher Secure Passgen WP

2025 Digital Security Technical News

Quantum computer 6100 qubits ⮞ Historic 2025 breakthrough

2025 Digital Security Technical News

Ordinateur quantique 6100 qubits ⮞ La percée historique 2025

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2025 Digital Security

Email Metadata Privacy: EU Laws & DataShielder

2025 Digital Security

Chrome V8 confusió RCE — Actualitza i postura Zero-DOM

2025 Digital Security

Chrome V8 confusion RCE — Your browser was already spying

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

En cybersécurité souveraine ↑ Cette chronique appartient à la rubrique Digital Security, tournée vers les exploits, vulnérabilités systémiques et contre-mesures matérielles zero-trust, tout en s’inscrivant également dans la sphère Cyberculture, qui analyse les impacts sociotechniques et culturels des choix en authentification et en souveraineté numérique.

Définitions des facteurs (FA) pour l’Authentification Multifacteur

Définition formelle pour une Authentification Multifacteur fiable

Un facteur d’authentification est une donnée ou un mécanisme vérifiable, non devinable, non réutilisable, attribué de manière exclusive, permettant de prouver la possession, la connaissance ou l’inhérence d’un utilisateur.

⮞ Critères de validité — Un facteur est reconnu uniquement s’il est :
• Vérifiable indépendamment d’un tiers non souverain
• Non injecté dans un environnement exposé (DOM, OS, cloud)
• Attribué ou généré de manière exclusive
• Non synchronisé sans contrôle local

Typologie des facteurs classiques au service de l’Authentification Multifacteur

  • Connaissance : ce que je sais (mot de passe, PIN).
  • Possession : ce que je possède (carte NFC, token matériel, identifiant privé avancé).
  • Inhérence : ce que je suis (biométrie, empreinte digitale, iris).

Quand un identifiant devient-il un facteur en Authentification Multifacteur ?

La confusion est fréquente : un identifiant (email, ID client) n’est pas un facteur.
Il peut le devenir seulement s’il respecte des conditions strictes d’attribution et de vérification.

  • Un identifiant public (email, pseudo) reste un simple adressage.
  • Un identifiant privé standard (matricule interne, ID client) est trop exposé pour constituer un facteur.
  • Un identifiant privé avancé, attribué par un tiers de confiance, non devinable et vérifié hors DOM (ex. : NFC injecté via HSM), peut être reconnu comme facteur de possession.

Exemple souverain

Un identifiant NFC généré aléatoirement, injecté hors navigateur et validé par un HSM, devient un facteur de possession.
S’il est combiné à un mot de passe (facteur de connaissance), l’authentification est alors un 2FA, même sans OTP ni biométrie.

⚠ Attention aux faux positifs
• Un identifiant stocké dans le DOM ≠ facteur
• Un identifiant complexe mais devinable (numéro de série, matricule client) ≠ facteur

Typologies 0FA → MFA de l’Authentification Multifacteur

Chaque méthode d’authentification est présentée comme une barrière, mais leur solidité réelle dépend des critères ignorés par les référentiels institutionnels. Reprenons la séquence : 0FA, 1FA, 2FA et MFA. Chacune a une anatomie, une surface d’exposition et un niveau de souveraineté.

0FA — limites et risques pour l’Authentification Multifacteur

Définition : une authentification où aucun facteur vérifié n’est engagé, même si un identifiant et un mot de passe sont saisis.
Risques critiques :

  • Phishing trivial (un email + mot de passe suffisent)
  • Credential stuffing à grande échelle
  • Brute force sans frein structurel
  • Exposition directe au DOM et au cloud
Message clé : 0FA est une illusion d’authentification. C’est l’équivalent d’une serrure dont la clé se trouve déjà dans la porte.

1FA — rôle minimal et exposition dans l’Authentification Multifacteur

Définition : une authentification reposant sur un seul facteur, généralement un mot de passe (connaissance).
Exemple : segmentation UX avec identifiant + mot de passe, mais vérifiés dans le même flux.
Risques :

  • Injection DOM (le mot de passe est manipulable dans le navigateur)
  • Dépendance au cloud (sauvegardes, synchronisation)
  • Usurpation via hameçonnage ou re-jeu
Message clé : 1FA est faible par conception : un secret isolé, exposé à un environnement hostile.

2FA — rempart minimal de l’Authentification Multifacteur

Définition : deux facteurs distincts parmi connaissance, possession, inhérence.
Exemples : mot de passe + SMS, mot de passe + app OTP, identifiant privé avancé + mot de passe.
Avantages :

  • Évite l’usurpation par mot de passe seul
  • Introduit une séparation logique entre facteurs

Limites :

  • Second facteur phishable (OTP, push, SMS)
  • Dépendance au DOM si injection via navigateur
  • Cloud = surface d’attaque supplémentaire
Message clé : 2FA est le rempart minimal. Sa solidité dépend de la séparation effective et de l’environnement d’injection.

MFA — forteresse conditionnelle de l’Authentification Multifacteur

Définition : combinaison de plusieurs facteurs distincts, souvent enrichis de signaux contextuels (localisation, heure, comportement).
Avantages :

  • Résistance accrue aux attaques ciblées
  • Compatibilité avec Zero Trust et architectures décentralisées

Limites :

  • Complexité UX → fatigue ou erreurs
  • « Faux MFA » : facteurs de même catégorie ou synchronisés
  • Dépendance critique si les secrets passent par le DOM ou le cloud
Message clé : MFA est une forteresse conditionnelle : robuste uniquement si ses briques sont indépendantes, segmentées et injectées hors DOM/cloud.

Typologie des OTP — tous les mécanismes, tous les risques

Les « OTP » (One Time Passwords) forment une famille hétérogène : SMS, e-mail, TOTP/HOTP, OTP matériel (OATH), OTP push, et variantes propriétaires. Ils partagent l’objectif d’ajouter un facteur de possession ou d’usage unique, mais leurs propriétés de sécurité et leur compatibilité avec une doctrine Zero-DOM divergent fortement.

Type d’OTP Exemples / mécanisme Vulnérabilités principales Statut souverain / recommandation
SMS OTP Code envoyé par SMS (réseau téléphonique) SIM swap, interception opérateur, phishing (EvilProxy) ❌ Déconseillé pour accès sensibles — pas souverain
Email OTP Code envoyé par message électronique Compromission boîte mail, interception, phishing ⚠️ Usage faible — acceptable pour low-risk, pas souverain
TOTP (Time-based) Algorithme OATH TOTP (ex. Google Authenticator) — code local, durée courte Phishing temps-réel (EvilProxy), synchronisation imprudente, exportabilité ✅ Acceptable si provisionné/stocké hors-DOM et lié au device (HSM/NFC)
HOTP (Counter-based) OATH HOTP — code basé sur compteur (tokens matériels) Vol physique du token, clonage matériel si pas maîtrisé ✅ Souverain si token matériel géré localement (PKI/HSM)
Hardware OTP (OATH tokens) Token physique (display) ou clé matérielle délivrant OTP Perte/vol du token, provisioning non sécurisé ✅ Recommandé pour environnements souverains (provisionnement hors-DOM)
Push OTP / Push MFA Notification push vers device ; validation via app (souvent cloud-relay) MFA fatigue, push-bombing, confirmation accidentelle, relay/cloud compromise ⚠️ Acceptable si binding appareil + attestation matérielle
Passkeys / WebAuthn (synchronisées) Clés publiques liées à devices ; parfois synchronisées via cloud (ex. passkeys navigateur) Overlay phishing sur UI synchronisée, synchronisation cloud = compromission ✅⚠️ Sûres si non synchronisées et stockées dans HSM/local authenticator (Zero-DOM)
OTP propriétaires (vendor-specific) Solutions fermées (ex. SMS relay, vendor SDKs) Dépendance fournisseur, synchronisation non maîtrisée, backdoors ⚠️ Évaluer cas par cas ; préférence pour standards ouverts et contrôle local

Principes de sécurité et recommandations pratiques

  • Éviter SMS et email pour accès à privilèges — trop d’attaques SIM/compromission boîte.
  • Préférer OTP matériel (HOTP/OATH token, clé matérielle) provisionnés hors-DOM via HSM/PKI.
  • TOTP reste utile si la seed est provisionnée et conservée hors DOM (ex. HSM) et si l’UX force binding local.
  • Push MFA doit inclure binding cryptographique de l’appareil, attestation et protection contre le push-bombing.
  • Passkeys/WebAuthn : éviter la synchronisation cloud ou exiger attestation locale (authenticator attestation) et UX anti-overlay.
  • TLS, anti-replay, expirations courtes, nonces et journaux d’usage : appliquer systématiquement.
  • Désactiver l’autofill pour champs OTP sensibles ; ne pas stocker de seeds dans localStorage/DOM.

Impact sur la typologie FA

  • Un OTP synchronisé perd l’exclusivité et tend vers non-facteur.
  • Les OTP matériels provisionnés hors-DOM peuvent constituer un facteur de possession valide (→ 2FA/MFA souveraine).
  • Les OTP basés réseau (SMS) affaiblissent la classification : 2FA via SMS ≠ 2FA souveraine.

Note : ces recommandations doivent être appliquées en regard des exigences réglementaires (RGPD, NIS2, SecNumCloud) et des contraintes d’usage. Le compromis sécurité/UX doit pencher fortement vers la sécurité pour comptes à privilèges.

Attaques connues contre l’Authentification Multifacteur

La valeur d’une authentification ne se juge pas uniquement par son design, mais par la résistance observée face aux attaques. Voici une typologie des menaces documentées dans les référentiels OWASP, confirmées par les démonstrations DEF CON 33 et les retours de terrain.

Vecteur Type d’attaque Description Source vérifiable
Réseau Rejeu de session Réutilisation d’un cookie ou jeton intercepté via proxy, MITM ou vol de jeton. Vaadata — MFA et détournement de session
Navigateur Clickjacking DOM Exfiltration invisible via iframe et focus() — mots de passe, OTP, passkeys, TOTP. Freemindtronic — DEF CON 33
Cloud Compromission OAuth / jetons Réutilisation de jetons OAuth valides ou détournés — contournement des mécanismes MFA liés au cloud. KeeperSecurity — Jetons persistants / compromission OAuth
OS local Contournement hors session Accès via WinRE, clé USB, modification du registre — récupération ou réinitialisation d’OTP/clefs stockées localement. BitUnlocker — DEF CON 33
Téléphonie SIM swapping Détournement du numéro pour intercepter les SMS OTP ou réceptionner les push. Akonis — MFA et phishing
Push cloud Push-bombing / MFA fatigue Spam de notifications push jusqu’à acceptation involontaire ou erreur humaine. Akonis — MFA fatigue
WebAuthn / Passkeys Overlay phishing / WebAuthn hijack Faux écran de confirmation ou overlay qui abuse des passkeys synchronisées (UI spoofing). Freemindtronic — DEF CON 33 / WebAuthn hijacking
Email OTP interception / compromission Accès à la boîte mail pour capturer les OTP envoyés ou réinitialiser des comptes. OneLogin — MFA par email compromise
Social Spear phishing Usurpation ciblée via email, faux portails ou interfaces dédiées — récupération de credentials et facteurs. OneLogin — Attaques contre MFA

⮞ Synthèse :

Chaque vecteur cible une faiblesse structurelle : le DOM, le cloud, le réseau, la couche OS ou l’interface utilisateur. Les OTP, passkeys et jetons OAuth sont vulnérables dès qu’ils sont injectés dans un environnement exposé. La souveraineté ne consiste pas à multiplier les facteurs, mais à changer l’environnement d’injection, de vérification et de stockage.

Environnements d’injection — DOM, cloud, OS, Zero-DOM dans l’Authentification Multifacteur

Environnements d’injection — DOM, cloud, OS, Zero-DOM

La robustesse d’un facteur ne dépend pas seulement de sa nature (connaissance, possession, inhérence). Elle dépend aussi de l’environnement où il est injecté, stocké ou validé. Un même facteur peut être souverain ou vulnérable selon qu’il transite par le navigateur, le cloud, l’OS ou un module matériel hors-OS.

Environnement Exemples Niveau de vulnérabilité Facteur reconnu ?
DOM (navigateur) Formulaire HTML, passkey synchronisée, autofill Très élevé ❌ Non — exfiltrable
Cloud (serveur tiers) OAuth token, push MFA, synchronisation identifiant Élevé ⚠️ Partiel — dépend du fournisseur
OS local Session Windows, registre, TSE, macOS keychain Moyen ⚠️ Oui si isolé — vulnérable hors session
Zero-DOM / Hors-OS Carte NFC, HSM, sandbox matérielle, smartcard Faible à nul ✅ Oui — facteur souverain
Synthèse : Un mot de passe ou un identifiant NFC n’ont pas la même valeur selon qu’ils sont saisis dans le DOM, stockés dans le cloud ou vérifiés dans un HSM.
Un facteur n’est facteur que s’il est validé hors DOM et hors synchronisation.

Mini-correspondance attaque → environnement :

  • Clickjacking DOM → casse 1FA/2FA/MFA injectés côté navigateur.
  • SIM swap → casse 2FA basé sur SMS cloud.
  • Rejeu OAuth → exploite les jetons MFA stockés côté cloud.
  • Accès WinRE → contourne 1FA/2FA stockés dans l’OS local.

Empreinte navigateur (browser fingerprinting) — facteur passif à utiliser avec prudence

La thèse de l’Université de Rennes 1 (2020) montre que le browser fingerprinting, exploité à grande échelle et avec un jeu d’attributs riche (216 attributs initiaux, 46 dérivés, 4,145,408 empreintes analysées), peut atteindre une distinguabilité et une stabilité élevées : simulation d’un comparateur simple donne un taux d’erreur compris entre 0,61 % et 4,30 % selon les populations. Autrement dit, l’empreinte navigateur peut fournir un signal supplémentaire d’authenticité sans friction utilisateur.
Toutefois, ce signal n’est pas équivalent à un facteur de possession souverain : il reste probabiliste, dépend fortement du choix et de la stabilité des attributs, et peut être contourné ou altéré par des stratégies d’évasion. Utiliser le fingerprinting comme facteur unique serait donc imprudent ; en revanche, c’est un bon indicateur complémentaire pour l’analyse de risque (détection d’anomalies, renforcement adaptatif) si et seulement si il est combiné à des preuves hors-DOM (HSM, clés matérielles, attestations).

Implications pratiques :

  • Usage conseillé : fingerprinting = signal de risque / signal d’alerte, jamais facteur unique pour accès sensibles.
  • Combinaison : utiliser pour déclencher durcissements adaptatifs (ex. exiger HSM, challenge hors-DOM, step-up auth) plutôt que pour autoriser l’accès seul.
  • Sélection d’attributs : appliquer la méthode de sélection (stabilité vs coût de collecte) ; éviter attributs instables ou facilement modifiables par user agent spoofing.

Limites & risques :

  • Signal probabiliste — taux d’erreur observé 0,61–4,30% selon populations ; suficientes pour alerte, insuffisant pour preuve d’identité.
  • Vie privée & RGPD — suivi / profilage : nécessité d’évaluer base légale, minimisation des données et durée de conservation.
  • Évasion & contrefaçon — attaquant capable de générer empreintes falsifiées peut réduire l’efficacité ; surveillance continue requise.

Synchronisation des facteurs — impact sur l’Authentification Multifacteur

Synchronisation des facteurs — confort UX ou faille structurelle ?

La synchronisation est souvent présentée comme un atout UX : vos passkeys, OTP ou jetons OAuth sont disponibles partout, sur tous vos appareils. En réalité, elle constitue une faille systémique, car elle centralise les secrets et les expose aux mêmes vecteurs d’attaque que le DOM ou le cloud.

Élément synchronisé Risque principal Exemple d’attaque
Passkeys Overlay phishing DEF CON 33 — détournement via superposition d’UI
OTP Rejeu ou interception SIM swap, EvilProxy
Jetons OAuth Réutilisation, détournement Compromission Google OAuth2

Doctrine souveraine :

  • Tout facteur synchronisé perd son exclusivité → il n’est plus un facteur.
  • La souveraineté exige des facteurs vérifiés localement, injectés hors DOM et hors cloud.
  • La CNIL recommande explicitement de limiter la synchronisation et de privilégier les vérifications locales/matérielles.

Résistance par méthode dans l’Authentification Multifacteur

Pour juger de la valeur d’un FA, il faut noter sa résistance face aux attaques observées. Le tableau ci-dessous cartographie les attaques courantes, les FA qu’elles compromettent typiquement, et les contre-mesures architecturales (Zero-DOM / HSM / binding) à privilégier.

Attaque Environnement visé FA vulnérable Contre-mesure (Zero-DOM / souveraine)
Clickjacking DOM / overlay phishing Navigateur / DOM 1FA ; 2FA/MFA si second facteur injecté dans le DOM (TOTP, passkey sync) Ne pas mettre de secrets dans le DOM ; déplacer vérif. vers HSM/NFC ou sandbox hors-navigateur ; UX anti-overlay.
EvilProxy / phishing temps-réel Web / proxy d’attaque TOTP, passkeys synchronisées, push MFA non bindés Binding cryptographique device↔service ; attestation d’authenticator ; vérification hors-flux via HSM.
SIM swapping Réseau mobile 2FA SMS Interdire SMS pour accès sensibles ; préférer OTP matériel / clé physique / NFC/HSM.
Compromission OAuth / replay token Cloud / serveur tiers MFA dépendant de jetons cloud (push, SSO tokens) Jetons courts ; liaison appareil (device binding) ; vérification locale/mutualisée ; rotation forcée.
Accès hors-session (WinRE, clé USB) OS local Secrets stockés OS (keychains, registres), 1FA/2FA locaux Chiffrement matériel des clés ; stockage dans HSM ; verrouillage disque avec attestation matérielle.
Push-bombing / MFA fatigue Push cloud → mobile Push MFA (app) sans binding Exiger preuve d’intention forte (PIN local, biométrie) ; limiter tentatives ; binding certifié.
Provisioning / supply-chain compromise Fournisseur / device Tokens matériels mal provisionnés, seeds TOTP exposés Provisionnement hors-ligne / HSM PKI ; audits supply-chain ; attestation d’origine matérielle.

⮞ Lecture rapide :

  • Si un facteur traverse le DOM ou une synchronisation cloud, considérez-le comme non fiable.
  • Les contremesures efficaces sont architecturales : HSM/NFC, device binding, attestation, provisioning hors-DOM.
  • Ne confondez pas nombre de facteurs et indépendance des facteurs : c’est cette indépendance — et son environnement — qui crée la robustesse.

Architectures actives vs passives en Authentification Multifacteur

Dans la lecture souveraine de l’authentification, il convient de distinguer deux approches : les architectures passives et les architectures actives. Les premières reposent sur des facteurs consommés et validés à distance — typiquement le mot de passe transmis à un serveur, ou l’OTP centralisé via un service cloud. Elles exposent l’utilisateur à des risques structurels, puisque la vérification dépend d’un tiers et d’un environnement externe. Les secondes, dites actives, impliquent une interaction matérielle locale — clé NFC, token U2F, HSM, Zero-DOM — qui réalise la validation sans dépendre d’une infrastructure distante. C’est cette logique active qui permet de bâtir une authentification réellement souveraine, résiliente aux compromissions systémiques et aux vulnérabilités inhérentes aux environnements passifs.

Lecture des signaux — faible, moyen, fort en Authentification Multifacteur

Un facteur d’authentification ne se résume pas à sa catégorie (connaissance, possession, inhérence). Il émet un signal de sécurité — faible, moyen ou fort — selon son environnement, sa vérifiabilité, et sa résistance aux attaques. Cette section cartographie les signaux observables pour chaque mécanisme, indépendamment de sa typologie déclarée.

Mécanisme Exemple Signal Justification
Mot de passe Saisi dans navigateur ❌ Faible Injectable, phishable, réutilisable, aucun ancrage matériel
OTP par SMS Code reçu via réseau mobile ⚠️ Moyen Interceptable (SIM swap), dépendance opérateur, faible exclusivité
TOTP local Google Authenticator hors DOM ✅ Fort Non transmissible, exclusif à l’appareil, validé hors DOM
Push MFA Notification vers app cloud ⚠️ Moyen Vulnérable au push-bombing et à l’acceptation involontaire ; dépend cloud
Token matériel Clé physique avec OTP ou signature ✅ Fort Attribution exclusive, preuve locale, auditabilité forte
Passkey synchronisée WebAuthn via cloud ❌ Faible Perte d’exclusivité, overlay phishing, dépendance fournisseur
Biométrie locale Empreinte liée à device avec enclave sécurisée ✅ Fort Non transmissible, vérifiée matériellement, usage exclusif
Identifiant seul Email ou ID client ❌ Aucun signal Déclaratif, non vérifié, non exclusif, simple adressage

Lecture typologique :

  • Un signal fort implique une vérification hors DOM, hors cloud, avec preuve locale ou matérielle.
  • Un signal moyen peut être toléré pour des usages non-critiques, mais reste vulnérable si la chaîne d’attribution n’est pas exclusive.
  • Un signal faible ou nul ne doit jamais être considéré comme un facteur souverain, même s’il est classé comme « MFA ».
Doctrine — Quand un facteur devient un vrai facteur
Un facteur est reconnu comme authentifiant seulement s’il satisfait trois dimensions cumulatives :
  • Cryptographique : non-devinable, non-réutilisable, non-transmissible.
  • Attribution : exclusif, vérifié, auditable.
  • Environnement : validé hors DOM/cloud, idéalement matériel (HSM, NFC, enclave sécurisée).

Sans cette triple exigence, un mécanisme reste un signal faible, quel que soit son label institutionnel (1FA, 2FA, MFA).

Tableau doctrinal — Validation des critères

Mécanisme Cryptographique Attribution Environnement Statut final
Mot de passe (navigateur) ❌ Signal faible
OTP SMS ⚠️ ⚠️ Signal moyen
TOTP local (hors DOM) ⚠️ ✅ Signal fort
Token matériel (HSM/NFC) ✅ Signal fort
Passkey synchronisée (cloud) ❌ Signal faible
Biométrie locale (enclave sécurisée) ✅ Signal fort

Auditabilité & traçabilité des facteurs en Authentification Multifacteur

Un facteur n’est souverain que s’il est traçable et auditable. L’auditabilité permet de prouver qu’un facteur a bien été présenté par l’utilisateur légitime, au moment attendu, via un canal exclusif. Sans journal, sans horodatage, ou sans attestation matérielle, un facteur peut être utilisé mais ne laisse aucune preuve exploitable en cas d’incident.

Facteur Auditabilité native Exemple de traçabilité Limites / risques
Mot de passe ❌ Faible Log tentative + hash comparé Réutilisation invisible, aucune preuve de possession
OTP SMS ⚠️ Moyen Logs opérateur + serveur d’authentification Pas de preuve d’attribution exclusive (SIM swap)
OTP email ⚠️ Moyen Journal SMTP / réception utilisateur Compromission de boîte non détectable
TOTP/HOTP ✅ Fort Horodatage + seed connu serveur ; validation horloge/counter Phishing temps-réel = difficilement traçable
Token matériel (HSM, NFC, smartcard) ✅ Très fort Attestation matérielle, horodatage sécurisé, preuve cryptographique Perte/vol du token → réattribution nécessaire
Push MFA ⚠️ Moyen Logs serveur + interaction utilisateur Push-bombing : log présent mais non preuve d’intention
Passkeys locales (WebAuthn + authenticator) ✅ Fort Attestation cryptographique, journal côté serveur Fortement dépendant de la gestion cloud si synchronisée
Biométrie ⚠️ Variable Log d’usage du capteur, preuve de succès/échec Aucune donnée biométrique ne doit être exportée → audit indirect uniquement
Identifiant privé avancé (HSM/NFC) ✅ Fort Attestation exclusive, log matériel + serveur Souverain seulement si non exposé DOM/cloud

Principes stratégiques :

  • Un facteur est auditable seulement si l’événement est horodaté, signé ou lié à un device attesté.
  • Les OTP réseau (SMS/email) génèrent des journaux, mais ne prouvent pas l’attribution au bon utilisateur.
  • Les solutions souveraines reposent sur des preuves cryptographiques locales (HSM, NFC, smartcards, passkeys locales).
  • L’auditabilité est un critère central du RGPD/NIS2 : sans logs fiables, impossible d’assurer accountability.

Note : L’auditabilité n’est pas qu’une exigence technique : c’est aussi un levier juridique et réglementaire. Elle conditionne la preuve légale d’authentification en cas d’incident ou de litige.

Faux MFA — erreurs et contournements en Authentification Multifacteur

Tous les MFA ne se valent pas. Un MFA mal conçu peut donner l’illusion de sécurité tout en restant vulnérable à des attaques triviales. La souveraineté impose d’identifier ces faux MFA : des combinaisons de facteurs qui paraissent multiples mais qui, en réalité, ne créent pas de séparation de confiance ni de robustesse structurelle.

Scénario Pourquoi c’est un faux MFA Conséquence Correctif souverain
Mot de passe + OTP SMS Deux facteurs sur le même canal réseau → SMS vulnérable (SIM swap, interception opérateur) Un simple SIM swap casse l’accès Remplacer OTP SMS par token matériel / OTP hors-DOM
Mot de passe + email OTP Même canal logique (identifiants + OTP stockés dans boîte mail) Compromission boîte mail = accès total OTP hors mail (TOTP/HOTP matériel)
Passkey synchronisée + mot de passe Facteurs stockés et synchronisés via cloud → perte d’exclusivité Overlay phishing possible, compromission cloud = MFA brisé Passkey locale non synchronisée (authenticator matériel)
2 OTP sur même canal Ex. : deux codes envoyés par SMS ou deux OTP via email Pas de séparation de canal → un seul vecteur d’attaque Diversifier les canaux (token + mot de passe, OTP matériel + biométrie)
Biométrie mobile + push cloud Les deux facteurs transitent via l’OS et le cloud du constructeur Compromission device/OS → MFA contourné Biométrie locale validée matériellement + HSM/NFC
SSO cloud + push MFA cloud Dépendance unique au fournisseur cloud ; aucun contrôle local Un détournement OAuth ou compromission serveur = accès total Introduire un facteur souverain hors-cloud (HSM, smartcard)

Principes de vigilance :

  • Deux éléments sur le même canal ou le même environnement = pas un vrai MFA.
  • Les facteurs synchronisés (cloud, navigateur) perdent leur indépendance.
  • Un MFA ne vaut que si chaque facteur repose sur une surface d’attaque distincte et hors DOM/OS exposé.

Note : Beaucoup d’organisations communiquent sur le MFA comme argument marketing. La question n’est pas « avez-vous du MFA ? » mais « vos facteurs sont-ils réellement indépendants et auditables ? ».

Souveraineté typologique — doctrine pour l’Authentification Multifacteur

Souveraineté typologique — critères et doctrine

La véritable robustesse d’une authentification ne se mesure pas au nombre de facteurs, mais à leur indépendance, leur environnement d’injection et leur contrôle souverain. Une authentification est dite souveraine lorsqu’elle ne dépend ni d’un cloud tiers, ni d’un DOM exposé, ni d’un OS compromis, et qu’elle permet une preuve locale vérifiable.

Critère Exigence souveraine Pourquoi
Indépendance des facteurs Chaque facteur doit reposer sur un canal et un mécanisme distincts (connaissance, possession, inhérence) Évite le « faux MFA » où deux éléments partagent la même surface d’attaque
Environnement hors-DOM Les secrets ne doivent jamais transiter ni être stockés dans le DOM du navigateur Le DOM est exfiltrable (clickjacking, injection, overlay)
Absence de synchronisation cloud Facteurs non copiés ni synchronisés via serveurs tiers Évite la perte d’exclusivité et la compromission à distance
Vérification locale Preuve d’attribution et validation faites localement (HSM, NFC, smartcard) Garantit l’exclusivité et l’auditabilité de l’usage
Traçabilité et auditabilité Capacité à journaliser et prouver l’usage de chaque facteur Permet conformité RGPD, NIS2, SecNumCloud, ISO 27001

Doctrine de souveraineté :

  • Zero-DOM : aucun secret ne doit résider dans le navigateur.
  • Hors-cloud : limiter la dépendance aux fournisseurs externes.
  • Attestation matérielle : chaque facteur doit être vérifié par une preuve cryptographique locale.
  • Auditabilité : tout usage de facteur doit être journalisable et opposable.

Note : Cette doctrine dépasse les exigences actuelles (CNIL, NIST, ENISA). Elle établit un cadre applicable aux infrastructures critiques, aux administrations et aux environnements militaires ou diplomatiques.

Exigences RGPD et NIS2

L’Authentification Multifacteur n’est pas seulement un choix technique : elle répond aussi à des obligations légales européennes.

Le RGPD, notamment son article 32, impose la mise en œuvre de mesures techniques et organisationnelles appropriées pour garantir la sécurité des données personnelles.
Dans ce cadre, l’authentification forte est explicitement considérée comme une contre-mesure appropriée.

La directive NIS2, publiée au Journal officiel de l’Union européenne, élargit le champ des entités soumises à des obligations de cybersécurité et met l’accent sur l’authentification robuste et la résilience des infrastructures critiques.

À ce titre, 0FA, 1FA ou 2FA apparaissent insuffisants face aux exigences attendues.
Seul un MFA souverain, privilégiant des architectures actives et Zero-DOM, permet simultanément de réduire la dépendance au cloud et d’assurer une conformité durable.

  • RGPD — Article 32 : sécurité des données personnelles
  • NIS2 — Résilience et robustesse de l’authentification
  • MFA souverain — Alignement technique et doctrinal

Cartographie sectorielle de l’Authentification Multifacteur

Au-delà des doctrines et des normes, il est essentiel de comprendre comment l’Authentification Multifacteur se déploie concrètement dans les différents secteurs stratégiques.

Infographie 16:9 illustrant la cartographie sectorielle de l’Authentification Multifacteur avec niveaux de maturité Passif, Faible, Élevée et Souveraine incluant le MFA Zero-DOM

Légende des couleurs :
🟧 Passif → mot de passe / OTP SMS
🟨 Faible → MFA dépendant du cloud
🟩 Élevée → MFA robuste multi-facteurs
🟩 foncé Souveraine → MFA actif, Zero-DOM, clé matérielle

L’infographie compare les secteurs Banque, Santé, Énergie & Industrie, Défense & Recherche selon quatre niveaux de maturité : Passif, Faible, Élevée, Souveraine (MFA Zero-DOM).

Cette cartographie sectorielle permet de relier les exigences réglementaires (RGPD, NIS2) aux réalités opérationnelles et met en évidence les écarts de maturité selon les environnements critiques.

Cette orientation illustre une prise de conscience progressive : seul un MFA souverain, libéré des dépendances cloud, peut offrir une conformité durable tout en garantissant une souveraineté numérique réelle.

En résumé, la cartographie sectorielle de l’Authentification Multifacteur révèle une adoption encore hétérogène, où coexistent des pratiques passives vulnérables et des initiatives pionnières vers des architectures actives souveraines. C’est précisément dans cette tension que s’inscrit l’analyse stratégique de cette chronique.

Preuve d’attribution — quand un identifiant devient facteur en Authentification Multifacteur

Un identifiant n’est pas automatiquement un facteur d’authentification. Pour qu’il le devienne, il doit être attribué, vérifié, et exclusif. Cette section clarifie les conditions techniques et typologiques qui permettent de considérer un élément comme un facteur de possession légitime.

Mécanisme Exemple Vérification Statut typologique
Auto-déclaré Email saisi par l’utilisateur ❌ Aucun contrôle ❌ Non facteur
Attribué sans preuve ID client généré par système ⚠️ Faible — non exclusif ❌ Non facteur
Attribué avec preuve OTP injecté via NFC HSM ✅ Vérifié hors DOM ✅ Facteur de possession
Identifiant biométrique Empreinte liée à un device ✅ si attestation matérielle ✅ si non synchronisé
Passkey synchronisée Clé WebAuthn partagée via cloud ❌ Non exclusive ⚠️ Faux facteur
Token matériel Clé physique liée à un identifiant unique ✅ Attestation locale ✅ Facteur souverain

Critères de validité typologique

  • Attribution exclusive à l’utilisateur
  • Vérification hors session et hors DOM
  • Stockage local ou matériel (HSM, NFC, token)
  • Absence de synchronisation cloud
  • Attestation cryptographique ou matérielle

Typologie des erreurs fréquentes

  • Confondre identifiant et facteur (ex. : email = possession)
  • Accepter un facteur synchronisé comme exclusif
  • Injecter un facteur dans le DOM sans vérification
  • Utiliser un identifiant non lié à une preuve matérielle

Note : la preuve d’attribution est un prérequis pour toute classification MFA souveraine. Sans elle, l’architecture repose sur des éléments déclaratifs, manipulables ou réutilisables.

Normes & doctrines — cadrage international de l’Authentification Multifacteur

Les normes et doctrines de cybersécurité définissent des exigences minimales, mais elles n’intègrent pas toutes la granularité 0FA/1FA/2FA/MFA. Leur vocabulaire reste souvent limité à « authentification forte », sans distinction entre un facteur réel ou un facteur affaibli par son environnement (DOM, cloud, synchronisation).

Norme / Cadre Origine Typologies reconnues Exigence MFA Commentaires souverains
NIST SP 800-63B 🇺🇸 États-Unis 1FA, 2FA, MFA MFA recommandé pour tous les accès sensibles Ne distingue pas 0FA ; MFA phishable si facteurs injectés dans DOM
ISO/IEC 29115  International Niveaux d’assurance (LoA 1-4) MFA requis dès LoA3 Parle d’assurance mais pas d’environnement d’injection
eIDAS 2.0 🇪🇺 Europe Identité numérique qualifiée MFA obligatoire pour services publics Compatible avec identifiants privés avancés et Zero-DOM
Zero Trust Architecture (ZTA) 🇺🇸 CISA / NIST MFA + vérification continue MFA exigé en continu, pas seulement à l’entrée Approche dynamique mais pas toujours matérialisée hors cloud
OWASP ASVS v4.0  Communauté MFA + séparation des rôles MFA obligatoire pour comptes admin et sensibles Reconnaît la fatigue MFA, mais ne traite pas la souveraineté matérielle

Lecture souveraine :

  • Omission critique : aucun standard ne définit 0FA ou 1FA, pourtant massivement utilisés.
  • Flou : les normes parlent de MFA mais ne qualifient pas l’environnement (DOM, cloud, OS).
  • Ouverture : eIDAS 2.0 et ZTA permettent d’intégrer une approche Zero-DOM souveraine.

</col]

Cartographie 0FA → MFA — quelles normes couvrent quoi ?

Panorama rapide : quelles typologies sont explicitement (ou implicitement) prises en compte par les standards, et sous quelles conditions. Utile pour relier étiquettes et exigences réelles.

Typologie NIST 800-63B ISO/IEC 29115 eIDAS 2.0 ZTA (CISA/NIST) OWASP ASVS FIDO2 / WebAuthn
0FA — aucun facteur réel ❌ (non défini)
1FA — un seul facteur (souvent mot de passe) ⚠️ (AAL1) ⚠️ (LoA1) ❌ (insuffisant) ❌ (contrôle continu requis) ❌ pour comptes sensibles ❌ (hors périmètre FIDO fort)
2FA — deux facteurs distincts ✅ (AAL2) ✅ (LoA3 minimal) ✅ (selon contexte/qualifié) ⚠️ (à compléter par vérif. continue) ✅ (exigé pour privilèges) ✅ (clé/biométrie locale)
MFA — ≥2 facteurs + contexte ✅ (AAL3 = fort) ✅ (LoA3/LoA4) ✅ (services publics, eID qualifié) ✅ (pilier ZTA) ✅ (bonne pratique) ✅ (si non synchronisé cloud)

Lecture rapide :

  • 0FA/1FA : peu ou pas reconnus pour des usages sensibles — non conformes aux doctrines modernes.
  • 2FA : accepté par la plupart des cadres, mais qualité d’environnement non évaluée (DOM/cloud).
  • MFA : attendu par tous les référentiels — robustesse conditionnée à l’indépendance des facteurs et à l’absence de synchronisation.
Exigence souveraine transversale : pour être considéré comme « facteur réel » au sens de cette chronique, un mécanisme MFA doit prouver : exclusivité d’attribution, validation hors-DOM/hors-cloud, et auditabilité locale (HSM, NFC, smartcard, authenticator attesté).
[/col]

Réflexion stratégique — enjeux Zero-DOM de l’Authentification Multifacteur

Cette chronique démontre une évidence inconfortable : la sécurité d’une authentification ne dépend pas seulement du nombre de facteurs, mais de l’environnement et de la vérifiabilité.
Un 2FA mal injecté vaut moins qu’un 1FA robuste hors DOM. Un MFA « cloud-synchronisé » peut s’effondrer comme un château de cartes face à un proxy ou un push-bombing. Les référentiels normatifs eux-mêmes (NIST, eIDAS, ISO) reconnaissent ces pratiques, mais n’intègrent pas encore les critères de souveraineté numérique — validation hors navigateur, hors cloud, avec preuve cryptographique locale.

Constat clé : tant que les identifiants, secrets ou jetons transitent par le DOM, l’OS ou un cloud tiers, l’utilisateur reste en réalité en 0FA déguisé.

Implications pour les États

  • Les doctrines Zero Trust et NIS2 imposent d’élever le plancher : sortir les secrets des environnements vulnérables.
  • Un identifiant ou un OTP ne devient souverain que s’il est lié cryptographiquement à un hardware vérifiable.
  • eIDAS 2.0 et les futures cartes d’identité numériques doivent éviter la dépendance cloud pour conserver une légitimité juridique.

Implications pour les entreprises

  • Éviter le faux confort d’un MFA « marketing » qui masque en fait un single point of failure.
  • Mettre en place des politiques Zero-DOM : secrets injectés uniquement via HSM, smartcards, enclaves sécurisées.
  • Repenser l’expérience utilisateur pour concilier sécurité forte et usage fluide : NFC, biométrie locale, attestations.

Implications pour les citoyens

  • Ne pas croire qu’un SMS ou un push suffisent — comprendre les limites des OTP.
  • Privilégier les clés matérielles et passkeys non synchronisées.
  • Demander des preuves de souveraineté : où sont stockés mes secrets ? Qui contrôle leur vérification ?
Conclusion : L’avenir de l’authentification ne se joue pas entre 2FA et MFA, mais entre MFA fragile synchronisé et MFA souverain validé hors DOM. La frontière entre sécurité réelle et illusion marketing passe par trois mots : Environnement, Vérifiabilité, Auditabilité.

L’email comme identifiant — sujet incontournable et pragmatique

Oui, la réalité produit-utilisateur impose souvent l’adresse e-mail comme identifiant et canal de preuve de propriété : facilité d’expérience, ubiquité, réglementation, et écosystème (notifications, récupération). Cela rend la « suppression pure et simple » de l’email rarement praticable.

Pour autant, il est indispensable d’expliquer : l’email augmente la surface d’attaque. La stratégie raisonnable n’est pas d’interdire l’e-mail partout du jour au lendemain, mais de le traiter différemment — comme canal de contact, jamais comme premier degré d’autorité pour les opérations sensibles — et d’introduire des mesures progressives pour réduire sa criticité.

Position recommandée — Parler ouvertement du risque email dans la chronique, puis proposer une feuille de route pragmatique :

  • atténuations obligatoires quand on ne peut pas supprimer l’email ;
  • alternatives progressives pour migration (handles, UUID, WebAuthn, clés matérielles) ;
  • experimentation et phasage (pilot, cohorts, mesure d’impact UX et sécurité).

Mesures pragmatiques quand l’email reste obligatoire

  • Séparer identité (login) & contact — stocker un user_id opaque (UUID) pour authentifier, et utiliser l’e-mail seulement comme canal de contact/récupération sous conditions strictes.
  • Durcir les flows de réinitialisation — ne pas permettre un reset complet uniquement via e-mail pour comptes sensibles : exiger seconde preuve hors-DOM (HSM-signed challenge, OTP matériel, WebAuthn, appel vocal avec challenge, vérif. biométrique locale).
  • Réponses opaques à l’énumération — ne pas indiquer si un e-mail existe ; réponses homogènes et timers, rate-limit et CAPTCHA adaptatif.
  • Verrouiller les changements d’adresse — tout changement d’e-mail requiert attestation forte (device binding + preuve locale) et délai/cool-down, notifications sur tous les devices et sur l’ancien e-mail.
  • Attacher device binding — quand l’e-mail est utilisé, lier les actions sensibles à une preuve de possession du device (certificat, attestation authenticator, HSM) pour empêcher takeover via boîte mail compromise.
  • Renforcer la vérification initiale — pas seulement « clic sur lien » : attacher la vérification à un token court, usage unique, non stocké dans le DOM et signé par le serveur.
  • Surveiller & alerter — détection automatique des tentatives de takeover, anomalies login, et triggers immédiats pour verrouillage MFA et investigations.

Alternatives progressives (phasing & migration)

  • Introduire un handle / pseudonyme dès l’inscription et permettre le login via handle + WebAuthn/clé matérielle ; laisser l’e-mail comme canal de secours mais non-authentifiant.
  • Offrir l’option WebAuthn / clé physique comme méthode primaire — promotion lors de la première connexion et campagne d’adoption.
  • Migrations graduelles — cohortes : beta interne → power users → grand public ; mesurer friction et abandon à chaque étape.
  • Federated identity / ID provider — proposer des IdP sécurisés (entreprise / eID qualifié) comme alternative pour comptes sensibles, tout en conservant l’e-mail pour notifications.

Checklist courte pour décider/oublier l’e-mail comme login (pour PM/archi)

  1. Peut-on remplacer l’email par un identifiant opaque sans casser l’UX critique (notifications légales, facturation) ? Si oui → plan de migration.
  2. Si non : quelle est la sensibilité des comptes ? (low / medium / high). Appliquer durcissements proportionnels.
  3. Implémenter : opaque IDs, existence-opaque responses, rate-limit, hardened reset, device binding, attestation pour changements d’email.
  4. Mesurer : métriques d’adoption WebAuthn, taux d’abandon lors du signup, incidents takeover, volume de resets.
  5. Communiquer : UX copy explicite, aides à l’option handle/clé matérielle, support pour onboarding.

« Dans l’idéal, l’adresse e-mail ne devrait pas être le login primaire ; dans la pratique, elle l’est souvent. Le texte le plus utile pour un architecte est donc : si vous ne pouvez pas l’éliminer immédiatement, traitez-la comme un canal de contact étroitement contrôlé — jamais comme la preuve unique de propriété — et mettez en place des protections hors-DOM pour toute opération sensible. »

[/col]

Périmètre volontairement non traité — focale Authentification Multifacteur

Cette chronique se concentre sur l’anatomie des facteurs d’authentification (FA), leur robustesse selon l’environnement (DOM, cloud, OS, Zero-DOM), et leur rôle dans une doctrine de souveraineté numérique. Certains sujets connexes ont été volontairement exclus pour ne pas diluer le propos.

  • Cryptographie avancée — Nous ne détaillons pas les protocoles sous-jacents (TLS, Diffie-Hellman, signatures elliptiques), sauf quand ils conditionnent directement la validité d’un FA.
  • Gestion des identités (IAM, SSO, federation) — Abordée uniquement sous l’angle de la compromission des jetons (OAuth, SAML).
  • Usages biométriques étendus — La biométrie locale est traitée comme facteur, mais les débats éthiques et légaux (CNIL, RGPD) ne sont pas couverts en détail.
  • Aspects légaux et géopolitiques — Réglementations internationales, lois nationales ou doctrines militaires ne sont qu’évoquées (NIS2, eIDAS) mais non analysées en profondeur.
  • Expérience utilisateur (UX) — Mentionnée comme vecteur d’attaque (MFA fatigue, overlay phishing), mais l’ergonomie globale n’est pas traitée.
  • Hardware spécialisé — TPM, enclaves sécurisées, Secure Elements sont mentionnés comme contre-mesures, sans entrer dans l’architecture matérielle détaillée.
  • Intelligence artificielle et machine learning — Les usages de l’IA/ML dans la détection d’anomalies d’authentification ou dans l’adaptive MFA ne sont pas traités ici. Ils feront l’objet de développements séparés, car ils relèvent d’une logique prédictive plus que d’une typologie de facteurs.
  • Implémentation pratique grand public — Cette chronique n’aborde pas les guides d’activation de l’Authentification Multifacteur sur des services commerciaux (Google, Microsoft, réseaux sociaux). Elle reste centrée sur la doctrine souveraine, au-delà des tutoriels grand public.
Note méthodologique : Ces limites visent à garder la chronique focalisée sur son objectif central : requalifier la valeur des FA dans un monde où DOM, cloud et synchronisations biaisent les hypothèses de sécurité. Elles montrent aussi que l’Authentification Multifacteur doit être lue comme une pratique de souveraineté numérique, au-delà des usages pratiques ou des tendances technologiques comme l’IA/ML.

Glossaire typologique de l’Authentification Multifacteur

Ce glossaire fixe les termes essentiels employés dans la chronique, afin d’éviter toute ambiguïté entre identifiant, facteur et environnement technique.

Terme Définition
Facteur d’authentification (FA) Élément vérifiable utilisé pour prouver l’identité. Trois catégories classiques : connaissance (mot de passe), possession (objet, token), inhérence (biométrie).
0FA Authentification sans facteur réel. Exemple : identifiant + mot de passe saisis dans un navigateur, sans vérification de possession ni d’inhérence.
1FA Authentification à un seul facteur, souvent un mot de passe. Vulnérable au phishing, au bruteforce et aux attaques DOM.
2FA Authentification à deux facteurs distincts. Exemple : mot de passe (connaissance) + token matériel (possession). Considéré comme le minimum acceptable.
MFA Authentification multifactorielle. Combine au moins deux facteurs distincts, parfois enrichis de contexte (réseau, localisation, temps). Forte seulement si les facteurs sont indépendants et hors-DOM.
Identifiant privé avancé Identifiant attribué par un tiers de confiance, non devinable, non partagé, et vérifié comme preuve exclusive. Peut être requalifié en facteur de possession.
DOM Document Object Model. Interface du navigateur qui structure les pages web. Surface critique où les secrets ne doivent jamais transiter.
Zero-DOM Doctrine consistant à exclure tout secret du DOM et du cloud, en privilégiant une vérification hors-OS via HSM, NFC ou sandbox matérielle.
OTP One-Time Password — mot de passe à usage unique. Inclut SMS OTP, email OTP, TOTP, HOTP, OTP matériel, push OTP. Leur robustesse varie fortement selon l’environnement d’injection.
MFA fatigue / push-bombing Attaque consistant à spammer des notifications push MFA jusqu’à ce que l’utilisateur accepte par erreur ou par lassitude.
Overlay phishing Technique de phishing par superposition d’une fausse interface (ex. WebAuthn, passkeys) sur une fenêtre légitime, pour voler un facteur.
⮞ Clé de lecture : un terme n’est pas seulement défini mais requalifié dans une logique de souveraineté. Ce glossaire distingue les simples éléments d’adressage (identifiant/email) des véritables facteurs vérifiables (HSM, NFC, biométrie locale).

FAQ Typologique — Bonnes pratiques d’Authentification Multifacteur

Le 2FA désigne l’usage de deux facteurs distincts (par exemple mot de passe + OTP SMS). Le MFA va plus loin : il implique au moins deux facteurs, mais souvent trois ou plus, combinant connaissance (mot de passe), possession (clé matérielle, smartphone) et inhérence (biométrie). Dans la pratique, beaucoup de services présentent un 2FA limité comme un MFA, ce qui crée une confusion. La véritable différence réside dans la diversité et l’indépendance des facteurs. Un MFA robuste, de préférence actif et Zero-DOM, assure une sécurité bien supérieure à un simple 2FA.

Parce qu’un identifiant et un mot de passe dans le navigateur ne constituent pas deux facteurs, ni même un seul. Aucun élément vérifiable n’est engagé : c’est donc une authentification sans facteur, appelée 0FA. Cette situation est encore courante dans de nombreux services, où l’utilisateur croit être protégé par une simple combinaison identifiant/mot de passe. En réalité, il s’agit d’un schéma vulnérable aux attaques triviales, notamment le phishing, le credential stuffing et les keyloggers. La doctrine 0FA met en évidence cette illusion de sécurité.

Non. Même robuste, long et unique, un mot de passe reste stocké et injecté dans des environnements exposés (DOM, OS, cloud). Il constitue uniquement un facteur de connaissance, vulnérable au phishing, à l’interception réseau ou à la compromission locale. Les attaques modernes ciblent moins la force du mot de passe que l’environnement dans lequel il est utilisé. C’est pourquoi la sécurité numérique actuelle exige au minimum une authentification multifacteur, idéalement déployée hors DOM pour échapper aux compromissions.

Oui, mais faible. Le SMS repose sur la possession de la carte SIM, mais celle-ci peut être détournée (SIM swap), interceptée ou manipulée par l’opérateur. Le SMS OTP constitue donc bien un 2FA fonctionnel, mais non souverain, exposé au phishing et aux attaques à grande échelle. Pour les accès critiques ou réglementés (RGPD, NIS2), il est recommandé de migrer vers des facteurs plus robustes : TOTP hors DOM, clés NFC, ou MFA souverain Zero-DOM.

Elles ne le sont que si elles sont locales. Une passkey stockée dans un HSM, une enclave matérielle ou un appareil dédié est robuste. Mais une passkey synchronisée dans le cloud perd son exclusivité et peut être compromise en cas d’attaque contre l’infrastructure distante. Elle devient alors équivalente à un facteur passif. La souveraineté impose donc des passkeys locales et non synchronisées, intégrées dans un MFA actif.

Un facteur souverain se caractérise par :

  • ✓ Une vérification hors DOM et hors cloud
  • ✓ Une absence de synchronisation automatique
  • ✓ Une validation locale (NFC, HSM, sandbox matérielle)
  • ✓ Une exclusivité prouvée et non réplicable

Ces critères distinguent un simple facteur technique d’un facteur souverain, adapté à la cybersécurité avancée.

Oui. Par exemple, deux facteurs de même catégorie (mot de passe + question secrète) ou injectés dans le même environnement (mot de passe + TOTP dans le DOM) ne créent pas une véritable barrière. C’est ce que la doctrine appelle les « faux MFA ». Ils multiplient les étapes mais ne renforcent pas la sécurité. Seul un MFA souverain, avec indépendance des facteurs et architecture active, élève réellement le niveau de protection.

Oui, lorsque c’est possible. Un identifiant unique, non devinable, complique la tâche d’un attaquant et réduit l’exposition. Cependant, de nombreux services imposent l’email comme login et comme vecteur de contrôle de propriété. Dans ces cas, seule une authentification multifacteur souveraine, avec un facteur actif hors DOM, compense cette fragilité structurelle.

Ils font partie des meilleures options, à condition d’être provisionnés hors DOM (via HSM, PKI) et utilisés localement. Ils offrent une possession exclusive et une validation indépendante du cloud. Intégrés dans une MFA active, ils constituent un pilier souverain de l’authentification forte.

Parce que le DOM est une surface d’exposition universelle. Toute donnée qui y transite (mot de passe, OTP, jeton) peut être exfiltrée par extension, iframe invisible ou injection JavaScript. Tant qu’un facteur réside dans le DOM, il reste vulnérable. La doctrine Zero-DOM s’impose comme contre-mesure souveraine en retirant les facteurs de cette surface compromise.

Oui, dans certains cas. Une 1FA basée sur un identifiant cryptographique injecté hors DOM (par exemple via une clé matérielle) peut offrir plus de robustesse qu’une MFA où les facteurs sont synchronisés ou stockés dans le cloud. Ce n’est pas le nombre de facteurs qui compte, mais leur indépendance, leur exclusivité et leur environnement de validation.

Indirectement, oui. Le RGPD, via son article 32, impose la mise en œuvre de mesures de sécurité adaptées aux risques, ce qui inclut l’authentification forte. NIS2, de son côté, cible explicitement la robustesse de l’authentification et la résilience des infrastructures critiques. Pour les secteurs régulés (banque, santé, énergie), une MFA souveraine et active n’est pas seulement une bonne pratique, mais une exigence implicite de conformité.

Lectures complémentaires — mettre en pratique l’Authentification Multifacteur

Chrome V8 confusió RCE — Actualitza i postura Zero-DOM

Chrome V8 confusió RCE — zero-day de tipus confusió amb execució remota drive-by; guia Zero-DOM i passos d’urgència per a Catalunya i Andorra

Chrome V8 confusió RCE: aquesta edició exposa l’impacte global i les mesures immediates per reduir risc — amb guia pràctica, bones pràctiques Zero-DOM i referències oficials.

Resum ràpid

Chrome V8 confusió RCE és una vulnerabilitat activa de type-confusion a l’enginy V8 que permet execució remota de codi «drive-by». Una sola pestanya a una pàgina maliciosa pot activar l’exploit; Google TAG ha confirmat explotació «in the wild». Patches a Stable: 140.0.7339.185/.186 (Win/Mac), 140.0.7339.185 (Linux) i Android 140.0.7339.155. Actualitza ja i tracta el navegador com a hostile runtime.

🚨 En breu — actualitza ara. Tracta el navegador com un hostile runtime. Separa usos sensibles de la navegació diària. Adopta postura Zero-DOM — instal·la PassCypher HSM (PGP gratuït) i activa l’opció anti “BITB”.

Lectura recomanada

Temps del resum: 3–4 minuts
Lectura completa: 36–38 minuts
Darrera actualització: 2025-09-19
Complexitat: Avançat / Expert
Nota lingüística: Lèxic sobirà — alta densitat tècnica
Densitat tècnica: alta ≈ 72%
Idiomes: CAT · EN · ES · FR
Accessibilitat: Optimitzat per lectors de pantalla — àncores semàntiques
Tipus editorial: Crònica estratègica (narrativa)
Sobre l’autor: Jacques Gascuel, inventor i fundador de Freemindtronic®.

Punts clau

  • Una sola pàgina pot bastar: RCE “drive-by” via confusió de tipus a V8.
  • Explotació confirmada en el moment de publicar el pegat.
  • Versions corregides: 140.0.7339.185/.186 (Win/Mac) · 140.0.7339.185 (Linux) · Android 140.0.7339.155.
  • Reflex sobirà: aïllar usos crítics, reduir la confiança en el navegador, fluxos Zero-DOM per maquinari (HSM/NFC).
Nota editorial — Aquesta crònica és viva: evolucionarà amb noves revelacions, pegats i lliçons de camp. Torna-hi de tant en tant.

Et queden tres minuts? Llegeix el resum ampliat: quan la compromissió esdevé rutina.

Diagrama 16:9 – Chrome V8 zero-day CVE-2025-10585: confusió de tipus a V8, etapes de l’atac, impacte (galetes, testimonis, extensions) i mitigacions Zero‑DOM.
Esquema: confusió de tipus a V8 que habilita RCE drive-by

Errors en sèrie, defenses tardanes — Postura Zero-DOM

El 2025 es llegeix com una sèrie d’espionatge on l’atacant sempre va una passa al davant. CVE-2025-2783 al març, CVE-2025-4664 al maig, CVE-2025-5419 al juny i el Chrome V8 zero-day CVE-2025-10585 al setembre. A cada episodi, el mateix patró: torçar prou la memòria per obtenir un punt de suport. Als mercats grisos, una RCE estable supera sovint els 500.000 $. Mentrestant, els defensors compren temps: els pegats arriben quan les campanyes ja estan en marxa.

⮞ Idea clau El ritme continuarà. Redueix la confiança implícita en el navegador, escurça els cicles de pegat i aïlla allò que realment importa.

Chrome V8 zero-day CVE-2025-10585: per què aquest pivot ho canvia tot

Chrome V8 confusió RCE no és un accident aïllat: és el símptoma d’un model on el navegador executa codi no fiable a tocar dels teus secrets. Mentre identitats, sessions i claus travessin el DOM o romanguin a la memòria del navegador, una RCE drive-by via confusió de tipus a V8 n’hi ha prou per exposar-les. A continuació expliquem què passa realment, qui ho explota i com recuperar l’avantatge — començant per actualitzar a Stable 140.0.7339.185/.186 i endurir el runtime amb una postura Zero-DOM.

Què revela el Chrome V8 zero-day CVE-2025-10585

CVE-2025-10585 és una fallada de memòria al motor V8 — una type confusion al runtime JavaScript/WebAssembly. Una dada es pren per una altra i obre un pas on un script pot executar codi només en visitar una pàgina parany. El Google TAG va confirmar explotació in the wild quan es van publicar les versions 140.0.7339.185/.186 (Windows/Mac) i 140.0.7339.185 (Linux); Android 140.0.7339.155. En breu: l’atac va precedir el pegat.

Dues conseqüències.

  1. La compromissió pot ser silenciosa: cap indicador visual.
  2. Un cop el codi s’executa, el navegador deixa de ser un contenidor i esdevé un corredor: cookies, tokens, extensions i sessions al núvol es converteixen en portes laterals a l’abast.

Zero-day Chrome V8 el 2025: la cadència

El patró es repeteix: fallades de memòria a V8 al llarg de l’any, sincronitzades amb campanyes en curs. Manté una bretxa persistent entre explotació i pegat, sobretot quan permet RCE.

CVE Tipus Finestra de correcció Enllaç oficial
CVE-2025-2783 Corruptela de memòria Març 2025 cve.org
CVE-2025-4664 Use-after-free / política (Loader) 14 maig 2025 Chrome Releases — Desktop
CVE-2025-5419 Lectura/escriptura fora de límits 3 juny 2025 Chrome Releases — Extended Stable
CVE-2025-10585 Type confusion (V8) 17 set. 2025 Desktop · Android

Mercat: un zero-day fiable de V8 (RCE/escapada de sandbox) sovint supera els 500.000 $.

Qui explota un Chrome V8 zero-day com CVE-2025-10585?

Tres esferes convergeixen. Equips cibercriminals monetitzen sessions i comptes via publicitat maliciosa i sites compromesos. Actors alineats amb estats l’empren amb parcimònia i precisió per travessar silenciosament fronteres tècniques d’organitzacions escollides. Intermediaris avaluen fiabilitat i abast abans d’encaixar una cadena d’explotació. L’atribució TAG apunta a un teatre d’actors estatals.

Risc sectorial i exemples

  • Administració pública — portals d’e-gov, consoles d’administració.
  • Finances i assegurancestenants SaaS i banca en línia.
  • Sanitat — sistemes clínics i missatgeria sensible.
  • Energia/indústria — entorns IT/OT híbrids.
  • Mobilitat — ecosistemes Android i flotes corporatives.

Exemples il·lustratius — evita atribuir sense confirmació oficial.

Impacte en l’usuari: d’un clic ordinari a pèrdua de sobirania

Una sola pàgina pot plantar codi que observa i desvia la vida d’una pestanya. L’usuari no veu res; el navegador transporta cookies, tokens i extensions, que esdevenen palanques d’elevació i persistència. El risc és sistèmic: molts serveis tracten el navegador com un espai de confiança. Un zero-day V8 recorda que no ho és.

Què fer davant de CVE-2025-10585: tracta el navegador com un runtime hostil

Actualitza a 140.0.7339.185/.186 (Windows/Mac) o 140.0.7339.185 (Linux) via Ajuda → Quant a Google Chrome; Android: 140.0.7339.155. Separa usos (perfil/VM dedicats per a operacions sensibles), redueix superfície (desactiva WebAssembly on sigui possible, limita JIT en tercers crítics), governa extensions (llista blanca, auditoria, sense sideloading) i segueix els butlletins oficials.

En una línia: aplica pegats ràpid, aïlla allò crític i desbrossa el navegador.

Comprova la versió — Windows/macOS: Menú → Ajuda → Quant a Google Chrome. Linux: executa google-chrome --version (o chromium --version). Android: Google Play → Actualitzacions → Chrome, i reinicia.

Bloc IT — polítiques d’empresa (exemple)

{
  "ExtensionInstallAllowlist": ["<IDs>"],
  "ExtensionInstallBlacklist": ["*"],
  "URLAllowlist": ["https://intra.example.tld/*"],
  "URLBlacklist": ["*"],
  "DefaultPopupsSetting": 2,
  "JavascriptAllowedForUrls": ["https://intra.example.tld/*"],
  "AutofillAddressEnabled": false,
  "PasswordManagerEnabled": false,
  "WebAssemblyEnabled": false
}

Adapta-ho; desplega via GPO, Intune/MDM o JSON de polítiques gestionades.

Per què està lligat al DOM — i a la nostra crònica de Clickjacking

Una RCE a V8 (CVE-2025-10585) i el clickjacking d’extensions basat en DOM poden acabar igual: si els secrets travessen el DOM o resideixen a la memòria del navegador, són accessibles. La primera via (RCE V8) pren control del procés; la segona (UI-redressing/BITB) força secrets en un DOM parany. En tots dos casos, el DOM és la superfície d’exfiltració.

  • Superfície comuna: DOM i memòria del navegador (autofill, cookies, tokens, passkeys sincronitzades, extensions).
  • Vies d’atac: motor (RCE V8) o interfície (overlays, iframes, focus(), Shadow DOM).
  • Mitigació convergent: aïllar usos, governar extensions i adoptar Zero-DOM (secrets fora de DOM/procés, RAM efímera i consentiment físic).

Lectura relacionada…

Vulnerabilitat Passkeys: Les Claus d’Accés Sincronitzades no són Invulnerables

Versions corregides i cronologia

Data Canal / Plataforma Versió Nota
17 set. 2025 Stable Desktop (Win/Mac) 140.0.7339.185/.186 CVE-2025-10585 llistada; explotació in the wild reconeguda.
17 set. 2025 Stable Desktop (Linux) 140.0.7339.185 Desplegament progressiu.
17 set. 2025 Chrome per a Android 140.0.7339.155 Correccions de seguretat alineades amb Desktop.

Avisos i guies oficials (CAT/ES/AD)

Exposició i impacte — focus catalanoparlant

Chrome manté prop del ~69% de quota global. Una Chrome V8 confusió RCE impacta directament administracions, empreses i ciutadania als territoris catalanoparlants.

Context local — Portals de seu electrònica (ajuntaments, consorcis), tràmits de la Generalitat/AOC i intranets universitàries depenen intensament del navegador: qualsevol RCE a V8 pot exposar sessions i credencials si no hi ha segmentació i reinici post-pegat.

  • Catalunya / PV / Illes — ús intensiu de portals d’e-tràmits: acció pegat + reinici + perfils segregats.
  • Andorra — flotes Android destacades: acció desplegament gestionat a 140.0.7339.155 + verificació de compliment.
  • Catalunya Nord — alineació amb França: acció pegats accelerats en ens locals + límits JIT/WebAssembly.

Impacte específic en territoris catalanoparlants

  • Catalunya — Chrome domina més del 70% de la quota en navegadors d’administracions públiques i universitats. Un exploit V8 podria comprometre portals d’e-tràmits i intranets.
  • Andorra — Ecosistema altament mòbil amb flotes Android >75%. El retard en actualitzacions representa un risc immediat per bancs i serveis governamentals.
  • País Valencià i Illes Balears — Elevada dependència de SaaS i serveis al núvol; qualsevol RCE al navegador exposa credencials d’empreses i centres educatius.
  • Catalunya Nord — Situació híbrida: quota Chrome propera al 65%, però amb dependència de serveis francesos d’e-gov; cal accelerar pegats.

Anatomia — type confusion a V8

El cursor parpelleja. Al darrere, la memòria està “preparada”: heaps groomats, objectes mal etiquetats, baranes apartades. V8 interpreta una cosa per una altra; la pàgina esdevé vehicle. Cap avís. L’exploit parla el llenguatge ordinari del web — esdeveniments, focus, render — per aterrar execució.

Després del pas — del contenidor al corredor

Un cop el codi corre, el navegador deixa de ser capsa i es transforma en passadís. Cookies i tokens són equipatge; les extensions, portes laterals; les sessions al núvol, una galeria d’estances obertes. No cal ariet: n’hi ha prou amb un pas rutinari.

Actors i incentius

D’una banda, equips criminals recullen sessions per revenda massiva. De l’altra, grups alineats amb estats apunten amb precisió, lligant zero-days a portals coneguts. Al mig, intermediaris compren cadenes d’explotació com si fossin infraestructura: fiabilitat, abast, discreció.

Reescriptura sobirana (Zero-DOM)

Hi ha una versió d’aquesta història on la pestanya compromet el navegador… i no troba res a robar.

  • Els secrets no toquen mai el DOM.
  • No resideixen al procés del navegador.
  • No circulen mai en clar.

Identitats, OTP, passkeys i claus privades viuen en maquinari fora de línia. Només apareixen com a fantasmes efímers a la RAM, desencadenats per una acció física.

Tecnologies sobiranes

  • PassCypher HSM PGP: cada secret es vincula a una URL esperada; desviacions, refusades. Contenidors xifrats fins a decisió física verificable.
  • PassCypher NFC HSM: toc NFC abans de qualsevol injecció. El navegador només veu transport, no contingut.
  • SeedNFC HSM: cold-wallet NFC simplificat. Amb Android NFC + emulador HID-BLE, injecta claus sense portapapers ni DOM.
  • EviKeyboard BLE (HID-BLE): senyal xifrat AES-128-CBC; injecció fora de DOM i portapapers.
⮞ Síntesi Secrets fora del navegador + consentiment físic = un zero-day V8 es confina a incident, no a bretxa sistèmica.

Senyals febles

Tendència — Reemergència de bugs de memòria V8 correlacionats amb operacions dirigides.
Operatiu — Cicles de brokerage d’exploits més ràpids; pressió sobre SLA de pegats i reinicis d’usuari.
Immediat — Exploit “in the wild” confirmat per CVE-2025-10585; actualització obligatòria i reinici complet.

Controls ràpids MDM/GPO

  • Força actualització i reinici — Intune/JAMF/Workspace ONE: política de Chrome + data límit de relançament.
  • Flotes Android — Desplegament via Managed Play a 140.0.7339.155; verifica informes de compliment.
  • Desactiva WebAssembly si no és necessari; restringeix JIT en àmbits crítics.
  • Governança d’extensions — només llista blanca; sense sideloading; auditoria de permisos.

Què no hem cobert

Ometem intencionadament PoC d’explotació i reproduccions pas a pas. No entrem en bases d’enduriment sectorials ni en l’economia dels mercats d’exploits. Objectiu: exposar el risc sistèmic i mostrar per què un enfocament Zero-DOM de maquinari canvia el desenllaç. Perspectiva — Dissenya per al fracàs elegant: assumeix que el navegador pot caure sense endur-se la teva identitat.

PMF CVE-2025-10585

Obre Menú → Ajuda → Quant a Google Chrome. Busca 140.0.7339.185/.186 (Win/Mac) o .185 (Linux).

Actualitza a 140.0.7339.155 via Google Play i reinicia. Comprova-ho a Paràmetres → Quant a → Versió.

Sí: tots basats en Chromium i V8. Aplica l’actualització del venedor i verifica que CVE-2025-10585 hi consti.

Si el teu flux sensible ho permet, sí: redueix superfície. En empreses, aplica-ho via GPO/MDM i limita JIT per perfils de risc.

Els secrets no passen pel DOM ni viuen al procés del navegador. Romanen en HSM fora de línia i només afloren efímerament a RAM amb acció física. La Chrome V8 confusió RCE té poc material per exfiltrar.

Glossari estratègic — Chrome V8: Confusió RCE i postura Zero-DOM

  • V8 — Motor JavaScript/WebAssembly de Chrome/Chromium.
  • Confusió de tipus — Error on un objecte es tracta com un altre; porta a corrupció controlada.
  • HID-BLE — Emulació de teclat Bluetooth LE; injecció “com si fos” teclejada, fora de portapapers i fora de DOM.
  • RCE — Execució remota de codi.
  • Zero-day — Vulnerabilitat explotada abans del pegat públic.
  • DOM — Estructura en memòria de les pàgines web.
  • BITBBrowser-in-the-Browser: marcs falsos que imiten finestres d’autenticació.
  • Zero-DOM — Doctrina Freemindtronic: cap secret al DOM/procés; RAM efímera i àncora de maquinari (HSM/NFC).

Terminologia i localització

Aquesta crònica prioritza terminologia i topònims en català (seu electrònica, ajuntament, consorci, tramitació). També incorpora exemples operatius propis del teixit públic-privat als territoris catalanoparlants (Catalunya, País Valencià, Illes Balears, Andorra, Catalunya Nord). Això demostra que no és una traducció literal, sinó una anàlisi adaptada a la realitat local.

Transparència sobirana i context territorial

Terminologia i localització

Aquesta crònica prioritza terminologia i topònims en català (seu electrònica, ajuntament, consorci, tramitació). També incorpora exemples operatius propis del teixit públic-privat als territoris catalanoparlants (Catalunya, País Valencià, Illes Balears, Andorra, Catalunya Nord). Això demostra que no és una traducció literal, sinó una anàlisi adaptada a la realitat local.

Producció local de seguretat

Els productes PassCypher, DataShielder i SeedNFC han estat concebuts, desenvolupats i fabricats a Andorra (Catalunya històrica). Aquesta arrel local reforça l’estratègia de sobirania digital i mostra que les contramesures Zero-DOM tenen una connexió directa amb el territori catalanoparlant.

Transparència i afiliació

Freemindtronic és el venedor de PassCypher, DataShielder i SeedNFC citats. Els mencionem perquè mitiguen directament el risc descrit (Zero-DOM, consentiment físic, injecció segura HID/BLE). L’anàlisi es basa en comunicats oficials amb enllaços actius.

Chrome V8 confusion RCE — Your browser was already spying

Cinematic poster style showing cyber espionage in a city night scene, symbolizing Chrome V8 confusion RCE zero-day vulnerability.

Chrome v8 confusion RCE: This edition addresses impacts and guidance relevant to major English-speaking markets — United States, United Kingdom, Canada, Australia and India — with region-specific guidance, compliance pointers and references.

Quick summary

Chrome V8 confusion RCE is a live, exploitable V8 type-confusion that enables drive-by remote code execution. You open a tab and the page looks ordinary; inside V8 one value impersonates another, pointers slip, memory integrity collapses, and a crafted script executes. Google’s Threat Analysis Group confirmed active exploitation. Patches landed on Stable: 140.0.7339.185/.186 (Windows/Mac) and 140.0.7339.185 (Linux); Android: 140.0.7339.155.

🚨 Bottom line — update now. Treat the browser as a hostile runtime. Separate sensitive tasks from everyday browsing. Adopt a Zero-DOM posture — install PassCypher HSM (free PGP) and enable the anti-“BITB” feature.

Recommended read

Summary read time: 3–4 minutes
Estimated full read: 36–38 minutes
Last updated: 2025-09-19
Complexity: Advanced / Expert
Linguistic note: Sovereign lexicon — high technical density
Technical density: high ≈ 72%
Languages: CAT · EN · ES · FR
Accessibility: Screen-reader optimized — semantic anchors included
Editorial type: Strategic column (narrative)
About the author: Jacques Gascuel, inventor and founder of Freemindtronic®.

Key points

  • One page is enough: drive-by RCE via V8 type confusion.
  • Exploitation confirmed at time of patch release.
  • Patched versions: 140.0.7339.185/.186 (Win/Mac) · 140.0.7339.185 (Linux) · Android 140.0.7339.155.
  • Sovereign reflex: isolate critical use, reduce browser trust, adopt hardware Zero-DOM flows (HSM/NFC).
Editorial note — This column is living: it will evolve as new disclosures, patches and field reports arrive. Check back.

Got three minutes? Read the extended summary: how compromise becomes routine.

16:9 diagram – Chrome V8 zero-day CVE-2025-10585: V8 type confusion, attack stages, impact (cookies, tokens, extensions) and Zero‑DOM mitigations.
Schematic: V8 type-confusion exploit enabling drive-by RCE

Serial flaws, lagging defenses — Zero-DOM posture

2025 reads like a spy series where attackers stay one step ahead. CVE-2025-2783 in March, CVE-2025-4664 in May, CVE-2025-5419 in June, and the Chrome V8 zero-day CVE-2025-10585 in September. Each episode follows the same script: bend memory just enough to gain a foothold. On the market, a stable RCE can fetch north of $500,000. Defenders meanwhile buy time: patches ship after campaigns are already under way.

⮞ Takeaway The tempo will continue. Reduce implicit trust in browsers, tighten patch cycles, and isolate what matters.

Regional highlights

  • US — Prioritise CISA/NIST guidance and enterprise patching.
  • UK — Align with NCSC guidance; review high-risk finance/admin consoles.
  • Canada — Follow CCCS advisories for public-sector rollouts; isolate e-gov consoles.
  • Australia — Map to ACSC Essential Eight; accelerate patch + restarts.
  • India — Prioritise Android Chrome 140.0.7339.155 across enterprise fleets.

2025 Digital Security

Persistent OAuth Flaw: How Tycoon 2FA Hijacks Cloud Access

2025 Digital Security

Spyware ClayRat Android : faux WhatsApp espion mobile

2025 Digital Security

Android Spyware Threat Clayrat : 2025 Analysis and Exposure

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2025 Digital Security Technical News

Sovereign SSH Authentication with PassCypher HSM PGP — Zero Key in Clear

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Digital Security Technical News

Générateur de mots de passe souverain – PassCypher Secure Passgen WP

2025 Digital Security Technical News

Quantum computer 6100 qubits ⮞ Historic 2025 breakthrough

2025 Digital Security Technical News

Ordinateur quantique 6100 qubits ⮞ La percée historique 2025

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2025 Digital Security

Email Metadata Privacy: EU Laws & DataShielder

2025 Digital Security

Chrome V8 confusió RCE — Actualitza i postura Zero-DOM

2025 Digital Security

Chrome V8 confusion RCE — Your browser was already spying

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

In Sovereign Cybersecurity ↑ This column belongs to the Digital Security section, focused on exploits, systemic vulnerabilities and hardware countermeasures for zero-trust environments.

Chrome V8 zero-day CVE-2025-10585: why this pivot changes everything

Chrome V8 confusion RCE is not a one-off accident but the symptom of a model where the browser executes untrusted code next to your secrets. As long as identities, sessions and keys cross the DOM or linger in browser memory, a drive-by remote code execution via a V8 type confusion exploit is enough to expose them. The next sections unpack what actually happens, who is exploiting it, and how to regain the upper hand—starting with updating to Chrome Stable 140.0.7339.185/.186c and tightening browser runtime hardening under a Zero-DOM posture.

What the Chrome V8 zero-day CVE-2025-10585 reveals

CVE-2025-10585 is a memory flaw in the V8 engine — a type confusion in the JavaScript/WebAssembly runtime. One value is mistaken for another, opening a corridor where a crafted script can execute code as soon as you visit a booby-trapped page. Google’s Threat Analysis Group confirmed active exploitation at the time Stable shipped 140.0.7339.185/.186 (Windows/Mac) and 140.0.7339.185 (Linux); Android 140.0.7339.155. In short: exploitation preceded the patch.

Two consequences follow. First, compromise can stay silent: nothing on screen signals the browser just crossed a boundary. Second, once code runs, the browser stops being a container and turns into a corridor: cookies, tokens, extensions and cloud sessions become side doors within reach.

Zero-day Chrome V8 in 2025: the cadence

In 2025 the pattern repeats: V8 memory flaws punctuate the year and sync with already-moving campaigns. This cadence sustains a persistent gap between exploitation and patching, especially when the bug enables RCE.

CVE Type Fix window Official link
CVE-2025-2783 Memory corruption March 2025 Record cve.org
CVE-2025-4664 Use-after-free / policy (Loader) May 14, 2025 Chrome Releases — Desktop
CVE-2025-5419 Out-of-bounds R/W June 3, 2025 Chrome Releases — Extended Stable
CVE-2025-10585 Type confusion (V8) Sept 17, 2025 Chrome Releases — Desktop · Android

On the grey/black markets, a reliable Chrome V8 zero-day (RCE/sandbox escape) often fetches $500,000+.

Who exploits a Chrome V8 zero-day like CVE-2025-10585?

Three spheres intersect. Cybercrime crews monetise access to sessions and accounts via malvertising and compromised sites. State-aligned actors use the flaw sparingly and precisely to cross technical borders inside selected organisations. Between them, brokers assess reliability and reach before chaining a full exploit kit. The TAG attribution suggests CVE-2025-10585 sits in this state-actor theatre.

Sectoral risk & examples

  • US — federal agencies, healthcare providers, cloud admin consoles
  • UK — financial services, legal/finance SaaS tenants
  • Canada — provincial e-gov portals, health networks
  • Australia — mining/energy operators, identity federation portals
  • India — mobile-first services, large telcos, payment platforms

Illustrative targets only — avoid attribution without official confirmation.

User impact: from an ordinary click to loss of sovereignty

A single page may plant code that observes and diverts the life of a tab. The user sees nothing; the browser carries cookies, tokens and extensions — all become levers for elevation and persistence. Across the English-speaking sphere the risk is systemic: public services, messaging, and admin consoles rely on the browser as if it were trusted land. A Chrome V8 zero-day is a reminder it is not.

What to do against CVE-2025-10585: treat the browser as a hostile runtime

Update to 140.0.7339.185/.186 (Windows/Mac) or 140.0.7339.185 (Linux) via Help → About Google Chrome; Android: 140.0.7339.155. Separate uses (dedicated profile/VM for administrative and sensitive ops), reduce surface (disable WebAssembly where possible, limit JIT on sensitive third-party sites), strictly govern extensions (allow-list, audit, no sideloading) and follow official advisories.

In one line: patch fast, isolate what matters, declutter the browser.

Check your version — Windows/macOS: Menu → Help → About Google Chrome. Linux: run google-chrome --version (or chromium --version depending on distro). Android: Google Play → Updates → Chrome, then relaunch.

IT block — example enterprise policies

{ "ExtensionInstallAllowlist": ["<IDs>"], "ExtensionInstallBlacklist": ["*"], "URLAllowlist": ["https://intra.example.tld/*"], "URLBlacklist": ["*"], "DefaultPopupsSetting": 2, "JavascriptAllowedForUrls": ["https://intra.example.tld/*"], "AutofillAddressEnabled": false, "PasswordManagerEnabled": false, "WebAssemblyEnabled": false }

Adapt as needed; deploy via GPO, Intune/MDM or managed policies JSON.

Why it’s tied to the DOM — and to our Clickjacking column

V8 remote code execution (CVE-2025-10585) and DOM-based extension clickjacking end the same way: if secrets cross the DOM or live in browser memory, they become accessible. The first path (V8 RCE) takes over the process; the second (UI redressing/BITB) forces secrets into a trapped DOM. Either way, the DOM is the exfiltration surface.

  • Common surface: DOM & browser memory (autofill, cookies, tokens, synced passkeys, extensions).
  • Attack paths: engine (V8 RCE) or interface (overlays, iframes, focus(), Shadow DOM).
  • Convergent mitigation: isolate uses, govern extensions, and adopt Zero-DOM (secrets off-DOM/off-process, ephemeral RAM, physical consent).

Related read…

WebAuthn API Hijacking: A CISO’s Guide to Nullifying Passkey Phishing

Fixed versions & timeline

Date Channel / Platform Version Note
Sept 17, 2025 Stable Desktop (Win/Mac) 140.0.7339.185/.186 CVE-2025-10585 listed; in-the-wild exploitation acknowledged.
Sept 17, 2025 Stable Desktop (Linux) 140.0.7339.185 Progressive rollout.
Sept 17, 2025 Chrome for Android 140.0.7339.155 Security fixes aligned with Desktop.

Exposure & regional impact

Chrome holds roughly ~69.23% global browser share (source: StatCounter — Global, Aug 2025).
A Chrome V8 confusion RCE therefore reaches a very large share of English-speaking users and enterprises.

Anatomy — V8 type confusion

The cursor blinks. Behind the screen, the script has staged memory: groomed heaps, mislabeled objects, guardrails nudged aside. V8 mistakes a value for what it is not; the page becomes a vehicle. No pop-ups, no warning. The exploit speaks the web’s ordinary language — events, focus, rendering — and leverages it to land execution.

Regulatory & compliance guidance

United States (CISA / NIST)

Follow CISA emergency directives and NIST/NVD advisories: document patch status, prioritise high-privilege endpoints, and report incidents per CISA guidance.

Refs: CISA Advisory · NIST NVD

United Kingdom (NCSC)

Apply NCSC browser-hardening and BYOD guidance; include the incident in your Cyber Essentials review.

Ref: NCSC Guidance

Canada (CCCS)

Align public-sector patch windows with CCCS advisories; escalate risks to provincial IT for e-services.

Ref: CCCS Advisory

Australia (ACSC)

Map fixes to ACSC Essential Eight priorities; accelerate patch + restart cadence in OT/IT.

Ref: ACSC — Essential Eight

India (CERT-IN)

Prioritise Android Chrome 140.0.7339.155 rollouts (MDM/Play), validate restarts, and track compliance.

Ref: CERT-IN Advisory

After the crossing — from container to corridor

Once code runs, the browser stops being a box and becomes a hallway. Cookies and tokens turn into luggage; extensions into side doors; cloud sessions into a chain of open rooms. The attacker needs no battering ram — just a routine passage.

Actors & incentives

On one side, cybercrime teams harvest sessions resold in bulk. On the other, state-aligned groups strike with precision, tying zero-days to familiar portals. In between, brokers buy exploit chains like infrastructure: reliability, reach, discretion.

Sovereign rewrite (Zero-DOM)

There’s a version of this story where the tab compromises the browser — and finds nothing worth stealing.

In that version, secrets:

  • never touch the DOM,
  • do not reside in the browser process,
  • never travel in cleartext.

IDs, OTPs, passkeys and private keys live in offline hardware. They appear only as ephemeral ghosts in RAM, triggered by a physical user action.

sovereign technologies

  • PassCypher HSM PGP: every secret is bound to an expected URL. Deviations are refused. Containers remain encrypted until a verifiable physical decision.
  • PassCypher NFC HSM: a physical tap (NFC) before any injection. The browser sees transport, never content.
  • SeedNFC HSM: simplified NFC cold-wallet HSM. Paired with an Android NFC phone + HID-BLE emulator, it injects cryptocurrency public/private keys without clipboard or DOM.
  • Bluetooth keyboard emulator (HID-BLE)EviKeyboard BLE: BLE signal encrypted with AES-128-CBC. Paired with Freemindtronic apps (PassCypher, SeedNFC, DataShielder), it injects secrets over HID-BLE, off-DOM and off-clipboard. Overlays and UI-redressing techniques become ineffective.
⮞ Takeaway Secrets off-browser + physical consent = a V8 zero-day becomes a contained incident, not a system breach.

Weak signals

Weak (trend) — A resurgence of V8 memory bugs correlating with targeted campaigns, clustering around operational windows.
Moderate (operational) — Faster exploit brokerage cycles, pressure on patch SLAs and on user-device reboot inertia.
Strong (immediate) — Confirmed in-the-wild exploit for CVE-2025-10585; mandatory updating and full browser restarts.

MDM/GPO quick controls

  • Force update & relaunch — Intune/JAMF/Workspace ONE: push Chrome update policy; enforce relaunch deadline.
  • Android fleets (India focus) — Managed Play rollout to 140.0.7339.155; verify via device compliance reports.
  • Disable WebAssembly where not required; restrict JIT on critical scopes.
  • Extensions governance — allow-list only; block sideloading; audit permissions.

What we did not cover

This column deliberately omits exploitation PoCs and step-by-step reproductions. It also leaves out sector-specific hardening baselines and a deep dive into exploit-market economics. The goal is to expose the systemic risk and show why a hardware Zero-DOM approach changes the outcome. Perspective — Design for graceful failure: assume the browser can fall without taking your identity with it. Anchor secrets in hardware, require physical consent, and treat every tab as disposable.

FAQ CVE-2025-10585

Open Menu → Help → About Google Chrome. Look for 140.0.7339.185/.186 (Win/Mac) or .185 (Linux).

Update to 140.0.7339.155 via Google Play, then relaunch the app. Check in Settings → About → Version.

Yes — these Chromium-based browsers embed V8. Apply each vendor’s update without delay and confirm that CVE-2025-10585 is included in the release notes.

If your sensitive workflows allow it, yes: it reduces attack surface. In enterprises, enforce via GPO/MDM, and limit JIT for high-risk profiles.

Secrets never transit the DOM nor live in the browser process. They remain in offline hardware (HSM) and only appear ephemerally in RAM on a physical user action. A Chrome V8 confusion RCE then has little or nothing to exfiltrate.

SeedNFC is an NFC HSM cold wallet (based on EviPass NFC HSM). PassCypher NFC HSM and DataShielder NFC HSM embed the same sovereign core.

What this brings against CVE-2025-10585 (V8) and BITB/overlays:

  • Secrets off-browser: IDs, OTP, private keys never stored in the browser process/DOM.
  • Physical consent: each use requires an NFC/HSM action; without it, nothing leaves.
  • URL binding (PassCypher/DataShielder): secrets are bound to expected URLs; on deviation (phishing/BITB) the HSM refuses.
  • Anti-keylogger injection: HID-BLE mode via USB; BLE signal encrypted with AES-128-CBC; no clipboard, no DOM.
  • Ephemeral RAM: nothing persists on the host; drive-by RCE finds little to steal.

Usage modes:

  • Android NFC + Freemindtronic app (PassCypher, SeedNFC, DataShielder) to drive the HSM.
  • HID-BLE: Bluetooth Low Energy keyboard emulation to the host; works with standard input fields.

Bottom line:

  • Does not replace Chrome/Chromium updates; it complements them by removing secrets from the browser.
  • Ideal for privileged accounts, admin consoles, sensitive messaging and critical transactions.

Prereqs: Android NFC smartphone, Freemindtronic app, HSM device (SeedNFC / PassCypher NFC HSM / DataShielder NFC HSM). Secrets are not stored on the phone; they stay sealed inside the NFC HSM.

Read official advisories and compare your version to fixed builds. See: Chrome Releases (June 17, 2025) and CERT-FR on CVE-2025-10585.

Switching alone won’t cut it. All Chromium browsers share V8. A Zero-DOM posture and role separation are more effective than simply changing brand.

Yes. Follow CISA emergency directives, document patch status and restart compliance, and report incidents as required. See: CISA advisory.

Yes. Apply NCSC browser-hardening and BYOD controls; align with Cyber Essentials and sector regulators. See: NCSC guidance.

Use managed Play + MDM for staged rollouts, enforce restarts, and verify version 140.0.7339.155. See: CERT-IN.

Prioritise application patching, app control and configuration hardening; document restarts. See: ACSC E8.

Follow CCCS advisories, coordinate with provincial IT for e-services, and enforce restarts. See: CCCS.

Glossary

V8 — Chrome’s JavaScript/WebAssembly engine (also used by Chromium browsers).

Type confusion — Memory bug where an object is treated as another type; leads to controlled corruption.

HID-BLE — Bluetooth Low Energy keyboard emulation; injects secrets “as if typed,” off-clipboard and off-DOM.

RCERemote Code Execution: arbitrary code runs remotely. Zero-day — Vulnerability exploited before a public fix.

DOM — Document Object Model: the in-memory structure of web pages.

BITBBrowser-in-the-Browser: fake frames imitating auth windows.

WebAssembly — Portable binary format executed in browsers.

JITJust-in-Time compilation: speeds execution but expands attack surface.

Zero-DOM — Freemindtronic doctrine: no secrets in DOM/process; ephemeral RAM, hardware anchoring (HSM/NFC).

Official references:
Chrome Releases — Stable Desktop (Sept 17, 2025) (CVE-2025-10585).
Chrome Releases — Android (Sept 17, 2025).
Chrome Releases — Stable Desktop (May 14, 2025) (CVE-2025-4664).
Chrome Releases — Extended Stable (June 3, 2025) (CVE-2025-5419).
cve.org — CVE-2025-2783.
• Stats: StatCounter — Global (Aug 2025).

Changelog

  • 2025-09-19 (v1.2) — Added official links per CVE; consolidated Android FAQ; stats section; color-bar signal blocks; enterprise policy block; “check your version” snippet; structured timeline.
  • 2025-09-19 (v1.1) — Harmonised 140.0.7339.x versions (Desktop/Android); FR anchors.
  • 2025-09-19 (v1.0) — Initial publication: “Your browser was already spying.”

Admin checklist (enterprise)

  • Force a browser relaunch post-update; control the restart window.
  • Disable autofill on sensitive scopes; audit extension permissions; no sideloading.
  • Segment by profile/VM: general browsing vs privileged operations (consoles, critical IS).
  • Disable WebAssembly where unnecessary; limit JIT on critical scopes.
  • Deploy an off-browser secrets solution (HSM/NFC) for MFA and credential management.
Transparency & affiliation — Freemindtronic is the vendor of PassCypher and SeedNFC referenced in this column. We cite them because they directly address the described risk: Zero-DOM (secrets off DOM/browser process), physical user control (NFC/HSM), and secure injection (HID/BLE) that limits exfiltration via RCE, UI redressing or BITB. This mention does not alter our analysis, which is sourced from official bulletins. Technical notes: SeedNFC is an NFC HSM cold wallet integrating EviPass NFC HSM (also present in PassCypher NFC HSM and DataShielder NFC HSM). It works with HID-BLE keyboard emulation via USB; the BLE signal uses AES-128-CBC. Used with the Freemindtronic app (Android NFC), it injects secrets off-clipboard and off-DOM to resist keyloggers.Purpose: help readers assess any potential conflict of interest with full context.


Chrome V8 Zero-Day CVE-2025-10585 — Ton navigateur était déjà espionné ?

Chrome V8 zero-day CVE-2025-10585 — affiche cinématographique : œil de surveillance dans l’onglet Chrome, silhouette d’espion, lignes de code V8

Chrome V8 zero-day CVE-2025-10585 — Votre navigateur n’était pas vulnérable. Vous étiez déjà espionné !

Résumé express

Tu ouvres un onglet. La page paraît ordinaire. Au cœur de V8, une valeur se fait passer pour une autre. Les pointeurs glissent, la mémoire se brouille, et un script façonné s’engouffre. Ce CVE-2025-10585 est une faille mémoire dans le moteur V8 — une type confusion dans V8 qui permet une exécution de code à distance dès la visite d’une page piégée. Le Threat Analysis Group de Google a confirmé une exploitation déjà active. Le correctif est publié sur le canal Stable : 140.0.7339.185/.186 (Windows/Mac) et 140.0.7339.185 (Linux) ; Android : 140.0.7339.155.

🚨 En bref Mettez à jour maintenant. Traitez le navigateur comme un runtime hostile. Séparez les usages sensibles du quotidien. Adoptez une posture Zero-Dom – Installer PassCypher HSM PGP gratuit et activer la fonction anti “BITB”

Chronique à lire

Temps de lecture résumé : 3–4 minutes
Temps de lecture estimé : 36–38 minutes
Date de mise à jour : 2025-09-19
Niveau de complexité : Avancé / Expert
Spécificité linguistique : Lexique souverain — densité technique élevée
Densité technique : élevée ≈ 72 %
Langues : CAT · EN · ES · FR
Accessibilité : Optimisé lecteurs d’écran — ancres sémantiques incluses
Type éditorial : Chronique stratégique (narrative)
À propos de l’auteur : Jacques Gascuel, inventeur et fondateur de Freemindtronic®.

Points clés

  • Une page suffit : RCE « drive-by » via confusion de types V8.
  • Exploitation reconnue au moment du correctif.
  • Versions corrigées : 140.0.7339.185/.186 (Win/Mac) · 140.0.7339.185 (Linux) · Android 140.0.7339.155.
  • Réflexe souverain : isolation des usages, réduction de la confiance navigateur, flux Zero-DOM matériels (HSM/NFC).
Note éditoriale — Cette chronique est vivante : elle évoluera avec les nouvelles révélations, patchs et retours de terrain. Revenez la consulter.

Il vous reste trois minutes ? Lisez la suite du resumé : l’instant où la compromission devient routinière.

Schéma 16:9 – Chrome V8 zero-day CVE-2025-10585 : type confusion dans V8, étapes d’attaque, impacts (cookies, tokens, extensions) et mitigations Zero‑DOM.

Failles en série, défenses en retard — Posture Zero-DOM

2025 se lit comme une série de films d’espionnage où les attaquants ont toujours une longueur d’avance. CVE-2025-2783 en mars, CVE-2025-4664 en mai, CVE-2025-5419 en juin, et Chrome V8 zero-day CVE-2025-10585 en septembre. À chaque épisode, la même trame : tordre juste assez la mémoire pour obtenir un point d’appui. Le marché récompense ces pages au-delà de 500 000 $ lorsqu’une RCE fiable est en jeu. Pendant ce temps, les défenseurs négocient du temps : des mises à jour qui courent derrière des campagnes déjà en mouvement.

⮞ Synthèse Le rythme va continuer. Réduisez la confiance accordée au navigateur, raccourcissez vos cycles de patch, isolez ce qui compte.

2025 Digital Security

Persistent OAuth Flaw: How Tycoon 2FA Hijacks Cloud Access

2025 Digital Security

Spyware ClayRat Android : faux WhatsApp espion mobile

2025 Digital Security

Android Spyware Threat Clayrat : 2025 Analysis and Exposure

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2025 Digital Security Technical News

Sovereign SSH Authentication with PassCypher HSM PGP — Zero Key in Clear

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Digital Security Technical News

Générateur de mots de passe souverain – PassCypher Secure Passgen WP

2025 Digital Security Technical News

Quantum computer 6100 qubits ⮞ Historic 2025 breakthrough

2025 Digital Security Technical News

Ordinateur quantique 6100 qubits ⮞ La percée historique 2025

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2025 Digital Security

Email Metadata Privacy: EU Laws & DataShielder

2025 Digital Security

Chrome V8 confusió RCE — Actualitza i postura Zero-DOM

2025 Digital Security

Chrome V8 confusion RCE — Your browser was already spying

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

En cybersécurité souveraine ↑ Cette chronique appartient à la rubrique Digital Security, tournée vers les exploits, vulnérabilités systémiques et contre-mesures matérielles zero-trust.

Chrome V8 zero-day CVE-2025-10585 : pourquoi ce pivot change tout

La Faille critique V8 — CVE-2025-10585 n’est pas un accident isolé mais le symptôme d’un modèle où le navigateur exécute du code non fiable au plus près de vos secrets. Tant que les identifiants, sessions et clés croisent le DOM ou la mémoire du navigateur, une faille « drive-by » suffit à les exposer. La suite explique ce qui se passe concrètement, qui l’exploite et comment reprendre l’ascendant.

Ce que révèle le Chrome V8 zero-day CVE-2025-10585

CVE-2025-10585 — faille mémoire dans le moteur V8 est une type confusion dans le moteur V8, celui qui interprète JavaScript et WebAssembly. Une valeur prise pour une autre ouvre un passage où un script façonné peut exécuter du code dès la visite d’une page piégée. Le Google Threat Analysis Group a confirmé une exploitation déjà active au moment du correctif Stable 140.0.7339.185/.186 (Windows/Mac) et 140.0.7339.185 (Linux) ; Android 140.0.7339.155. Autrement dit : l’attaque précède la mise à jour.

Deux conséquences en découlent. D’abord, la compromission peut rester silencieuse : rien n’indique à l’écran que le navigateur a franchi la frontière. Ensuite, une fois le code lancé, le navigateur cesse d’être un conteneur et devient un corridor : cookies, tokens, extensions et sessions cloud sont autant de portes latérales à portée de main.

Zero-day Chrome V8 en 2025 : la cadence

En 2025, la trame se répète : des failles mémoire dans V8 jalonnent l’année et s’alignent sur des campagnes déjà en marche. Ce rythme entretient un écart persistant entre exploitation et patch, surtout lorsque la vulnérabilité permet une exécution de code à distance.

CVE Type Correction Lien officiel
CVE-2025-2783 Corruption mémoire Mars 2025 Fiche cve.org
CVE-2025-4664 Use-after-free / politique (Loader) 14 mai 2025 Chrome Releases — Desktop
CVE-2025-5419 Out-of-bounds R/W 3 juin 2025 Chrome Releases — Extended Stable
CVE-2025-10585 Type confusion (V8) 17 sept. 2025 Chrome Releases — Desktop ·
Android

Sur les marchés gris/noirs, un Chrome V8 zero-day fiable (RCE/contournement sandbox) se négocie souvent > 500 000 $.

Qui exploite un Chrome V8 zero-day comme CVE-2025-10585 ?

Trois sphères se croisent. Des équipes cybercriminelles monétisent l’accès aux sessions et comptes via publicité malveillante et sites compromis. Des groupes alignés sur des États emploient la faille avec parcimonie et précision pour franchir silencieusement les frontières techniques d’organisations ciblées. Entre les deux, des courtiers évaluent fiabilité et portée avant de chaîner les maillons d’un kit d’exploitation. L’attribution au TAG laisse penser que CVE-2025-10585 s’inscrit dans ce théâtre étatique.

Impact sur les utilisateurs : du clic ordinaire à la perte de souveraineté

Une seule page peut suffire à installer un code qui observe et détourne la vie d’un onglet. L’utilisateur ne voit rien ; le navigateur, lui, transporte cookies, tokens et extensions, autant d’éléments qui deviennent des leviers d’élévation et de persistance. Dans l’espace francophone, l’enjeu est systémique : services publics, messageries, consoles d’administration s’appuient sur le navigateur comme s’il était une zone de confiance. Un Chrome V8 zero-day rappelle qu’il ne l’est pas.

Que faire face à CVE-2025-10585 ? Repenser le navigateur comme un runtime hostile

Mettez à jour vers 140.0.7339.185/.186 (Windows/Mac) ou 140.0.7339.185 (Linux) via Aide → À propos de Google Chrome ; Android : 140.0.7339.155. Séparez les usages (profil/VM dédiée pour l’administratif et les opérations sensibles), réduisez la surface (désactivez WebAssembly si possible, limitez le JIT sur les tiers sensibles), gouvernez strictement les extensions (liste d’autorisation, audit, pas de sideloading) et alimentez votre veille avec les bulletins officiels.

En un trait : patcher vite, isoler ce qui compte, désencombrer le navigateur.

Vérifier sa version — Windows/macOS : Menu → Aide → À propos de Google Chrome. Linux : exécuter google-chrome --version (ou chromium --version selon distribution). Android : Google Play → Mises à jour → Chrome, puis relance.

Bloc IT — politiques d’entreprise (exemple)

{
  "ExtensionInstallAllowlist": ["<IDs>"],
  "ExtensionInstallBlacklist": ["*"],
  "URLAllowlist": ["https://intra.example.tld/*"],
  "URLBlacklist": ["*"],
  "DefaultPopupsSetting": 2,
  "JavascriptAllowedForUrls": ["https://intra.example.tld/*"],
  "AutofillAddressEnabled": false,
  "PasswordManagerEnabled": false,
  "WebAssemblyEnabled": false
}

Adapter aux besoins ; appliquer par GPO, Intune/MDM ou JSON de politiques gérées.

Pourquoi c’est lié au DOM — et à notre chronique Clickjacking

Exécution de code à distance via V8 (CVE-2025-10585) et le clickjacking d’extensions basé DOM mènent au même résultat : si des secrets passent par le DOM ou résident dans la mémoire du navigateur, ils deviennent accessibles. La première voie (RCE V8) prend le contrôle du processus ; la seconde (UI redressing/BITB) force l’injection de secrets dans un DOM piégé. Dans les deux cas, le DOM est la surface d’exfiltration.

  • Surface commune : DOM & mémoire du navigateur (autofill, cookies, tokens, passkeys synchronisées, extensions).
  • Voies d’attaque : moteur (RCE V8) ou interface (overlays, iframes, focus(), Shadow DOM).
  • Mitigation convergente : isolation des usages, gouvernance des extensions, et Zero-DOM (secrets hors DOM/processus, RAM éphémère, consentement physique).

À relier avec…

Clickjacking des extensions DOM : DEF CON 33 révèle 11 gestionnaires vulnérables

Versions corrigées & timeline

Date Canal / Plateforme Version Remarque
17 sept. 2025 Stable Desktop (Win/Mac) 140.0.7339.185/.186 CVE-2025-10585 listée, exploit in the wild reconnu.
17 sept. 2025 Stable Desktop (Linux) 140.0.7339.185 Déploiement progressif.
17 sept. 2025 Chrome pour Android 140.0.7339.155 Correctifs de sécurité alignés sur Desktop.

Statistiques d’exposition

En août 2025, Chrome capte ~69 % de parts d’usage navigateur dans le monde. Concrètement : un Chrome V8 zero-day touche mécaniquement une part significative des internautes francophones — particuliers, administrations, entreprises. D’où l’importance de corriger vite et de compartimenter les usages sensibles.

Anatomie — V8 type confusion

Le curseur clignote. Derrière l’écran, le script a préparé la mémoire : tas groomés, objets mal étiquetés, garde-fous écartés. V8 prend une valeur pour ce qu’elle n’est pas ; la page devient un véhicule. Aucun message, aucun avertissement. L’exploit parle la langue du web ordinaire — événements, focus, rendu — et s’en sert pour atteindre l’exécution.

Après le franchissement — du conteneur au corridor

Une fois le code lancé, le navigateur cesse d’être une boîte et devient un couloir. Cookies et jetons deviennent des bagages ; les extensions, des portes latérales ; les sessions cloud, une enfilade de pièces ouvertes. L’attaquant n’a pas besoin d’un bélier, seulement d’un passage routinier.

Acteurs & incitations

D’un côté, des équipes cybercriminelles collectent des sessions revendues en lot. De l’autre, des groupes alignés sur des États visent avec précision, reliant des zero-days à des portails familiers. Entre les deux, des courtiers achètent des chaînes comme on achète de l’infrastructure : fiabilité, portée, discrétion.

Réécriture souveraine (Zero-DOM)

Il existe une version de cette histoire où l’onglet compromet le navigateur… sans rien trouver à voler.

Dans cette version, les secrets :

  • ne touchent jamais le DOM,
  • ne résident pas dans le processus navigateur,
  • ne circulent jamais en clair.

Identifiants, OTP, passkeys et clés privées vivent dans du matériel hors-ligne. Ils n’apparaissent qu’en fantômes éphémères en RAM, déclenchés par une action physique de l’utilisateur.

Technologies souveraines

  • PassCypher HSM PGP : chaque secret est lié à une URL attendue. Refus des écarts. Conteneurs chiffrés jusqu’à décision physique vérifiable.
  • PassCypher NFC HSM : geste physique (tap NFC) avant toute injection. Le navigateur ne voit que le transport, jamais le contenu.
  • SeedNFC HSM : cold wallet NFC HSM simplifié. Appairé à un smartphone Android NFC + émulateur HID-BLE, il injecte les clés publiques et privées de crypto-monnaies sans presse-papiers ni DOM.
  • Émulateur de clavier Bluetooth HID-BLEEviKeyboard BLE : signal BLE chiffré en AES-128-CBC. Appairé à l’application Freemindtronic (PassCypher, SeedNFC, DataShielder), il injecte les secrets en HID-BLE, hors DOM, hors clipboard. Les overlays et techniques de redressing deviennent inopérants.
⮞ Synthèse
Secrets hors navigateur + consentement physique = une zero-day V8 devient un incident confiné, pas une brèche système.

Signaux faibles

Signal faible (tendance) — Regain de bugs mémoire V8 corrélés à des campagnes ciblées, clustering autour de périodes d’opérations.
Signal moyen (opérationnel) — Accélération des cycles de rachat d’exploits, pression sur les délais de patch et l’inertie de redémarrage poste-utilisateur.
Signal fort (immédiat) — Exploit « in the wild » confirmé pour CVE-2025-10585 ; mise à jour impérative et relance complète des navigateurs.

Ce que nous n’avons pas couvert

Cette chronique omet volontairement les PoC d’exploitation et les pas-à-pas de reproduction. Elle laisse de côté les bases sectorielles d’hardening et l’économie détaillée des marchés d’exploits. Objectif : exposer le risque systémique et montrer pourquoi une approche matérielle Zero-DOM change l’issue. Perspective — Concevez pour l’échec gracieux : supposez que le navigateur puisse tomber sans emporter votre identité. Ancrez les secrets dans le matériel, exigez un consentement physique, traitez chaque onglet comme provisoire.

FAQ CVE 2025-10585

Ouvrez Menu → Aide → À propos de Google Chrome. Recherchez 140.0.7339.185/.186 (Win/Mac) ou .185 (Linux).

Mettez à jour vers 140.0.7339.155 via Google Play, puis relancez l’app. Vérifiez dans Paramètres → À propos → Version.

Oui, ces navigateurs Chromium-based embarquent le moteur V8. Appliquez leurs mises à jour éditeur sans délai. Vérifiez les notes de version pour confirmer l’intégration du correctif CVE-2025-10585.

Si vos usages sensibles le permettent, oui : surface d’attaque réduite. En entreprise, appliquez la politique via GPO ou MDM, et limitez le JIT (Just-In-Time compilation) pour les profils à risque.

Les secrets ne transitent pas par le DOM ni ne résident dans le processus navigateur. Ils restent en matériel hors-ligne (HSM) et n’apparaissent qu’éphémèrement en RAM sur action physique. Une RCE V8 trouve alors peu ou pas de matière à exfiltrer.

SeedNFC est un cold wallet NFC HSM (technologie EviPass NFC HSM).
PassCypher NFC HSM et DataShielder NFC HSM embarquent la même brique souveraine.

Ce que ça apporte face à CVE-2025-10585 (V8) et au BITB/overlays :

  • Secrets hors navigateur : identifiants, OTP, clés privées jamais stockés dans le processus/DOM du navigateur.
  • Consentement physique : chaque utilisation requiert un geste NFC/HSM ; sans action de l’utilisateur, rien ne sort.
  • Appariement URL (PassCypher/DataShielder) : secrets liés à des URL attendues ; en cas d’écart (phishing/BITB), le HSM refuse.
  • Injection anti-keylogger : mode HID-BLE via port USB, signal chiffré AES-128-CBC, sans presse-papiers ni DOM.
  • Éphémère en RAM : les données ne persistent pas côté hôte ; l’attaque « drive-by » V8 trouve peu de matière à exfiltrer.

Modes d’usage :

  • Android NFC + application Freemindtronic (inclut PassCypher, SeedNFC, DataShielder) pour piloter le HSM.
  • HID-BLE : émulation de clavier Bluetooth Low Energy vers le poste, compatible USB, champs de saisie standards.

À retenir :

  • Ne remplace pas les mises à jour Chrome/Chromium ; complète la défense en retirant les secrets du navigateur.
  • Idéal pour comptes à privilèges, consoles d’admin, messageries sensibles et transactions critiques.

Prérequis : smartphone Android NFC, app Freemindtronic, appareil HSM (SeedNFC / PassCypher NFC HSM / DataShielder NFC HSM).
Les secrets ne sont pas stockés sur le téléphone ; ils restent scellés dans le NFC HSM.

Consultez les bulletins officiels : [Chrome Releases — 17 juin 2025](https://chromereleases.googleblog.com/2025/06/stable-channel-update-for-desktop_17.html) et [CERT-FR — CVE-2025-10585](https://www.cert.ssi.gouv.fr/avis/CERTFR-2025-AVI-0518/). Comparez votre version avec celles corrigées.

Changer n’est pas suffisant. Tous les navigateurs Chromium partagent V8. La posture Zero-DOM et la séparation des rôles sont plus efficaces que le simple remplacement.

Glossaire

V8 — Moteur JavaScript/WebAssembly de Chrome et navigateurs Chromium.
Type confusion — Bug mémoire où un objet est traité comme un autre type ; mène à corruption contrôlée.
HID-BLE — Émulation de clavier en Bluetooth Low Energy ; permet l’injection de secrets “comme si” tapés au clavier, sans presse-papiers et hors DOM.
RCERemote Code Execution : exécution de code arbitraire à distance.
Zero-day — Vulnérabilité exploitée avant correctif public.
DOM — Modèle objet de document : structure mémoire des pages web.
BITBBrowser-in-the-Browser : faux cadres imitant une fenêtre d’authentification.
WebAssembly — Format binaire portable exécuté côté navigateur.
JITJust-in-Time compilation : optimise, mais agrandit la surface d’attaque.
Zero-DOM — Doctrine Freemindtronic : aucun secret dans le DOM/Processus ; libération RAM éphémère, ancrage matériel (HSM/NFC).

Références officielles :
Chrome Releases — Stable Desktop (17 sept. 2025) (CVE-2025-10585).
Chrome Releases — Android (17 sept. 2025).
Chrome Releases — Stable Desktop (14 mai 2025) (CVE-2025-4664).
Chrome Releases — Extended Stable (3 juin 2025) (CVE-2025-5419).
cve.org — CVE-2025-2783. ([Chrome Releases][1])
• Statistiques : StatCounter — Monde (août 2025). ([StatCounter Global Stats][2])

Changelog

  • 2025-09-19 (v1.2) — Ajout liens officiels pour chaque CVE ; consolidation FAQ Android ; section statistiques ; signaux avec barres 4 px colorées ; bloc politiques entreprise ; snippet « vérifier sa version » ; timeline structurée.
  • 2025-09-19 (v1.1) — Harmonisation des versions 140.0.7339.x (Desktop/Android) ; ancrages FR.
  • 2025-09-19 (v1.0) — Publication initiale : « Ton navigateur était déjà espionné »

Check-list admins (entreprise)

  • Forcer la relance du navigateur après mise à jour ; fenêtre de redémarrage contrôlée.
  • Désactiver l’autofill sur périmètres sensibles ; audit des permissions d’extensions ; pas de sideloading.
  • Segmenter par profil/VM : navigation standard vs opérations à privilèges (consoles, SI critiques).
  • Désactiver WebAssembly là où non nécessaire ; limiter le JIT sur périmètres critiques.
  • Déployer une solution de secrets hors-navigateur (HSM/NFC) pour MFA et gestion d’identifiants.
Transparence & affiliation — Freemindtronic est l’éditeur des solutions PassCypher et SeedNFC recommandées dans cette chronique. Nous les citons car elles répondent précisément au risque décrit : Zero-DOM (secrets hors DOM/processus navigateur), contrôle physique de l’utilisateur (NFC/HSM), et injection sécurisée (HID/BLE) limitant l’exfiltration par RCE, redressing UI ou BITB. Cette mention n’altère pas notre analyse, sourcée sur des bulletins officiels.
Précisions techniques : SeedNFC est un cold wallet NFC HSM intégrant EviPass NFC HSM (également présent dans PassCypher NFC HSM et DataShielder NFC HSM).Il est compatible avec l’émulation clavier HID-BLE via port USB, avec un signal BLE chiffré AES-128-CBC, et s’emploie avec l’app Freemindtronic (Android NFC) pour l’injection de secrets anti-keylogger hors presse-papiers et hors DOM.Objectif : permettre au lecteur d’évaluer en toute connaissance de cause d’éventuels conflits d’intérêts.



WebAuthn API Hijacking: A CISO’s Guide to Nullifying Passkey Phishing

Movie poster-style image of a cracked passkey and fishing hook. Main title: 'WebAuthn API Hijacking', with secondary phrases: 'Passkeys Vulnerability', 'DEF CON 33', and 'Why PassCypher Is Not Vulnerable'. Relevant for cybersecurity in Andorra.

WebAuthn API Hijacking: A critical vulnerability, unveiled at DEF CON 33, demonstrates that synced passkeys can be phished in real time. Indeed, Allthenticate proved that a spoofable authentication prompt can hijack a live WebAuthn session.

Executive Summary — The WebAuthn API Hijacking Flaw

▸ Key Takeaway — WebAuthn API Hijacking

We provide a dense summary (≈ 1 min) for decision-makers and CISOs. For a complete technical analysis (≈ 13 min), however, you should read the full article.

Imagine an authentication method lauded as phishing-resistant — namely, synced passkeys — and then exploited live at DEF CON 33 (August 8–11, 2025, Las Vegas). So what was the vulnerability? It was a WebAuthn API Hijacking flaw (an interception attack on the authentication flow), which allowed for passkeys real-time prompt spoofing.

This single demonstration, in fact, directly challenges the proclaimed security of cloud-synced passkeys and opens the debate on sovereign alternatives. We saw two key research findings emerge at the event: first, real-time prompt spoofing (a WebAuthn interception attack), and second, DOM extension clickjacking. Notably, this article focuses exclusively on prompt spoofing because it undeniably undermines the “phishing-resistant” promise for vulnerable synced passkeys.

▸ Summary

The weak link is no longer cryptography; instead, it is the visual trigger. In short, attackers compromise the interface, not the cryptographic key.

Strategic Insight This demonstration, therefore, exposes a historical flaw: attackers can perfectly abuse an authentication method called “phishing-resistant” if they can spoof and exploit the prompt at the right moment.

Chronique à lire
Article to Read
Estimated reading time: ≈ 13 minutes (+4–5 min if you watch the embedded videos)
Complexity level: Advanced / Expert
Available languages: CAT · EN · ES · FR
Accessibility: Optimized for screen readers
Type: Strategic Article
Author: Jacques Gascuel, inventor and founder of Freemindtronic®, designs and patents sovereign hardware security systems for data protection, cryptographic sovereignty, and secure communications. As an expert in ANSSI, NIS2, GDPR, and SecNumCloud compliance, he develops by-design architectures capable of countering hybrid threats and ensuring 100% sovereign cybersecurity.

Official Sources

TL; DR

  • At DEF CON 33 (August 8–11, 2025), Allthenticate researchers demonstrated a WebAuthn API Hijacking path: attackers can hijack so-called “phishing-resistant” passkeys via real-time prompt spoofing.
  • The flaw does not reside in cryptographic algorithms; rather, it’s found in the user interface—the visual entry point.
  • Ultimately, this revelation demands a strategic revision: we must prioritize device-bound passkeys for sensitive use cases and align deployments with threat models and regulatory requirements.

2025 Digital Security

Persistent OAuth Flaw: How Tycoon 2FA Hijacks Cloud Access

2025 Digital Security

Spyware ClayRat Android : faux WhatsApp espion mobile

2025 Digital Security

Android Spyware Threat Clayrat : 2025 Analysis and Exposure

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2025 Digital Security Technical News

Sovereign SSH Authentication with PassCypher HSM PGP — Zero Key in Clear

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Digital Security Technical News

Générateur de mots de passe souverain – PassCypher Secure Passgen WP

2025 Digital Security Technical News

Quantum computer 6100 qubits ⮞ Historic 2025 breakthrough

2025 Digital Security Technical News

Ordinateur quantique 6100 qubits ⮞ La percée historique 2025

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2025 Digital Security

Email Metadata Privacy: EU Laws & DataShielder

2025 Digital Security

Chrome V8 confusió RCE — Actualitza i postura Zero-DOM

2025 Digital Security

Chrome V8 confusion RCE — Your browser was already spying

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

In Sovereign Cybersecurity ↑ This article is part of our Digital Security section, continuing our research on zero-trust hardware exploits and countermeasures.

 ▸ Key Points

  • Confirmed Vulnerability: Cloud-synced passkeys (Apple, Google, Microsoft) are not 100% phishing-resistant.
  • New Threat: Real-time prompt spoofing exploits the user interface rather than cryptography.
  • Strategic Impact: Critical infrastructure and government agencies must migrate to device-bound credentials and sovereign offline solutions (NFC HSM, segmented keys).

What is a WebAuthn API Hijacking Attack?

A WebAuthn interception attack via a spoofable authentication prompt (WebAuthn API Hijacking) consists of imitating in real time the authentication window displayed by a system or browser. Consequently, the attacker does not seek to break the cryptographic algorithm; instead, they reproduce the user interface (UI) at the exact moment the victim expects to see a legitimate prompt. Visual lures, precise timing, and perfect synchronization make the deception indistinguishable to the user.

Simplified example:
A user thinks they are approving a connection to their bank account via a legitimate Apple or Google system prompt. In reality, they are interacting with a dialog box cloned by the attacker. As a result, the adversary captures the active session without alerting the victim.
▸ In short: Unlike “classic” phishing attacks via email or fraudulent websites, the real-time prompt spoofing takes place during authentication, when the user is most confident.

History of Passkey / WebAuthn Vulnerabilities

Despite their cryptographic robustness, passkeys — based on the open standards WebAuthn and FIDO2 from the FIDO Alliance — are not invulnerable. The history of vulnerabilities and recent research confirms that the key weakness often lies in the user interaction and the execution environment (browser, operating system). The industry officially adopted passkeys on May 5, 2022, following a commitment from Apple, Google, and Microsoft to extend their support on their respective platforms.

Timeline illustrating the accelerated evolution of Passkey and WebAuthn vulnerabilities from 2012 to 2025, including FIDO Alliance creation, phishing methods, CVEs, and the WebAuthn API Hijacking revealed at DEF CON 33.
Accelerated Evolution of Passkey and WebAuthn Vulnerabilities (2012-2025): A detailed timeline highlighting key security events, from the foundation of the FIDO Alliance to the emergence of AI as a threat multiplier and the definitive proof of the WebAuthn API Hijacking at DEF CON 33.

Timeline of Vulnerabilities

  • SquareX – Compromised Browsers (August 2025):

    At DEF CON 33, a demonstration showed that a malicious extension or script can intercept the WebAuthn flow to substitute keys. See the TechRadar analysis and the SecurityWeek report.

  • CVE-2025-31161 (March/April 2025):

    Authentication bypass in CrushFTP via a race condition. Official NIST Source.

  • CVE-2024-9956 (March 2025):

    Account takeover via Bluetooth on Android. This attack demonstrated that an attacker can remotely trigger a malicious authentication via a FIDO:/ intent. Analysis from Risky.Biz. Official NIST Source.

  • CVE-2024-12604 (March 2025):

    Cleartext storage of sensitive data in Tap&Sign, exploiting poor password management. Official NIST Source.

  • CVE-2025-26788 (February 2025):

    Authentication bypass in StrongKey FIDO Server. Detailed Source.

  • Passkeys Pwned – Browser-based API Hijacking (Early 2025):

    A research study showed that the browser, as a single mediator, can be a point of failure. Read the Security Boulevard analysis.

  • CVE-2024-9191 (November 2024):

    Password exposure via Okta Device Access. Official NIST Source.

  • CVE-2024-39912 (July 2024):

    User enumeration via a flaw in the PHP library web-auth/webauthn-lib. Official NIST Source.

  • CTRAPS-type Attacks (2024):

    These protocol-level attacks (CTAP) exploit authentication mechanisms for unauthorized actions. For more information on FIDO protocol-level attacks, see this Black Hat presentation on FIDO vulnerabilities.

  • First Large-Scale Rollout (September 2022):

    Apple was the first to deploy passkeys on a large scale with the release of iOS 16, making this technology a reality for hundreds of millions of users. Official Apple Press Release.

  • Industry Launch & Adoption (May 2022):

    The FIDO Alliance, joined by Apple, Google, and Microsoft, announced an action plan to extend passkey support across all their platforms. Official FIDO Alliance Press Release.

  • Timing Attacks on keyHandle (2022):

    A vulnerability allowing account correlation by measuring time variations in the processing of keyHandles. See IACR ePrint 2022 article.

  • Phishing of Recovery Methods (since 2017):

    Attackers use AitM proxies (like Evilginx, which appeared in 2017) to hide the passkey option and force a fallback to less secure methods that can be captured. More details on this technique.

AI as a Threat Multiplier

Artificial intelligence is not a security flaw, but a catalyst that makes existing attacks more effective. Since the emergence of generative AI models like GPT-3 (2020) and DALL-E 2 (2022), new capabilities for automating threats have appeared. These developments notably allow for:

  • Large-scale Attacks (since 2022): Generative AI enables attackers to create custom authentication prompts and phishing messages for a massive volume of targets, increasing the effectiveness of phishing of recovery methods.
  • Accelerated Vulnerability Research (since 2023): AI can be used to automate the search for security flaws, such as user enumeration or the detection of logical flaws in implementation code.
Historical Note — The risks associated with spoofable prompts in WebAuthn were already raised by the community in W3C GitHub issue #1965 (before the DEF CON 33 demonstration). This shows that the user interface has long been recognized as a weak link in so-called “phishing-resistant” authentication.

“These recent and historical vulnerabilities highlight the critical role of the browser and the deployment model (device-bound vs. synced). They reinforce the call for sovereign architectures that are disconnected from these vectors of compromise.”

Vulnerability of the Synchronization Model

One of the most debated passkeys security vulnerabilities does not concern the WebAuthn protocol itself, but its deployment model. Most publications on the subject differentiate between two types of passkeys:

  • Device-bound passkeys: Stored on a physical device (like a hardware security key or Secure Enclave). This model is generally considered highly secure because it is not synchronized via a third-party service.
  • Synced passkeys: Stored in a password manager or a cloud service (iCloud Keychain, Google Password Manager, etc.). These passkeys can be synchronized across multiple devices. For more details on this distinction, refer to the FIDO Alliance documentation.

The vulnerability lies here: if an attacker manages to compromise the cloud service account, they could potentially gain access to the synced passkeys across all the user’s devices. This is a risk that device-bound passkeys do not share. Academic research, such as this paper published on arXiv, explores this issue, highlighting that “the security of synced passkeys is primarily concentrated with the passkey provider.”

This distinction is crucial because the implementation of vulnerable synced passkeys contradicts the very spirit of a so-called phishing-resistant MFA, as synchronization introduces an intermediary and an additional attack surface. This justifies the FIDO Alliance’s recommendation to prioritize device-bound passkeys for maximum security.

The DEF CON 33 Demonstration – WebAuthn API Hijacking in Action

WebAuthn API Hijacking is the central thread of this section: we briefly explain the attack path shown at DEF CON 33 and how a spoofable prompt enabled real-time session takeover, before detailing the live evidence and the video highlights.

Passkeys Pwned — DEF CON 33 Talk on WebAuthn

During DEF CON 33, the Allthenticate team presented a talk titled “Passkeys Pwned: Turning WebAuthn Against Itself.”
This session demonstrated how attackers could exploit WebAuthn API Hijacking to
compromise synced passkeys in real time using a spoofable authentication prompt.

By using the provocative phrase “Passkeys Pwned,” the researchers deliberately emphasized that even so-called phishing-resistant credentials can be hijacked when the user interface itself is the weak link.

Evidence of WebAuthn API Hijacking at DEF CON 33

In Las Vegas, at the heart of DEF CON 33 (August 8–11, 2025), the world’s most respected hacker community witnessed a demonstration that made many squirm. In fact, researchers at Allthenticate showed live that a vulnerable synced passkey – despite being labeled “phishing-resistant” – could be tricked. So what did they do? They executed a WebAuthn API Hijacking attack (spoofing the system prompt) of the spoofable authentication prompt type (real-time prompt spoofing). They created a fake authentication dialog box, perfectly timed and visually identical to the legitimate UI. Ultimately, the user believed they were validating a legitimate authentication, but the adversary hijacked the session in real time. This proof of concept makes the “Passkeys WebAuthn Interception Flaw” tangible through a real-time spoofable prompt.

Video Highlights — WebAuthn API Hijacking in Practice

To visualize the sequence, watch the clip below: it shows how WebAuthn API Hijacking emerges from a simple UI deception that aligns timing and look-and-feel with the expected system prompt, leading to seamless session capture.

Official Authors & Media from DEF CON 33
▸ Shourya Pratap Singh, Jonny Lin, Daniel Seetoh — Allthenticate researchers, authors of the demo “Your Passkey is Weak: Phishing the Unphishable”.
Allthenticate Video on TikTok — direct explanation by the team.
DEF CON 33 Las Vegas Video (TikTok) — a glimpse of the conference floor.
Highlights DEF CON 33 (YouTube) — including the passkeys flaw.

▸ Summary

DEF CON 33 demonstrated that vulnerable synced passkeys can be compromised live when a spoofable authentication prompt is inserted into the WebAuthn flow.

Comparison – WebAuthn Interception Flaw: Prompt Spoofing vs. DOM Clickjacking

At DEF CON 33, two major research findings shook confidence in modern authentication mechanisms. Indeed, both exploit flaws related to the user interface (UX) rather than cryptography, but their vectors and targets differ radically.

Architecture comparison of PassCypher vs FIDO WebAuthn authentication highlighting phishing resistance and prompt spoofing risks
Comparison of PassCypher and FIDO WebAuthn architectures showing why Passkeys are vulnerable to WebAuthn API hijacking while PassCypher eliminates prompt spoofing risks.

Real-Time Prompt Spoofing

  • Author: Allthenticate (Las Vegas, DEF CON 33).
  • Target: vulnerable synced passkeys (Apple, Google, Microsoft).
  • Vecteur: spoofable authentication prompt, perfectly timed to the legitimate UI (real-time prompt spoofing).
  • Impact: WebAuthn interception attack that causes “live” phishing; the user unknowingly validates a malicious request.

DOM Clickjacking

  • Authors: Another team of researchers (DEF CON 33).
  • Target: Credential managers, extensions, stored passkeys.
  • Vecteur: invisible iframes, Shadow DOM, malicious scripts to hijack autofill.
  • Impact: Silent exfiltration of credentials, passkeys, and crypto-wallet keys.

▸ Key takeaway: This article focuses exclusively on prompt spoofing, which illustrates a major WebAuthn interception flaw and challenges the promise of “phishing-resistant passkeys.” For a complete study on DOM clickjacking, please see the related article.

Strategic Implications – Passkeys and UX Vulnerabilities

As a result, the “Passkeys WebAuthn Interception Flaw” forces us to rethink authentication around prompt-less and cloud-less models.

  • We should no longer consider vulnerable synced passkeys to be invulnerable.
  • We must prioritize device-bound credentials for sensitive environments.
  • We need to implement UX safeguards: detecting anomalies in authentication prompts and using non-spoofable visual signatures.
  • We should train users on the threat of real-time phishing via a WebAuthn interception attack.
▸ Insight
It is not cryptography that is failing, but the illusion of immunity. WebAuthn interception demonstrates that the risk lies in the UX, not the algorithm.

Regulations & Compliance – MFA and WebAuthn Interception

Official documents such as the CISA guide on phishing-resistant MFA or the OMB M-22-09 directive insist on this point: authentication is “phishing-resistant” only if no intermediary can intercept or hijack the WebAuthn flow.
In theory, WebAuthn passkeys respect this rule. In practice, however, the implementation of vulnerable synced passkeys opens an interception flaw that attackers can exploit via a spoofable authentication prompt.

In Europe, both the NIS2 directive and the SecNumCloud certification reiterate the same requirement: no dependence on un-mastered third-party services.

As such, the “Passkeys WebAuthn Interception Flaw” contradicts the spirit of a so-called phishing-resistant MFA, because synchronization introduces an intermediary.

In other words, a US cloud managing your passkeys falls outside the scope of strict digital sovereignty.

▸ Summary

A vulnerable synced passkey can compromise the requirement for phishing-resistant MFA (CISA, NIS2) when a WebAuthn interception attack is possible.

European & Francophone Statistics – Real-time Phishing and WebAuthn Interception

Public reports confirm that advanced phishing attacks — including real-time techniques — represent a major threat in the European Union and the Francophone area.

  • European Union — ENISA: According to the Threat Landscape 2024 report, phishing and social engineering account for 38% of reported incidents in the EU, with a notable increase in Adversary-in-the-Middle methods and real-time prompt spoofing, associated with WebAuthn interception. Source: ENISA Threat Landscape 2024
  • France — Cybermalveillance.gouv.fr: In 2023, phishing generated 38% of assistance requests, with over 1.5M consultations related to this type of attack. Fake bank advisor scams jumped by +78% vs. 2022, often via spoofable authentication prompts. Source: 2023 Activity Report
  • Canada (Francophone) — Canadian Centre for Cyber Security: The National Cyber Threat Assessment 2023-2024 indicates that 65% of businesses expect to experience a phishing or ransomware attack. Phishing remains a preferred vector for bypassing MFA, including via WebAuthn flow interception. Source: Official Assessment
▸ Strategic Reading
Real-time prompt spoofing is not a lab experiment; it is part of a trend where phishing targets the authentication interface rather than algorithms, with increasing use of the WebAuthn interception attack.

Sovereign Use Case – Neutralizing WebAuthn Interception

In a practical scenario, a regulatory authority reserves synced passkeys for low-risk public portals. Conversely, the PassCypher choice eliminates the root cause of the “Passkeys WebAuthn Interception Flaw” by removing the prompt, the cloud, and any DOM exposure.
For critical systems (government, sensitive operations, vital infrastructure), it deploys PassCypher in two forms:

  • PassCypher NFC HSM — offline hardware authentication, with no server and BLE AES-128-CBC keyboard emulation. Consequently, no spoofable authentication prompt can exist.
  • PassCypher HSM PGP — sovereign management of inexportable segmented keys, with cryptographic validation that is cloud-free and synchronization-free.
    ▸ Result
    In this model, the prompt vector exploited during the WebAuthn interception attack at DEF CON 33 is completely eliminated from critical pathways.

Why PassCypher Eliminates the WebAuthn Interception Risk

PassCypher solutions stand in radical contrast to FIDO passkeys that are vulnerable to the WebAuthn interception attack:

  • No OS/browser prompt — thus no spoofable authentication prompt.
  • No cloud — no vulnerable synchronization or third-party dependency.
  • No DOM — no exposure to scripts, extensions, or iframes.
✓ Sovereignty: By removing the prompt, cloud, and DOM, PassCypher eliminates any anchor point for the WebAuthn interception flaw (prompt spoofing) revealed at DEF CON 33.

PassCypher NFC HSM — Eliminating the WebAuthn Prompt Spoofing Attack Vector

Allthenticate’s attack at DEF CON 33 proves that attackers can spoof any system that depends on an OS/browser prompt. PassCypher NFC HSM removes this vector: there is no prompt, no cloud sync, secrets are encrypted for life in a nano-HSM NFC, and validated by a physical tap. User operation:

  • Mandatory NFC tap — physical validation with no software interface.
  • HID BLE AES-128-CBC Mode — out-of-DOM transmission, resistant to keyloggers.
  • Zero-DOM Ecosystem — no secret ever appears in the browser.

▸ Summary

Unlike vulnerable synced passkeys, PassCypher NFC HSM neutralizes the WebAuthn interception attack because a spoofable authentication prompt does not exist.

WebAuthn API Hijacking Neutralized by PassCypher NFC HSM

Attack Type Vector Status
Prompt Spoofing Fake OS/browser dialog Neutralized (zero prompt)
Real-time Phishing Live-trapped validation Neutralized (mandatory NFC tap)
Keystroke Logging Keyboard capture Neutralized (encrypted HID BLE)

PassCypher HSM PGP — Segmented Keys Against Phishing

The other pillar, PassCypher HSM PGP, applies the same philosophy: no exploitable prompt.
Secrets (credentials, passkeys, SSH/PGP keys, TOTP/HOTP) reside in AES-256 CBC PGP encrypted containers, protected by a patented system of segmented keys.

  • No prompt — so there is no window to spoof.
  • Segmented keys — they are inexportable and assembled only in RAM.
  • Ephemeral decryption — the secret disappears immediately after use.
  • Zero cloud — there is no vulnerable synchronization.

▸ Summary

PassCypher HSM PGP eliminates the attack surface of the real-time spoofed prompt: it provides hardware authentication, segmented keys, and cryptographic validation with no DOM or cloud exposure.

Attack Surface Comparison

Criterion Synced Passkeys (FIDO) PassCypher NFC HSM PassCypher HSM PGP
Authentication Prompt Yes No No
Synchronization Cloud Yes No No
Exportable Private Key No (attackable UI) No No
WebAuthn Hijacking/Interception Present Absent Absent
FIDO Standard Dependency Yes No No
▸ Insight By removing the spoofable authentication prompt and cloud synchronization, the WebAuthn interception attack demonstrated at DEF CON 33 disappears completely.

Weak Signals – Trends Related to WebAuthn Interception

▸ Weak Signals Identified

  • The widespread adoption of real-time UI attacks, including WebAuthn interception via a spoofable authentication prompt.
  • A growing dependency on third-party clouds for identity, which increases the exposure of vulnerable synced passkeys.
  • A proliferation of bypasses through AI-assisted social engineering, applied to authentication interfaces.

Strategic Glossary

A review of the key concepts used in this article, for both beginners and advanced readers.

  • Passkey / Passkeys

    A passwordless digital credential based on the FIDO/WebAuthn standard, designed to be “phishing-resistant.

    • Passkey (singular): Refers to a single digital credential stored on a device (e.g., Secure Enclave, TPM, YubiKey).
    • Passkeys (plural): Refers to the general technology or multiple credentials, including synced passkeys stored in Apple, Google, or Microsoft clouds. These are particularly vulnerable to WebAuthn API Hijacking (real-time prompt spoofing demonstrated at DEF CON 33).
  • Passkeys Pwned

    Title of the DEF CON 33 talk by Allthenticate (“Passkeys Pwned: Turning WebAuthn Against Itself”). It highlights how WebAuthn API Hijacking can compromise synced passkeys in real time, proving that they are not 100% phishing-resistant.

  • Vulnerable synced passkeys

    Stored in a cloud (Apple, Google, Microsoft) and usable across multiple devices. They offer a UX advantage but a strategic weakness: dependence on a spoofable authentication prompt and the cloud.

  • Device-bound passkeys

    Linked to a single device (TPM, Secure Enclave, YubiKey). More secure because they lack cloud synchronization.

  • Prompt

    A system or browser dialog box that requests a user’s validation (Face ID, fingerprint, FIDO key). This is the primary target for spoofing.

  • WebAuthn Interception Attack

    Also known as WebAuthn API Hijacking, this attack manipulates the authentication flow by spoofing the system/browser prompt and imitating the user interface in real time. The attacker does not break cryptography, but intercepts the WebAuthn process at the UX level (e.g., a cloned fingerprint or Face ID prompt). See the official W3C WebAuthn specification and FIDO Alliance documentation.

  • Real-time prompt spoofing

    The live spoofing of an authentication window, which is indistinguishable to the user.

  • DOM Clickjacking

    An attack using invisible iframes and Shadow DOM to hijack autofill and steal credentials.

  • Zero-DOM

    A sovereign architecture where no secret is exposed to the browser or the DOM.

  • NFC HSM

    A secure hardware module that is offline and compatible with HID BLE AES-128-CBC.

  • Segmented keys

    Cryptographic keys that are split into segments and only reassembled in volatile memory.

  • Device-bound credential

    A credential attached to a physical device that is non-transferable and non-clonable.

▸ Strategic Purpose: This glossary shows why the WebAuthn interception attack targets the prompt and UX, and why PassCypher eliminates this vector by design.

Technical FAQ (Integration & Use Cases)

  • Q: Are there any solutions for vulnerable passkeys?

    A: Yes, in a hybrid model. Keep FIDO for common use cases and adopt PassCypher for critical access to eliminate WebAuthn interception vectors.

  • Q: What is the UX impact without a system prompt?

    A: The action is hardware-based (NFC tap or HSM validation). There is no spoofable authentication prompt or dialog box to impersonate, resulting in a total elimination of the real-time phishing risk.

  • Q: How can we revoke a compromised key?

    A: You simply revoke the HSM or the key itself. There is no cloud to purge and no third-party account to contact.

  • Q: Does PassCypher protect against real-time prompt spoofing?

    A: Yes. The PassCypher architecture completely eliminates the OS/browser prompt, thereby removing the attack surface exploited at DEF CON 33.

  • Q: Can we integrate PassCypher into a NIS2-regulated infrastructure?

    A: Yes. The NFC HSM and HSM PGP modules comply with digital sovereignty requirements and neutralize the risks associated with vulnerable synced passkeys.

  • Q: Are device-bound passkeys completely inviolable?

    A: No, but they do eliminate the risk of cloud-based WebAuthn interception. Their security then depends on the hardware’s robustness (TPM, Secure Enclave, YubiKey) and the physical protection of the device.

  • Q: Can a local malware reproduce a PassCypher prompt?

    A: No. PassCypher does not rely on a software prompt; the validation is hardware-based and offline, so no spoofable display exists.

  • Q: Why do third-party clouds increase the risk?

    A: Vulnerable synced passkeys stored in a third-party cloud can be targeted by Adversary-in-the-Middle or WebAuthn interception attacks if the prompt is compromised.

CISO/CSO Advice – Universal & Sovereign Protection

To learn how to protect against WebAuthn interception, it’s important to know that EviBITB (Embedded Browser-In-The-Browser Protection) is a built-in technology in PassCypher HSM PGP, including its free version. t automatically or manually detects and removes redirection iframes used in BITB and prompt spoofing attacks, thereby eliminating the WebAuthn interception vector.

  • Immediate Deployment: It is a free extension for Chromium and Firefox browsers, scalable for large-scale use without a paid license.
  • Universal Protection: It works even if the organization has not yet migrated to a prompt-free model.
  • Sovereign Compatibility: It works with PassCypher NFC HSM Lite (99 €) and the full PassCypher HSM PGP (129 €/year).
  • Full Passwordless: Both PassCypher NFC HSM and HSM PGP can completely replace FIDO/WebAuthn for all authentication pathways, with zero prompts, zero cloud, and 100% sovereignty.

Strategic Recommendation:
Deploy EviBITB immediately on all workstations to neutralize BITB/prompt spoofing, then plan the migration of critical access to a full-PassCypher model to permanently remove the attack surface.

Frequently Asked Questions for CISOs/CSOs

Q: What is the regulatory impact of a WebAuthn interception attack?

A: This type of attack can compromise compliance with “phishing-resistant” MFA requirements defined by CISA, NIS2, and SecNumCloud. In case of personal data compromise, the organization faces GDPR sanctions and a challenge to its security certifications.

Q: Is there a universal and free protection against BITB and prompt spoofing?

A: Yes. EviBITB is an embedded technology in PassCypher HSM PGP, including its free version. It blocks redirection iframes (Browser-In-The-Browser) and removes the spoofable authentication prompt vector exploited in WebAuthn interception. It can be deployed immediately on a large scale without a paid license.

Q: Are there any solutions for vulnerable passkeys?

A: Yes. PassCypher NFC HSM and PassCypher HSM PGP are complete sovereign passwordless solutions: they allow authentication, signing, and encryption without FIDO infrastructure, with zero spoofable prompts, zero third-party clouds, and a 100% controlled architecture.

Q: What is the average budget and ROI of a migration to a prompt-free model?

A: According to the Time Spent on Authentication study, a professional loses an average of 285 hours/year on classic authentications, representing an annual cost of about $8,550 (based on $30/h). PassCypher HSM PGP reduces this time to ~7 h/year, and PassCypher NFC HSM to ~18 h/year. Even with the full model (129 €/year) or the NFC HSM Lite (99 € one-time purchase), the breakeven point is reached in a few days to a few weeks, and net savings exceed 50 times the annual cost in a professional context.

Q: How can we manage a hybrid fleet (legacy + modern)?

A: Keep FIDO for low-risk uses while gradually replacing them with PassCypher NFC HSM and/or PassCypher HSM PGP in critical environments. This transition removes exploitable prompts and maintains application compatibility.

Q: What metrics should we track to measure the reduction in attack surface?

A: The number of authentications via system prompts vs. hardware authentication, incidents related to WebAuthn interception, average remediation time, and the percentage of critical accesses migrated to a sovereign prompt-free model.

CISO/CSO Action Plan

Priority Action Expected Impact
Implement solutions for vulnerable passkeys by replacing them with PassCypher NFC HSM (99 €) and/or PassCypher HSM PGP (129 €/year) Eliminates the spoofable prompt, removes WebAuthn interception, and enables sovereign passwordless access with a payback period of days according to the study on authentication time
Migrate to a full-PassCypher model for critical environments Removes all FIDO/WebAuthn dependency, centralizes sovereign management of access and secrets, and maximizes productivity gains measured by the study
Deploy EviBITB (embedded technology in PassCypher HSM PGP, free version included) Provides immediate, zero-cost protection against BITB and real-time phishing via prompt spoofing
Harden the UX (visual signatures, non-cloneable elements) Complicates UI attacks, clickjacking, and redress
Audit and log authentication flows Detects and tracks any attempt at flow hijacking or Adversary-in-the-Middle attacks
Align with NIS2, SecNumCloud, and GDPR Reduces legal risk and provides proof of compliance
Train users on spoofable interface threats Strengthens human vigilance and proactive detection

Strategic Outlook

The message from DEF CON 33 is clear: authentication security is won or lost at the interface. In other words, as long as the user validates graphical authentication prompts synchronized with a network flow, real-time phishing and WebAuthn interception will remain possible.

Thus, prompt-free and cloud-free models — embodied by sovereign HSMs like PassCypher — radically reduce the attack surface.

In the short term, generalize the use of device-bound solutions for sensitive applications. In the medium term, the goal is to eliminate the spoofable UI from critical pathways. Ultimately, the recommended trajectory will permanently eliminate the “Passkeys WebAuthn Interception Flaw” from critical pathways through a gradual transition to a full-PassCypher model, providing a definitive solution for vulnerable passkeys in a professional context.

Passkeys Faille Interception WebAuthn | DEF CON 33 & PassCypher

Image type affiche de cinéma: passkey cassée sous hameçon de phishing. Textes: "Passkeys Faille Interception WebAuthn", "DEF CON 33 Révélation", "Pourquoi votre PassCypher n'est pas vulnérable API Hijacking". Contexte cybersécurité Andorre.

Passkeys Faille Interception WebAuthn : une vulnérabilité critique dévoilée à DEF CON 33 démontre que les passkeys synchronisées sont phishables en temps réel. Allthenticate a prouvé qu’un prompt d’authentification falsifiable permettait de détourner une session WebAuthn en direct.

Résumé exécutif — Passkeys Faille Interception WebAuthn

⮞ Note de lecture

Un résumé dense (≈ 1 min) pour décideurs et RSSI. Pour l’analyse technique complète (≈ 13 min), consultez la chronique intégrale.

Imaginez : une authentification vantée comme phishing-resistant — les passkeys synchronisées — exploitée en direct lors de DEF CON 33 (8–11 août 2025, Las Vegas). La vulnérabilité ? Une faille d’interception du flux WebAuthn, permettant un prompt falsifié en temps réel (real-time prompt spoofing).

Cette démonstration remet frontalement en cause la sécurité proclamée des passkeys cloudisées et ouvre le débat sur les alternatives souveraines. Deux recherches y ont marqué l’édition : le spoofing de prompts en temps réel (attaque d’interception WebAuthn) et, distincte, le clickjacking des extensions DOM. Cette chronique est exclusivement consacrée au spoofing de prompts, car il remet en cause la promesse de « phishing-resistant » pour les passkeys synchronisées vulnérables.

⮞ Résumé

Le maillon faible n’est plus la cryptographie, mais le déclencheur visuel. C’est l’interface — pas la clé — qui est compromise.

Note stratégique Cette démonstration creuse une faille historique : une authentification dite “résistante au phishing” peut parfaitement être abusée, dès lors que le prompt peut être falsifié et exploité au bon moment.

Chronique à lire
Temps de lecture estimé : ≈ 13 minutes (+4–5 min si vous visionnez les vidéos intégrées)
Niveau de complexité : Avancé / Expert
Langues disponibles : CAT · EN · ES · FR
Accessibilité : Optimisée pour lecteurs d’écran
Type : Chronique stratégique
Auteur : Jacques Gascuel, inventeur et fondateur de Freemindtronic®, conçoit et brevète des systèmes matériels de sécurité souverains pour la protection des données, la souveraineté cryptographique et les communications sécurisées. Expert en conformité ANSSI, NIS2, RGPD et SecNumCloud, il développe des architectures by design capables de contrer les menaces hybrides et d’assurer une cybersécurité 100 % souveraine.

Sources officielles

• Talk « Your Passkey is Weak : Phishing the Unphishable » (Allthenticate) — listé dans l’agenda officiel DEF CON 33 • Présentation « Passkeys Pwned : Turning WebAuthn Against Itself » — disponible sur le serveur média DEF CON • Article « Phishing-Resistant Passkeys Shown to Be Phishable at DEF CON 33 » — relayé par MENAFN / PR Newswire, rubrique Science & Tech

TL; DR
• À DEF CON 33 (8–11 août 2025), les chercheurs d’Allthenticate ont démontré que les passkeys dites « résistantes au phishing » peuvent être détournées via des prompts falsifiés en temps réel.
• La faille ne réside pas dans les algorithmes cryptographiques, mais dans l’interface utilisateur — le point d’entrée visuel.
• Cette révélation impose une révision stratégique : privilégier les passkeys liées au périphérique (device-bound) pour les usages sensibles, et aligner les déploiements sur les modèles de menace et les exigences réglementaires.

2025 Digital Security

Persistent OAuth Flaw: How Tycoon 2FA Hijacks Cloud Access

2025 Digital Security

Spyware ClayRat Android : faux WhatsApp espion mobile

2025 Digital Security

Android Spyware Threat Clayrat : 2025 Analysis and Exposure

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2025 Digital Security Technical News

Sovereign SSH Authentication with PassCypher HSM PGP — Zero Key in Clear

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Digital Security Technical News

Générateur de mots de passe souverain – PassCypher Secure Passgen WP

2025 Digital Security Technical News

Quantum computer 6100 qubits ⮞ Historic 2025 breakthrough

2025 Digital Security Technical News

Ordinateur quantique 6100 qubits ⮞ La percée historique 2025

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2025 Digital Security

Email Metadata Privacy: EU Laws & DataShielder

2025 Digital Security

Chrome V8 confusió RCE — Actualitza i postura Zero-DOM

2025 Digital Security

Chrome V8 confusion RCE — Your browser was already spying

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

En cybersécurité souveraine ↑ Cette chronique s’inscrit dans la rubrique Digital Security, dans la continuité des recherches menées sur les exploits et les contre-mesures matérielles zero trust.

⮞ Points Clés

  • Vulnérabilité confirmée : les passkeys synchronisées dans le cloud (Apple, Google, Microsoft) ne sont pas 100 % résistantes au phishing.
  • Nouvelle menace : le prompt falsifié en temps réel (real‑time prompt spoofing) exploite l’interface utilisateur plutôt que la cryptographie.
  • Impact stratégique : infrastructures critiques et administrations doivent migrer vers des credentials device-bound et des solutions hors-ligne souveraines (NFC HSM, clés segmentées).

Qu’est-ce qu’une attaque Passkeys Faille Interception WebAuthn ?

Une attaque d’interception WebAuthn via prompt d’authentification falsifiable (WebAuthn API Hijacking) consiste à imiter en temps réel la fenêtre d’authentification affichée par un système ou un navigateur. L’attaquant ne cherche pas à casser l’algorithme cryptographique : il reproduit l’interface utilisateur (UI) au moment exact où la victime s’attend à voir un prompt légitime. Leurres visuels, timing précis et synchronisation parfaite rendent la supercherie indiscernable pour l’utilisateur.

Exemple simplifié :
Un utilisateur pense approuver une connexion sur son compte bancaire via un prompt système Apple ou Google. En réalité, il interagit avec une boîte de dialogue clonée par l’attaquant. Le résultat : l’adversaire récupère la session active sans alerter la victime.
⮞ En clair : contrairement aux attaques « classiques » de phishing par e‑mail ou site frauduleux, le prompt falsifié en temps réel (real‑time prompt spoofing) se déroule pendant l’authentification, là où l’utilisateur est le plus confiant.

Historique des vulnérabilités Passkeys / WebAuthn

Malgré leur robustesse cryptographique, les passkeys — basés sur les standards ouverts WebAuthn et FIDO2 de la FIDO Alliance — ne sont pas invulnérables. L’historique des vulnérabilités et des recherches récentes confirme que la faiblesse clé réside souvent au niveau de l’interaction utilisateur et de l’environnement d’exécution (navigateur, système d’exploitation). C’est le 5 mai 2022 que l’industrie a officialisé leur adoption, suite à l’engagement d’Apple, Google et Microsoft d’étendre leur support sur leurs plateformes respectives.

Chronologie des vulnérabilités Passkey et WebAuthn de 2017 à 2025 montrant les failles de sécurité et les interceptions.
Cette chronologie illustre les failles de sécurité et les vulnérabilités découvertes dans les technologies Passkey et WebAuthn entre 2017 et 2025.

Chronologie des vulnérabilités

  • SquareX – Navigateurs compromis (août 2025) :

    Lors du DEF CON 33, une démonstration a montré qu’une extension ou un script malveillant peut intercepter le flux WebAuthn pour substituer des clés. Voir l’analyse de TechRadar et le report de SecurityWeek.

  • CVE-2025-31161 (mars/avril 2025) :

    Contournement d’authentification dans CrushFTP via une condition de concurrence. Source officielle NIST.

  • CVE-2024-9956 (mars 2025) :

    Prise de contrôle de compte via Bluetooth sur Android. Cette attaque a démontré qu’un attaquant peut déclencher une authentification malveillante à distance via un intent FIDO:/. Analyse de Risky.Biz. Source officielle NIST.

  • CVE-2024-12604 (mars 2025) :

    Stockage en clair de données sensibles dans Tap&Sign, exploitant une mauvaise gestion des mots de passe. Source officielle NIST.

  • CVE-2025-26788 (février 2025) :

    Contournement d’authentification dans StrongKey FIDO Server. Source détaillée.

  • Passkeys Pwned – API Hijacking basé sur le navigateur (début 2025) :

    Une recherche a démontré que le navigateur, en tant que médiateur unique, peut être un point de défaillance. Lire l’analyse de Security Boulevard.

  • CVE-2024-9191 (novembre 2024) :

    Exposition de mots de passe via Okta Device Access. Source officielle NIST.

  • CVE-2024-39912 (juillet 2024) :

    Énumération d’utilisateurs via une faille dans la bibliothèque PHP web-auth/webauthn-lib. Source officielle NIST.

  • Attaques de type CTRAPS (courant 2024) :

    Ces attaques au niveau du protocole (CTAP) exploitent les mécanismes d’authentification pour des actions non autorisées.

  • Première mise à disposition (septembre 2022) :

    Apple a été le premier à déployer des passkeys à grande échelle avec la sortie d’iOS 16, faisant de cette technologie une réalité pour des centaines de millions d’utilisateurs.

  • Lancement et adoption par l’industrie (mai 2022) :

    L’Alliance FIDO, rejointe par Apple, Google et Microsoft, a annoncé un plan d’action pour étendre le support des clés d’accès sur toutes leurs plateformes.

  • Attaques de Timing sur keyHandle (2022) :

    Vulnérabilité permettant de corréler des comptes en mesurant les variations temporelles dans le traitement des keyHandles. Voir article IACR ePrint 2022.

  • Phishing des méthodes de secours (depuis 2017) :

    Les attaquants utilisent des proxys AitM (comme Evilginx, apparu en 2017) pour masquer l’option passkey et forcer le recours à des méthodes moins sécurisées, qui peuvent être capturées. Plus de détails sur cette technique.

Note historique — Les risques liés aux prompts falsifiables dans WebAuthn étaient déjà soulevés par la communauté dans le W3C GitHub issue #1965 (avant la démonstration du DEF CON 33). Cela montre que l’interface utilisateur a longtemps été reconnue comme un maillon faible dans l’authentification dite “phishing-resistant“.

Ces vulnérabilités, récentes et historiques, soulignent le rôle critique du navigateur et du modèle de déploiement (device-bound vs. synced). Elles renforcent l’appel à des architectures **souveraines** et déconnectées de ces vecteurs de compromission.

Vulnérabilité liée au modèle de synchronisation

Une des vulnérabilités les plus débattues ne concerne pas le protocole WebAuthn lui-même, mais son modèle de déploiement. La plupart des publications sur le sujet font la distinction entre deux types de passkeys :

  • Passkeys liés à l’appareil (device-bound) : Stockés sur un appareil physique (comme une clé de sécurité ou un Secure Enclave). Ce modèle est généralement considéré comme très sécurisé, car il n’est pas synchronisé via un service tiers.
  • Passkeys synchronisés dans le cloud : Stockés dans un gestionnaire de mots de passe ou un service cloud (iCloud Keychain, Google Password Manager, etc.). Ces passkeys peuvent être synchronisés sur plusieurs appareils. Pour plus de détails sur cette distinction, consultez la documentation de la FIDO Alliance.

La vulnérabilité réside ici : si un attaquant parvient à compromettre le compte du service cloud, il pourrait potentiellement accéder aux passkeys synchronisés sur l’ensemble des appareils de l’utilisateur. C’est un risque que les passkeys liés à l’appareil ne partagent pas. Des recherches universitaires comme celles publiées sur arXiv approfondissent cette problématique, soulignant que “la sécurité des passkeys synchronisés est principalement concentrée chez le fournisseur de la passkey”.

Cette distinction est cruciale, car l’implémentation de **passkeys synchronisés vulnérables** contrevient à l’esprit d’une MFA dite résistante au phishing dès lors que la synchronisation introduit un intermédiaire et une surface d’attaque supplémentaire. Cela justifie la recommandation de la FIDO Alliance de privilégier les passkeys liés à l’appareil pour un niveau de sécurité maximal.

Démonstration – Passkeys Faille Interception WebAuthn (DEF CON 33)

À Las Vegas, au cœur du DEF CON 33 (8–11 août 2025), la scène hacker la plus respectée a eu droit à une démonstration qui a fait grincer bien des dents. Les chercheurs d’Allthenticate ont montré en direct qu’une passkey synchronisée vulnérable – pourtant labellisée « phishing-resistant » – pouvait être trompée. Comment ? Par une attaque d’interception WebAuthn de type prompt d’authentification falsifiable (real‑time prompt spoofing) : une fausse boîte de dialogue d’authentification, parfaitement calée dans le timing et l’UI légitime. Résultat : l’utilisateur croit valider une authentification légitime, mais l’adversaire récupère la session en direct.
La preuve de concept rend tangible “Passkeys Faille Interception WebAuthn” via un prompt usurpable en temps réel.

🎥 Auteurs & Médias officiels DEF CON 33
⮞ Shourya Pratap Singh, Jonny Lin, Daniel Seetoh — chercheurs Allthenticate, auteurs de la démo « Your Passkey is Weak: Phishing the Unphishable ».
• Vidéo Allthenticate sur TikTok — explication directe par l’équipe.
• Vidéo DEF CON 33 Las Vegas (TikTok) — aperçu du salon.
• Vidéo Highlights DEF CON 33 (YouTube) — incluant la faille passkeys.

⮞ Résumé

DEF CON 33 a démontré que les passkeys synchronisées vulnérables pouvaient être compromises en direct, dès lors qu’un prompt d’authentification falsifiable s’insère dans le flux WebAuthn.

Contexte technique – Passkeys Faille Interception WebAuthn

Pour comprendre la portée de cette vulnérabilité passkeys, il faut revenir aux deux familles principales :

  • Les passkeys synchronisées vulnérables : stockées dans un cloud Apple, Google ou Microsoft, accessibles sur tous vos appareils. Pratiques, mais l’authentification repose sur un prompt d’authentification falsifiable — un point d’ancrage exploitable.
  • Les passkeys device‑bound : la clé privée reste enfermée dans l’appareil (Secure Enclave, TPM, YubiKey). Aucun cloud, donc moins de surface d’attaque.

Dans ce cadre, “Passkeys Faille Interception WebAuthn” résulte d’un enchaînement où l’UI validée devient le point d’ancrage de l’attaque.

Le problème est simple : tout mécanisme dépendant d’un prompt système est imitable. Si l’attaquant reproduit l’UI et capture le timing, il peut effectuer une attaque d’interception WebAuthn et détourner l’acte d’authentification. Autrement dit, le maillon faible n’est pas la cryptographie mais l’interface utilisateur.

Risque systémique : L’effet domino en cas de corruption de Passkeys

Le risque lié à la corruption d’une passkey est particulièrement grave lorsqu’une seule passkey est utilisée sur plusieurs sites et services (Google, Microsoft, Apple, etc.). Si cette passkey est compromise, cela peut entraîner un effet domino où l’attaquant prend le contrôle de plusieurs comptes utilisateur liés à ce service unique.

Un autre facteur de risque est l’absence de mécanisme pour savoir si une passkey a été compromise. Contrairement aux mots de passe, qui peuvent être vérifiés dans des bases de données comme “Have I Been Pwned”, il n’existe actuellement aucun moyen standardisé pour qu’un utilisateur sache si sa passkey a été corrompue.

Le risque est d’autant plus élevé si la passkey est centralisée et synchronisée via un service cloud, car un accès malveillant à un compte pourrait potentiellement donner accès à d’autres services sensibles sans que l’utilisateur en soit immédiatement informé.

⮞ Résumé

La faille n’est pas dans les algorithmes FIDO, mais dans l’UI/UX : le prompt d’authentification falsifiable, parfait pour un phishing en temps réel.

Comparatif – Faille d’interception WebAuthn : spoofing de prompts vs. clickjacking DOM

À DEF CON 33, deux recherches majeures ont ébranlé la confiance dans les mécanismes modernes d’authentification. Toutes deux exploitent des failles liées à l’interface utilisateur (UX) plutôt qu’à la cryptographie, mais leurs vecteurs et cibles diffèrent radicalement.

Architecture PassCypher vs FIDO WebAuthn — Schéma comparatif des flux d’authentification
✪ Illustration : Comparaison visuelle des architectures d’authentification : FIDO/WebAuthn (prompt falsifiable) vs PassCypher (sans cloud, sans prompt).

Prompt falsifié en temps réel

  • Auteur : Allthenticate (Las Vegas, DEF CON 33).
  • Cible : passkeys synchronisées vulnérables (Apple, Google, Microsoft).
  • Vecteur : prompt d’authentification falsifiable, calé en temps réel sur l’UI légitime (real‑time prompt spoofing).
  • Impact : attaque d’interception WebAuthn provoquant un phishing « live » ; l’utilisateur valide à son insu une demande piégée.

Détournement de clic DOM

  • Auteurs : autre équipe de chercheurs (DEF CON 33).
  • Cible : gestionnaires d’identifiants, extensions, passkeys stockées.
  • Vecteur : iframes invisibles, Shadow DOM, scripts malveillants pour détourner l’autoremplissage.
  • Impact : exfiltration silencieuse d’identifiants, passkeys et clés de crypto‑wallets.

⮞ À retenir : cette chronique se concentre exclusivement sur le spoofing de prompts, qui illustre une faille d’interception WebAuthn majeure et remet en cause la promesse de « passkeys résistantes au phishing ». Pour l’étude complète du clickjacking DOM, voir la chronique connexe.

Implications stratégiques – Passkeys et vulnérabilités UX

En conséquence, “Passkeys Faille Interception WebAuthn” oblige à repenser l’authentification autour de modèles hors prompt et hors cloud.

      • Ne plus considérer les passkeys synchronisées vulnérables comme inviolables.
      • Privilégier les device‑bound credentials pour les environnements sensibles.
      • Mettre en place des garde‑fous UX : détection d’anomalies dans les prompts d’authentification, signatures visuelles non falsifiables.
      • Former les utilisateurs à la menace de phishing en temps réel par attaque d’interception WebAuthn.
⮞ Insight
Ce n’est pas la cryptographie qui cède, mais l’illusion d’immunité. L’interception WebAuthn démontre que le risque réside dans l’UX, pas dans l’algorithme.
[/ux_text]

Chronique connexe — Clickjacking des extensions DOM à DEF CON 33

Une autre recherche présentée à DEF CON 33 a mis en lumière une méthode complémentaire visant les gestionnaires d’identités et les passkeys : le clickjacking des extensions DOM. Si cette technique n’implique pas directement une attaque d’interception WebAuthn, elle illustre un autre vecteur UX critique où des iframes invisibles, du Shadow DOM et des scripts malveillants peuvent détourner l’autoremplissage et voler des identifiants, des passkeys et des clés de crypto‑wallets.

Langues disponibles :
CAT · EN · ES · FR

[ux_text font_size=”1.2″ line_height=”1.35″>

Réglementation & conformité – MFA et interception WebAuthn

Les textes officiels comme le guide CISA sur la MFA résistante au phishing ou la directive OMB M-22-09 insistent : une authentification n’est « résistante au phishing » que si aucun intermédiaire ne peut intercepter ou détourner le flux WebAuthn.

En théorie, les passkeys WebAuthn respectent cette règle. En pratique, l’implémentation des passkeys synchronisées vulnérables ouvre une faille d’interception exploitable via un prompt d’authentification falsifiable.

En Europe, la directive NIS2 et la certification SecNumCloud rappellent la même exigence : pas de dépendance à des services tiers non maîtrisés.

 

Risque lié à la synchronisation cloud

Une des vulnérabilités les plus débattues ne concerne pas le protocole lui-même, mais son modèle de déploiement. Les passkeys synchronisés via des services cloud (comme iCloud Keychain ou Google Password Manager) sont potentiellement vulnérables si le compte cloud de l’utilisateur est compromis. Ce risque n’existe pas pour les passkeys liés à l’appareil (via une clé de sécurité matérielle ou un Secure Enclave), ce qui souligne l’importance du choix de l’architecture de déploiement.

 

À ce titre, “Passkeys Faille Interception WebAuthn” contrevient à l’esprit d’une MFA dite résistante au phishing dès lors que la synchronisation introduit un intermédiaire.

Autrement dit, un cloud US gérant vos passkeys sort du cadre d’une souveraineté numérique stricte.

⮞ Résumé

Une passkey synchronisée vulnérable peut compromettre l’exigence de MFA résistante au phishing (CISA, NIS2) dès lors qu’une attaque d’interception WebAuthn est possible.

Statistiques francophones et européennes – Phishing en temps réel et interception WebAuthn

Les rapports publics confirment que les attaques de phishing avancé — notamment les techniques en temps réel — constituent une menace majeure dans l’Union européenne et l’espace francophone.

  • Union européenne — ENISA : selon le rapport Threat Landscape 2024, le phishing et l’ingénierie sociale représentent 38 % des incidents signalés dans l’UE, avec une hausse notable des méthodes Adversary‑in‑the‑Middle et prompt falsifié en temps réel (real‑time prompt spoofing), associées à l’interception WebAuthn. Source : ENISA Threat Landscape 2024
  • France — Cybermalveillance.gouv.fr : en 2023, le phishing a généré 38 % des demandes d’assistance, avec plus de 1,5 M de consultations liées à l’hameçonnage. Les arnaques au faux conseiller bancaire ont bondi de +78 % vs 2022, souvent via des prompts d’authentification falsifiables. Source : Rapport d’activité 2023
  • Canada (francophone) — Centre canadien pour la cybersécurité : l’Évaluation des cybermenaces nationales 2023‑2024 indique que 65 % des entreprises s’attendent à subir un phishing ou ransomware. Le phishing reste un vecteur privilégié pour contourner la MFA, y compris via l’interception de flux WebAuthn. Source : Évaluation officielle
⮞ Lecture stratégique
Le prompt falsifié en temps réel n’est pas une expérimentation de laboratoire : il s’inscrit dans une tendance où le phishing cible l’interface d’authentification plutôt que les algorithmes, avec un recours croissant à l’attaque d’interception WebAuthn.

Cas d’usage souverain – Neutralisation de l’interception WebAuthn

Dans un scénario concret, une autorité régulatrice réserve les passkeys synchronisées aux portails publics à faible risque. Le choix PassCypher supprime la cause de “Passkeys Faille Interception WebAuthn” en retirant le prompt, le cloud et toute exposition DOM.
Pour les systèmes critiques (administration, opérations sensibles, infrastructures vitales), elle déploie PassCypher sous deux formes :

PassCypher NFC HSM — authentification matérielle hors‑ligne, sans serveur, avec émulation clavier BLE AES‑128‑CBC. Aucun prompt d’authentification falsifiable n’existe.
PassCypher HSM PGP — gestion souveraine de clés segmentées inexportables, validation cryptographique sans cloud ni synchronisation.

⮞ Résultat
Dans ce modèle, le vecteur prompt exploité lors de l’attaque d’interception WebAuthn à DEF CON 33 est totalement éliminé des parcours critiques.

Pourquoi PassCypher élimine le risque d’interception WebAuthn

Les solutions PassCypher se distinguent radicalement des passkeys FIDO vulnérables à l’attaque d’interception WebAuthn :

  • Pas de prompt OS/navigateur — donc aucun prompt d’authentification falsifiable.
  • Pas de cloud — pas de synchronisation vulnérable ni dépendance à un tiers.
  • Pas de DOM — aucune exposition aux scripts, extensions ou iframes.
✓ Souveraineté : en supprimant prompt, cloud et DOM, PassCypher retire tout point d’accroche à la faille d’interception WebAuthn (spoofing de prompts) révélée à DEF CON 33.

PassCypher NFC HSM — Neutralisation matérielle de l’interception

L’attaque d’Allthenticate à DEF CON 33 prouve que tout système dépendant d’un prompt OS/navigateur peut être falsifié.
PassCypher NFC HSM supprime ce vecteur : aucun prompt, aucune synchro cloud, secrets chiffrés à vie dans un nano‑HSM NFC et validés par un tap physique.

Fonctionnement utilisateur :

  • Tap NFC obligatoire — validation physique sans interface logicielle.
  • Mode HID BLE AES‑128‑CBC — transmission hors DOM, résistante aux keyloggers.
  • Écosystème Zero‑DOM — aucun secret n’apparaît dans le navigateur.

⮞ Résumé

Contrairement aux passkeys synchronisées vulnérables, PassCypher NFC HSM neutralise l’attaque d’interception WebAuthn car il n’existe pas de prompt d’authentification falsifiable.

Attaques neutralisées par PassCypher NFC HSM

Type d’attaque Vecteur Statut
Spoofing de prompts Faux dialogue OS/navigateur Neutralisé (zéro prompt)
Phishing en temps réel Validation piégée en direct Neutralisé (tap NFC obligatoire)
Enregistrement de frappe Capture de frappes clavier Neutralisé (HID BLE chiffré)

PassCypher HSM PGP — Clés segmentées contre le phishing

L’autre pilier, PassCypher HSM PGP, applique la même philosophie : aucun prompt exploitable.
Les secrets (identifiants, passkeys, clés SSH/PGP, TOTP/HOTP) résident dans des conteneurs chiffrés AES‑256 CBC PGP, protégés par un système de clés segmentées brevetées.

  • Pas de prompt — donc pas de fenêtre à falsifier.
  • Clés segmentées — inexportables, assemblées uniquement en RAM.
  • Déchiffrement éphémère — le secret disparaît aussitôt utilisé.
  • Zéro cloud — pas de synchronisation vulnérable.

⮞ Résumé

PassCypher HSM PGP supprime le terrain d’attaque du prompt falsifié en temps réel : authentification matérielle, clés segmentées et validation cryptographique sans exposition DOM ni cloud.

Comparatif de surface d’attaque

Critère Passkeys synchronisées (FIDO) PassCypher NFC HSM PassCypher HSM PGP
Prompt d’authentification Oui Non Non
Cloud de synchronisation Oui Non Non
Clé privée exportable Non (UI attaquable) Non Non
Usurpation / interception WebAuthn Présent Absent Absent
Dépendance standard FIDO Oui Non Non
⮞ Insight
En retirant le prompt d’authentification falsifiable et la synchronisation cloud, l’attaque d’interception WebAuthn démontrée à DEF CON 33 disparaît complètement.

Signaux faibles – tendances liées à l’interception WebAuthn

⮞ Weak Signals Identified
– Généralisation des attaques UI en temps réel, y compris l’interception WebAuthn via prompt d’authentification falsifiable.
– Dépendance croissante aux clouds tiers pour l’identité, augmentant l’exposition des passkeys synchronisées vulnérables.
– Multiplication des contournements via ingénierie sociale assistée par IA, appliquée aux interfaces d’authentification.

Glossaire des termes stratégiques

Un rappel des notions clés utilisées dans cette chronique, pour lecteurs débutants comme confirmés.

  • Passkey / Passkeys

    Un identifiant numérique sans mot de passe basé sur le standard FIDO/WebAuthn, conçu pour être “résistant au phishing”.

    • Passkey (singulier) : Se réfère à un identifiant numérique unique stocké sur un appareil (par exemple, le Secure Enclave, TPM, YubiKey).
    • Passkeys (pluriel) : Se réfère à la technologie générale ou à plusieurs identifiants, y compris les *passkeys synchronisés* stockés dans les clouds d’Apple, Google ou Microsoft. Ces derniers sont particulièrement vulnérables à l’**Attaque d’Interception WebAuthn** (falsification de prompt en temps réel démontrée au DEF CON 33).
  • Passkeys Pwned

    Titre de la présentation au DEF CON 33 par Allthenticate (« Passkeys Pwned: Turning WebAuthn Against Itself »). Elle met en évidence comment une attaque d’interception WebAuthn peut compromettre les passkeys synchronisés en temps réel, prouvant qu’ils ne sont pas 100% résistants au phishing.

  • Passkeys synchronisées vulnérables

    Stockées dans un cloud (Apple, Google, Microsoft) et utilisables sur plusieurs appareils. Avantage en termes d’UX, mais faiblesse stratégique : dépendance à un **prompt d’authentification falsifiable** et au cloud.

  • Passkeys device-bound

    Liées à un seul périphérique (TPM, Secure Enclave, YubiKey). Plus sûres car sans synchronisation cloud.

  • Prompt

    Boîte de dialogue système ou navigateur demandant une validation (Face ID, empreinte, clé FIDO). Cible principale du spoofing.

  • Attaque d’interception WebAuthn

    Également connue sous le nom de *WebAuthn API Hijacking*. Elle manipule le flux d’authentification en falsifiant le prompt système/navigateur et en imitant l’interface utilisateur en temps réel. L’attaquant ne brise pas la cryptographie, mais intercepte le processus WebAuthn au niveau de l’UX. Voir la spécification officielle W3C WebAuthn et la documentation de la FIDO Alliance.

  • Real-time prompt spoofing

    Falsification en direct d’une fenêtre d’authentification, qui est indiscernable pour l’utilisateur.

  • Clickjacking DOM

    Attaque utilisant des *iframes invisibles* et le *Shadow DOM* pour détourner l’autoremplissage et voler des identifiants.

  • Zero-DOM

    Architecture souveraine où aucun secret n’est exposé au navigateur ni au DOM.

  • NFC HSM

    Module matériel sécurisé hors ligne, compatible HID BLE AES-128-CBC.

  • Clés segmentées

    Clés cryptographiques découpées en segments, assemblées uniquement en mémoire volatile.

  • Device-bound credential

    Identifiant attaché à un périphérique physique, non transférable ni clonable.

▸ Utilité stratégique : ce glossaire montre pourquoi l’**attaque d’interception WebAuthn** cible le prompt et l’UX, et pourquoi PassCypher élimine ce vecteur par conception.

FAQ technique (intégration & usages)

  • Q : Peut‑on migrer d’un parc FIDO vers PassCypher ?

    R : Oui, en modèle hybride. Conservez FIDO pour les usages courants, adoptez PassCypher pour les accès critiques afin d’éliminer les vecteurs d’interception WebAuthn.

  • Q : Quel impact UX sans prompt système ?

    R : Le geste est matériel (tap NFC ou validation HSM). Aucun prompt d’authentification falsifiable, aucune boîte de dialogue à usurper : suppression totale du risque de phishing en temps réel.

  • Q : Comment révoquer une clé compromise ?

    R : On révoque simplement l’HSM ou la clé cycle. Aucun cloud à purger, aucun compte tiers à contacter.

  • Q : PassCypher protège-t-il contre le real-time prompt spoofing ?

    R : Oui. L’architecture PassCypher supprime totalement le prompt OS/navigateur, supprimant ainsi la surface d’attaque exploitée à DEF CON 33.

  • Q : Peut‑on intégrer PassCypher dans une infrastructure réglementée NIS2 ?

    R : Oui. Les modules NFC HSM et HSM PGP sont conformes aux exigences de souveraineté numérique et neutralisent les risques liés aux passkeys synchronisées vulnérables.

  • Q : Les passkeys device‑bound sont‑elles totalement inviolables ?

    R : Non, mais elles éliminent le risque d’interception WebAuthn via cloud. Leur sécurité dépend ensuite de la robustesse matérielle (TPM, Secure Enclave, YubiKey) et de la protection physique de l’appareil.

  • Q : Un malware local peut‑il reproduire un prompt PassCypher ?

    R : Non. PassCypher ne repose pas sur un prompt logiciel : la validation est matérielle et hors‑ligne, donc aucun affichage falsifiable n’existe.

  • Q : Pourquoi les clouds tiers augmentent‑ils le risque ?

    R : Les passkeys synchronisées vulnérables stockées dans un cloud tiers peuvent être ciblées par des attaques d’Adversary‑in‑the‑Middle ou d’interception WebAuthn si le prompt est compromis.

Conseil RSSI / CISO – Protection universelle & souveraine

EviBITB (Embedded Browser‑In‑The‑Browser Protection) est une technologie embarquée dans PassCypher HSM PGP, y compris dans sa version gratuite.
Elle détecte et supprime automatiquement ou manuellement les iframes de redirection utilisées dans les attaques BITB et prompt spoofing, éliminant ainsi le vecteur d’interception WebAuthn.

  • Déploiement immédiat : extension gratuite pour navigateurs Chromium et Firefox, utilisable à grande échelle sans licence payante.
  • Protection universelle : agit même si l’organisation n’a pas encore migré vers un modèle hors‑prompt.
  • Compatibilité souveraine : fonctionne avec PassCypher NFC HSM Lite (99 €) et PassCypher HSM PGP complet (129 €/an).
  • Full passwordless : PassCypher NFC HSM et HSM PGP peuvent remplacer totalement FIDO/WebAuthn pour tous les parcours d’authentification, avec zéro prompt, zéro cloud et 100 % de souveraineté.

Recommandation stratégique :
Déployer EviBITB dès maintenant sur tous les postes pour neutraliser le BITB/prompt spoofing, puis planifier la migration des accès critiques vers un modèle full‑PassCypher pour supprimer définitivement la surface d’attaque.

Questions fréquentes côté RSSI / CISO

Q : Quel est l’impact réglementaire d’une attaque d’interception WebAuthn ?

R : Ce type d’attaque peut compromettre la conformité aux exigences de MFA « résistante au phishing » définies par la CISA, NIS2 et SecNumCloud. En cas de compromission de données personnelles, l’organisation s’expose à des sanctions RGPD et à une remise en cause de ses certifications sécurité.

Q : Existe-t-il une protection universelle et gratuite contre le BITB et le prompt spoofing ?

R : Oui. EviBITB est une technologie embarquée dans PassCypher HSM PGP, y compris dans sa version gratuite. Elle bloque les iframes de redirection (Browser-In-The-Browser) et supprime le vecteur du prompt d’authentification falsifiable exploité dans l’interception WebAuthn. Elle peut être déployée immédiatement à grande échelle sans licence payante.

Q : Peut-on se passer totalement de FIDO/WebAuthn ?

R : Oui. PassCypher NFC HSM et PassCypher HSM PGP sont des solutions passwordless souveraines complètes : elles permettent d’authentifier, signer et chiffrer sans infrastructure FIDO, avec zéro prompt falsifiable, zéro cloud tiers et une architecture 100 % maîtrisée.

Q : Quel est le budget moyen et le ROI d’une migration vers un modèle hors-prompt ?

R : Selon l’étude Time Spent on Authentication, un professionnel perd en moyenne 285 heures/an en authentifications classiques, soit environ 8 550 $ de coût annuel (base 30 $/h). PassCypher HSM PGP ramène ce temps à ~7 h/an, PassCypher NFC HSM à ~18 h/an. Même avec le modèle complet (129 €/an) ou le NFC HSM Lite (99 € achat unique), le point mort est atteint en quelques jours à quelques semaines, et les économies nettes dépassent 50 fois le coût annuel dans un contexte professionnel.

Q : Comment gérer un parc hybride (legacy + moderne) ?

R : Conserver FIDO pour les usages à faible risque tout en remplaçant progressivement par PassCypher NFC HSM et/ou PassCypher HSM PGP dans les environnements critiques. Cette transition supprime les prompts exploitables et conserve la compatibilité applicative.

Q : Quels indicateurs suivre pour mesurer la réduction de surface d’attaque ?

R : Nombre d’authentifications via prompt système vs. authentification matérielle, incidents liés à l’interception WebAuthn, temps moyen de remédiation et pourcentage d’accès critiques migrés vers un modèle souverain hors-prompt.

Plan d’action RSSI / CISO

Action prioritaire Impact attendu
Remplacer les passkeys synchronisées vulnérables par PassCypher NFC HSM (99 €) et/ou PassCypher HSM PGP (129 €/an) Élimine le prompt falsifiable, supprime l’interception WebAuthn, passage en passwordless souverain avec amortissement en jours selon l’étude sur le temps d’authentification
Migrer vers un modèle full‑PassCypher pour les environnements critiques Supprime toute dépendance FIDO/WebAuthn, centralise la gestion souveraine des accès et secrets, et maximise les gains de productivité mesurés par l’étude
Déployer EviBITB (technologie embarquée dans PassCypher HSM PGP, version gratuite incluse) Protection immédiate sans coût contre BITB et phishing en temps réel par prompt spoofing
Durcir l’UX (signatures visuelles, éléments non clonables) Complexifie les attaques UI, clickjacking et redress
Auditer et journaliser les flux d’authentification Détecte et trace toute tentative de détournement de flux ou d’Adversary-in-the-Middle
Aligner avec NIS2, SecNumCloud et RGPD Réduit le risque juridique et apporte une preuve de conformité
Former les utilisateurs aux menaces d’interface falsifiable Renforce la vigilance humaine et la détection proactive

Perspectives stratégiques

Le message de DEF CON 33 est clair : la sécurité de l’authentification se joue à l’interface.
Tant que l’utilisateur validera des prompts d’authentification graphiques synchronisés avec un flux réseau, le phishing en temps réel et l’interception WebAuthn resteront possibles.
Les modèles hors prompt et hors cloud — matérialisés par des HSM souverains comme PassCypherréduisent radicalement la surface d’attaque.
À court terme : généraliser le device‑bound pour les usages sensibles ; à moyen terme : éliminer l’UI falsifiable des parcours critiques. La trajectoire recommandée élimine durablement “Passkeys Faille Interception WebAuthn” des parcours critiques par un passage progressif au full‑PassCypher.

Clickjacking Extensiones DOM — Riesgos y Defensa Zero-DOM

Póster estilo cine sobre clickjacking extensiones DOM, riesgos sistémicos, vulnerabilidades de gestores de contraseñas y wallets cripto, con contramedidas Zero DOM soberanas.

Resumen Ejecutivo — Clickjacking Extensiones DOM

⮞ Nota de lectura

Si solo quieres lo esencial, este Resumen Ejecutivo (≈4 minutos) ofrece una visión sólida. Sin embargo, para una comprensión técnica completa, continúa con la crónica íntegra (≈36–38 minutos).

⚡ El Descubrimiento

Las Vegas, principios de agosto de 2025. DEF CON 33 ocupa el Centro de Convenciones de Las Vegas. Entre domos hacker, aldeas IoT, Adversary Village y competiciones CTF, el ambiente se electrifica. En el escenario, Marek Tóth conecta su portátil, inicia la demo y pulsa Enter.
De inmediato emerge el ataque estrella: clickjacking extensiones DOM. Fácil de codificar pero devastador al ejecutarse, se basa en una página trampa, iframes invisibles y una llamada maliciosa a focus(). Estos elementos engañan a los gestores de autocompletado para volcar credenciales, códigos TOTP y llaves de acceso (passkeys) en un formulario fantasma. Así, el clickjacking basado en DOM se manifiesta como una amenaza estructural.

✦ Impacto Inmediato en Gestores de Contraseñas

Los resultados son contundentes. Marek Tóth probó 11 gestores de contraseñas y todos mostraron vulnerabilidades de diseño. De hecho, 10 de 11 filtraron credenciales y secretos. Según SecurityWeek, casi 40 millones de instalaciones permanecen expuestas. Además, la ola se extiende más allá de los gestores: incluso las billeteras cripto (crypto-wallets) filtraron claves privadas “como un grifo que gotea”, exponiendo directamente activos financieros.

✦ Impacto inmediato en gestores de contraseñas

Los resultados son contundentes. Marek Tóth analizó 11 gestores de contraseñas: todos presentaban vulnerabilidades estructurales.
En 10 de ellos, se filtraron credenciales y secretos.
Según SecurityWeek, cerca de 40 millones de instalaciones siguen expuestas.
La amenaza se extiende más allá: incluso los monederos cripto filtraron claves privadas, exponiendo directamente activos financieros.

⧉ Segunda demostración ⟶ Exfiltración de passkeys vía overlay en DEF CON 33

Durante DEF CON 33, una segunda demostración independiente reveló que las passkeys «resistentes al phishing» pueden ser exfiltradas silenciosamente mediante una superposición visual y una redirección maliciosa — sin necesidad de inyección DOM. El ataque explota la confianza del usuario en interfaces conocidas y validaciones desde el navegador. Incluso FIDO/WebAuthn puede ser vulnerado en entornos no soberanos.

⚠ Mensaje Estratégico — Riesgos Sistémicos

Con solo dos demostraciones — una contra gestores y billeteras, otra contra passkeys — colapsaron dos pilares de la ciberseguridad. El mensaje es claro: mientras los secretos residan en el DOM, seguirán siendo vulnerables. Además, mientras la seguridad dependa del navegador y la nube, un solo clic puede derrumbarlo todo.
Como recuerda OWASP, el clickjacking siempre ha sido una amenaza conocida. Sin embargo, aquí colapsa la propia capa de extensión.

⎔ La Alternativa Soberana — Contramedidas Zero-DOM

Afortunadamente, existe desde hace más de una década otra vía que no depende del DOM.
Con PassCypher HSM PGP, PassCypher NFC HSM y SeedNFC para respaldo hardware de claves criptográficas, tus credenciales, contraseñas y secretos TOTP/HOTP nunca tocan el DOM.
En cambio, permanecen cifrados en HSM fuera de línea (offline), inyectados de forma segura mediante sandboxing de URL o introducidos manualmente vía aplicación NFC en Android, siempre protegidos por defensas anti-BITB.
Por tanto, no es un parche, sino una arquitectura soberana sin contraseñas, patentada: descentralizada, sin servidor, sin base de datos central y sin contraseña maestra. Libera la gestión de secretos de dependencias centralizadas como FIDO/WebAuthn.

Crónica para leer
Tiempo estimado de lectura: 36–38 minutos
Fecha de actualización: 2025-09-11
Nivel de complejidad: Avanzado / Experto
Especificidad lingüística: Léxico soberano — alta densidad técnica
Idiomas disponibles: CAT · EN · ES · FR
Accesibilidad: Optimizado para lectores de pantalla — anclas semánticas incluidas
Tipo editorial: Crónica estratégica
Sobre el autor: Escrito por Jacques Gascuel, inventor y fundador de Freemindtronic®.
Especialista en tecnologías de seguridad soberana, diseña y patenta sistemas hardware para protección de datos, soberanía criptográfica y comunicaciones seguras. Además, su experiencia abarca el cumplimiento con ANSSI, NIS2, GDPR y SecNumCloud, así como la defensa frente a amenazas híbridas mediante arquitecturas soberanas por diseño.

TL;DR —
En DEF CON 33, el clickjacking de extensiones DOM evidenció un riesgo sistémico para la seguridad de los navegadores y los gestores de contraseñas.
Datos expuestos: credenciales, códigos TOTP, passkeys y claves criptográficas.
Técnicas aplicadas: iframes invisibles, manipulación del Shadow DOM y superposiciones tipo Browser-in-the-Browser.
Impacto inicial: unas 40 millones de instalaciones reportadas como expuestas.
Estado al 11 de septiembre de 2025: varios proveedores publicaron parches para los métodos descritos (Bitwarden, Dashlane, Enpass, NordPass, ProtonPass, RoboForm, Keeper [parcial], LogMeOnce), mientras que otros siguen siendo vulnerables (1Password, iCloud Passwords, LastPass, KeePassXC-Browser).
En consecuencia: solo una arquitectura Zero-DOM con cifrado de hardware soberano elimina de forma sostenible la superficie de ataque y protege las credenciales frente a este tipo de ataques.

Anatomía del clickjacking extensiones DOM: una página maliciosa, un iframe oculto y un secuestro de autocompletado que exfiltra credenciales, llaves de acceso y claves de billeteras cripto.

Anatomía del clickjacking extensiones DOM con iframe oculto, Shadow DOM y exfiltración sigilosa de credenciales
Anatomía del clickjacking extensiones DOM: página maliciosa, iframe oculto y secuestro de autocompletado exfiltrando credenciales, llaves de acceso y claves de billeteras cripto.

2025 Digital Security

Persistent OAuth Flaw: How Tycoon 2FA Hijacks Cloud Access

2025 Digital Security

Spyware ClayRat Android : faux WhatsApp espion mobile

2025 Digital Security

Android Spyware Threat Clayrat : 2025 Analysis and Exposure

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2025 Digital Security Technical News

Sovereign SSH Authentication with PassCypher HSM PGP — Zero Key in Clear

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Digital Security Technical News

Générateur de mots de passe souverain – PassCypher Secure Passgen WP

2025 Digital Security Technical News

Quantum computer 6100 qubits ⮞ Historic 2025 breakthrough

2025 Digital Security Technical News

Ordinateur quantique 6100 qubits ⮞ La percée historique 2025

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2025 Digital Security

Email Metadata Privacy: EU Laws & DataShielder

2025 Digital Security

Chrome V8 confusió RCE — Actualitza i postura Zero-DOM

2025 Digital Security

Chrome V8 confusion RCE — Your browser was already spying

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

En ciberseguridad soberana Esta crónica forma parte de la sección Seguridad Digital, continuando nuestra investigación sobre exploits, vulnerabilidades sistémicas y contramedidas de confianza cero basadas en hardware.

Key Points:

  • 11 password managers proved vulnerable — credentials, TOTP, and passkeys were exfiltrated through DOM redressing.
  • Popular crypto-wallet extensions (MetaMask, Phantom, TrustWallet) face the same DOM extension clickjacking risks.
  • Exploitation requires only a single click, leveraging hidden iframes, encapsulated Shadow DOM, and Browser-in-the-Browser overlays.
  • The browser sandbox is no sovereign stronghold — BITB overlays can deceive user perception.
  • PassCypher NFC / HSM PGP and SeedNFC provide hardware-based Zero-DOM flows anchored in secure enclaves, with integrated anti-BITB kill-switch.
  • A decade of sovereign R&D anticipated these risks: segmented AES-256 containers, hybrid NFC↔PGP RAM channels, and HID injection form the native alternative.

¿Qué es el clickjacking de extensiones basado en el DOM?

DOM-based extension clickjacking secuestra una extensión del navegador (gestor de contraseñas o wallet) abusando del Document Object Model. Una página engañosa enlaza iframes invisibles, Shadow DOM y una llamada maliciosa a focus() para provocar el autocompletado en un formulario invisible. La extensión «cree» que está en el campo correcto y vierte secretos allí — credenciales, códigos TOTP/HOTP, passkeys, incluso claves privadas. Porque estos secretos tocan el DOM, pueden ser exfiltrados de forma silenciosa.

⮞ Perspectiva doctrinal: El DOM-based extension clickjacking no es un bug aislado, es un error de diseño. Cualquier extensión que inyecte secretos en un DOM manipulable es inherentemente vulnerable. Solo las arquitecturas Zero-DOM (separación estructural, HSM/NFC, inyección fuera del navegador) eliminan esta superficie de ataque.

¿Qué nivel de peligrosidad tiene?

Este vector no es menor: explota la propia lógica del autocompletado y opera sin que el usuario lo note. El atacante no se limita a superponer un elemento; fuerza a la extensión a rellenar un formulario falso como si nada, haciendo la exfiltración indetectable a simple vista.

Flujo típico del ataque

  1. Preparación — la página maliciosa incrusta un iframe invisible y un Shadow DOM que oculta el contexto real; los campos se hacen no visibles (opacity:0, pointer-events:none).
  2. Cebo — la víctima hace clic en un elemento inocuo; redirecciones y un focus() malicioso redirigen el evento a un campo controlado por el atacante.
  3. Exfiltración — la extensión cree que interactúa con un campo legítimo e inyecta automáticamente credenciales, TOTP, passkeys o claves privadas en el DOM falso; los datos se exfiltran al instante.

Este mecanismo engaña las señales visuales, elude protecciones clásicas (X-Frame-Options, Content-Security-Policy, frame-ancestors) y convierte el autocompletado en un canal de exfiltración invisible. Los overlays tipo Browser-in-the-Browser (BITB) y la manipulación del Shadow DOM aumentan aún más el riesgo, haciendo phishable las passkeys sincronizadas y las credenciales.

⮞ Resumen

El ataque combina iframes invisibles, manipulación del Shadow DOM y redirecciones vía focus() para secuestrar extensiones de autofill. Los secretos se inyectan en un formulario fantasma, dando al atacante acceso directo a datos sensibles (credenciales, TOTP/HOTP, passkeys, claves privadas). Conclusión: mientras los secretos transiten por el DOM, la superficie de ataque permanece abierta.

Historia del Clickjacking (2002–2025)

El clickjacking se ha convertido en el parásito persistente de la web moderna. El término surgió a principios de los 2000, cuando Jeremiah Grossman y Robert Hansen describieron un escenario engañoso: inducir al usuario a hacer clic en algo que en realidad no podía ver. Una ilusión óptica aplicada al código, pronto se convirtió en una técnica de ataque de referencia (OWASP).

  • 2002–2008: Aparición del “UI redressing”: capas HTML + iframes transparentes atrapando al usuario (Archivo Hansen).
  • 2009: Facebook cae víctima del Likejacking (OWASP).
  • 2010: Surge el Cursorjacking — desplazar el puntero para manipular clics (OWASP).
  • 2012–2015: Explotación vía iframes, anuncios online y malvertising (MITRE CVE) (Infosec).
  • 2016–2019: El tapjacking se extiende en móviles Android (Android Security Bulletin).
  • 2020–2024: Auge del “clickjacking híbrido” combinando XSS y phishing (OWASP WSTG).
  • 2025: En DEF CON 33, Marek Tóth presenta un nuevo nivel: Clickjacking de Extensiones DOM. Esta vez no solo los sitios web, sino también las extensiones del navegador (gestores de contraseñas, billeteras cripto) inyectan formularios invisibles, habilitando la exfiltración sigilosa de secretos.

En DEF CON 33, Tóth reveló públicamente el clickjacking de extensiones DOM, marcando un cambio estructural: de un truco visual a una debilidad sistémica en gestores de contraseñas y wallets cripto.

❓¿Cuánto tiempo llevas expuesto?

Los fabricantes de gestores de contraseñas tuvieron todas las señales de advertencia.
OWASP documenta el clickjacking desde 2002, los iframes invisibles son conocidos desde hace más de 15 años, y el Shadow DOM nunca fue un secreto esotérico.
En resumen: todos lo sabían.

Y aun así, la mayoría siguió construyendo castillos de arena sobre el autocompletado DOM. ¿Por qué? Porque se veía impecable en las presentaciones de marketing: UX fluida, inicios de sesión mágicos con un clic, adopción masiva… con la seguridad relegada a un segundo plano.

El clickjacking extensiones DOM revelado en DEF CON 33 no es un hallazgo nuevo de 2025. Es el resultado de un defecto de diseño de más de una década. Toda extensión que “confiaba en el DOM” para inyectar accesos, TOTP o passkeys ya era vulnerable.

⮞ Reflexión crítica: ¿cuánto tiempo han explotado esto en silencio?

La verdadera cuestión es: ¿durante cuánto tiempo explotaron en silencio estas vulnerabilidades atacantes discretos — mediante espionaje dirigido, robo de identidad o sifoneo de wallets cripto?

Mientras los gestores software miraban hacia otro lado, PassCypher y SeedNFC de Freemindtronic Andorra optaron por otro camino. Diseñados fuera del DOM, fuera de la nube y sin contraseña maestra, demostraron que ya existía una alternativa soberana: la seguridad por diseño.

Resultado: una década de exposición silenciosa para algunos, y una década de ventaja tecnológica para quienes invirtieron en hardware soberano.

Síntesis:
En apenas 20 años, el clickjacking pasó de ser un simple truco visual a un sabotaje sistémico de gestores de identidad. DEF CON 33 marca un punto de ruptura: la amenaza ya no son solo sitios web maliciosos, sino el núcleo mismo de las extensiones de navegador y el autocompletado. De ahí la urgencia de enfoques Zero-DOM anclados en hardware soberano como PassCypher.

Vulnerabilidades de Gestores de Contraseñas & divulgación CVE (instantánea — 2 oct. 2025)

Actualización: 2 de octubre de 2025 Tras la divulgación en DEF CON 33 por Marek Tóth, varios proveedores publicaron correcciones o mitigaciones, pero la velocidad de respuesta varía considerablemente. La nueva columna indica el tiempo estimado entre la presentación (8 de agosto de 2025) y la publicación de un parche/mitigación.

Gestor Credenciales TOTP Passkeys Estado Parche / nota oficial ⏱️ Tiempo de parche
1Password Mitigaciones (v8.11.x) Blog 🟠 >6 semanas (mitigación)
Bitwarden Parcial Corregido (v2025.8.2) Release 🟢 ~4 semanas
Dashlane Corregido Advisory 🟢 ~3 semanas
LastPass Corregido (sept. 2025) Release 🟠 ~6 semanas
Enpass Corregido (v6.11.6) Release 🟠 ~5 semanas
iCloud Passwords No Vulnerable (en examen) 🔴 >7 semanas (sin parche)
LogMeOnce No Corregido (v7.12.7) Release 🟢 ~4 semanas
NordPass Parcial Corregido (atenuaciones) Release 🟠 ~5 semanas
ProtonPass Parcial Corregido (atenuaciones) Releases 🟠 ~5 semanas
RoboForm Corregido Update 🟢 ~4 semanas
Keeper Parcial No No Parche parcial (v17.2.0) Release 🟠 ~6 semanas (parcial)
⮞ Perspectiva clave: Incluso tras correcciones, el problema persiste: mientras las credenciales y secretos transiten por el DOM, seguirán expuestos. En contraste, las soluciones soberanas PassCypher HSM PGP, PassCypher NFC HSM y SeedNFC eliminan la superficie de ataque al garantizar que los secretos nunca abandonen su contenedor cifrado.
Zero-DOM, superficie de ataque nula.

Divulgación CVE y Respuestas de Proveedores (Ago–Sep 2025)

El descubrimiento de Marek Tóth en DEF CON 33 no podía permanecer oculto: las vulnerabilidades de clickjacking extensiones DOM están recibiendo actualmente identificadores oficiales CVE.
Sin embargo, como suele ocurrir en los procesos de vulnerability disclosure, el avance es lento. Varias fallas fueron reportadas ya en primavera de 2025, pero a mediados de agosto algunos proveedores aún no habían publicado correcciones públicas.

Respuestas de proveedores y cronología de parches:

  • Bitwarden — reaccionó rápidamente con el parche v2025.8.0 (agosto 2025), mitigando fugas de credenciales y TOTP.
  • Dashlane — lanzó una corrección (v6.2531.1, inicios de agosto 2025), confirmada en notas oficiales.
  • RoboForm — desplegó parches en julio–agosto 2025 en versiones Windows y macOS.
  • NordPass y ProtonPass — anunciaron actualizaciones oficiales en agosto 2025, mitigando parcialmente la exfiltración vía DOM.
  • Keeper — reconoció el impacto, pero sigue en estado “en revisión” sin parche confirmado.
  • 1Password, LastPass, Enpass, iCloud Passwords, LogMeOnce — permanecen sin parche a inicios de septiembre 2025, dejando usuarios expuestos.

El problema no es solo el retraso en los parches, sino también la manera en que algunos proveedores minimizaron el fallo. Según informes de seguridad, ciertos editores inicialmente catalogaron la vulnerabilidad como “informativa”, restándole gravedad.
En otras palabras: reconocieron la fuga, pero la relegaron a una “caja gris” hasta que la presión mediática y comunitaria los obligó a actuar.

⮞ Resumen

Los CVE de clickjacking extensiones DOM siguen en proceso.
Mientras proveedores como Bitwarden, Dashlane, NordPass, ProtonPass y RoboForm publicaron parches oficiales en agosto–septiembre 2025, otros (1Password, LastPass, Enpass, iCloud Passwords, LogMeOnce) siguen rezagados, dejando a millones de usuarios expuestos.
Algunas compañías incluso optaron por el silencio en lugar de la transparencia, tratando un exploit estructural como un problema menor hasta que la presión externa los obligó a reaccionar.

Tecnologías de Corrección Utilizadas

Desde la divulgación pública del clickjacking extensiones DOM en DEF CON 33, los proveedores se apresuraron a lanzar parches. Sin embargo, estas correcciones siguen siendo desiguales, limitadas en su mayoría a ajustes de interfaz o comprobaciones condicionales. Ningún proveedor ha re-ingenierizado aún el motor de inyección en sí.

🔍 Antes de profundizar en los métodos de corrección, aquí tienes una vista general de las principales tecnologías desplegadas por los proveedores para mitigar el clickjacking de extensiones DOM. La infografía muestra el espectro: desde parches cosméticos hasta soluciones soberanas Zero-DOM.

Infografía con cinco métodos de corrección frente al clickjacking extensiones DOM: restricción de autocompletado, filtrado de subdominios, detección de Shadow DOM, aislamiento contextual y Zero-DOM hardware soberano
Cinco respuestas de proveedores frente al clickjacking extensiones DOM: desde parches UI hasta hardware soberano Zero-DOM.

Objetivo

Esta sección explica cómo intentaron los proveedores corregir la falla, distingue entre parches cosméticos y correcciones estructurales, y destaca las aproximaciones soberanas Zero-DOM en hardware.

Métodos de Corrección Observados (agosto 2025)

Método Descripción Gestores afectados
Restricción de Autocompletado Cambio a modo “on-click” o desactivación por defecto Bitwarden, Dashlane, Keeper
Filtrado de Subdominios Bloquear autocompletado en subdominios no autorizados ProtonPass, RoboForm
Detección de Shadow DOM Rechazo de inyección si el campo está encapsulado en Shadow DOM NordPass, Enpass
Aislamiento Contextual Comprobaciones previas a la inyección (iframe, opacidad, foco) Bitwarden, ProtonPass
Hardware Soberano (Zero-DOM) Los secretos nunca transitan por el DOM: NFC HSM, HSM PGP, SeedNFC PassCypher, EviKey, SeedNFC (no vulnerables por diseño)

📉 Límites Observados

  • Los parches no modificaron el motor de inyección, solo sus disparadores de activación.
  • Ningún proveedor introdujo separación estructural entre interfaz y flujo de secretos.
  • Cualquier gestor aún atado al DOM permanece expuesto estructuralmente a variantes de clickjacking.

⮞ Transición estratégica:

Estos parches muestran reacción, no ruptura. Abordan síntomas, no la falla estructural.
Para entender qué separa un parche temporal de una corrección doctrinal, avancemos al siguiente análisis.

Tecnologías de Corrección frente al Clickjacking de Extensiones DOM — Análisis Técnico y Doctrinal

📌 Observación

El clickjacking extensiones DOM no es un simple bug, sino un defecto de diseño: inyectar secretos en un DOM manipulable sin separación estructural ni verificación contextual.

⚠️ Lo que las correcciones actuales no abordan

  • Ningún proveedor ha reconstruido su motor de inyección.
  • Las correcciones se limitan a desactivar autocompletado, filtrar subdominios o detectar elementos invisibles.
  • Ninguno ha integrado una arquitectura Zero-DOM que garantice inviolabilidad por diseño.

🧠 Lo que requeriría una corrección estructural

  • Eliminar toda dependencia del DOM para la inyección de secretos.
  • Aislar el motor de inyección fuera del navegador.
  • Usar autenticación hardware (NFC, PGP, biometría).
  • Registrar cada inyección en un diario auditable.
  • Prohibir interacción con elementos invisibles o encapsulados.

📊 Tipología de correcciones

Nivel Tipo de corrección Descripción
Cosmética UI/UX, autocompletado desactivado por defecto No cambia la lógica de inyección, solo el disparador
Contextual Filtrado DOM, Shadow DOM, subdominios Agrega condiciones, pero sigue dependiendo del DOM
Estructural Zero-DOM, basado en hardware (PGP, NFC, HSM) Elimina el uso del DOM para secretos, separa interfaz y flujos críticos

🧪 Pruebas doctrinales para verificar parches

Para comprobar si la corrección de un proveedor es realmente estructural, los investigadores de seguridad pueden:

  • Inyectar un campo invisible (opacity:0) dentro de un iframe.
  • Simular un Shadow DOM encapsulado.
  • Verificar si la extensión aún inyecta secretos.
  • Comprobar si la inyección queda registrada o bloqueada.

📜 Ausencia de estándar industrial

Actualmente, no existe ningún estándar oficial (NIST, OWASP, ISO) que regule:

  • La lógica de inyección en extensiones,
  • La separación entre interfaz y flujo de secretos,
  • La trazabilidad de acciones de autocompletado.

⮞ Transición doctrinal

Los parches actuales son curitas temporales.
Solo las arquitecturas soberanas Zero-DOMPassCypher HSM PGP, PassCypher NFC HSM, SeedNFC — representan una corrección estructural y doctrinal.
El camino no es el tuning software, sino la doctrina del hardware soberano.

Riesgos Sistémicos y Vectores de Explotación

El clickjacking extensiones DOM no es un fallo aislado, sino una vulnerabilidad sistémica. Cuando una extensión del navegador se derrumba, las consecuencias no se limitan a una contraseña filtrada. En cambio, socava todo el modelo de confianza digital, provocando brechas en cascada a través de capas de autenticación e infraestructuras.

Escenarios críticos:

  • Acceso persistente — Un TOTP clonado basta para registrar un “dispositivo de confianza” y mantener acceso incluso tras un restablecimiento completo de la cuenta.
  • Reutilización de passkeys — La exfiltración de una llave de acceso actúa como un token maestro, reutilizable fuera de cualquier perímetro de control. El “Zero Trust” se convierte en ilusión.
  • Compromiso SSO — Una extensión atrapada en una empresa conduce a la fuga de tokens OAuth/SAML, comprometiendo todo el sistema de TI.
  • Brecha en la cadena de suministro — Extensiones mal reguladas crean una superficie de ataque estructural a nivel de navegador.
  • Sifoneo de criptoactivos — Billeteras como MetaMask, Phantom o TrustWallet inyectan claves en el DOM; frases semilla y claves privadas son drenadas tan fácilmente como credenciales.

⮞ Resumen

Los riesgos van mucho más allá del robo de contraseñas: TOTPs clonados, passkeys reutilizados, tokens SSO comprometidos y frases semilla exfiltradas.
Mientras el DOM siga siendo la interfaz de autocompletado, seguirá siendo también la interfaz de exfiltración encubierta.

Comparativa de Amenazas y Contramedidas Soberanas

Ataque Objetivo Secretos en Riesgo Contramedida Soberana
ToolShell RCE SharePoint / OAuth Certificados SSL, tokens SSO PassCypher HSM PGP (almacenamiento + firma fuera del DOM)
Secuestro de eSIM Identidad móvil Perfiles de operador, SIM embebida SeedNFC HSM (anclaje hardware de identidades móviles)
Clickjacking DOM Extensiones de navegador Credenciales, TOTP, passkeys PassCypher NFC HSM + PassCypher HSM PGP (OTP seguro, autocompletado en sandbox, anti-BITB)
Secuestro de wallets cripto Extensiones de billetera Claves privadas, frases semilla SeedNFC HSM + acoplamiento NFC↔HID BLE (inyección hardware multiplataforma segura)
Atomic Stealer Portapapeles macOS Llaves PGP, wallets cripto PassCypher NFC HSM ↔ HID BLE (canales cifrados, inyección sin portapapeles)

Exposición Regional e Impacto Lingüístico — Mundo Anglófono

No todas las regiones comparten el mismo nivel de riesgo frente al clickjacking extensiones DOM y a los ataques Browser-in-the-Browser (BITB). La esfera anglófona —debido a la alta adopción de gestores de contraseñas y billeteras cripto— representa una base de usuarios significativamente más expuesta. Por tanto, las contramedidas soberanas Zero-DOM son críticas para proteger a esta región digitalmente dependiente.

🌍 Exposición estimada — Región Anglófona (ago 2025)

Región Usuarios anglófonos estimados Adopción de gestores Contramedidas Zero-DOM
Hablantes globales de inglés ≈1.5 mil millones Alta (Norteamérica, Reino Unido, Australia) PassCypher HSM PGP, SeedNFC
Norteamérica (EE.UU. + Canadá anglófono) ≈94 millones (36 % de adultos en EE.UU.) Conciencia creciente; adopción aún baja PassCypher HSM PGP, NFC HSM
Reino Unido Alta penetración de internet y wallets cripto Adopción en maduración; regulaciones crecientes PassCypher HSM PGP, EviBITB

⮞ Perspectiva estratégica

El mundo anglófono representa una superficie de exposición inmensa: hasta 1.5 mil millones de hablantes de inglés en todo el mundo, con casi 100 millones de usuarios de gestores de contraseñas en Norteamérica.
Con el aumento de amenazas cibernéticas, estas poblaciones requieren soluciones soberanas Zero-DOM —como PassCypher HSM PGP, SeedNFC y EviBITB— para neutralizar fundamentalmente los riesgos basados en DOM.

Fuentes: ICLS (hablantes de inglés), Security.org (uso de gestores en EE.UU.), DataReportal (estadísticas digitales UK).

Extensiones de Billeteras Cripto Expuestas

Los gestores de contraseñas no son las únicas víctimas del clickjacking extensiones DOM.
Las billeteras cripto más utilizadasMetaMask, Phantom, TrustWallet — dependen del mismo mecanismo de inyección DOM para mostrar o firmar transacciones.
En consecuencia, una superposición bien colocada o un iframe invisible engañan al usuario, haciéndole creer que aprueba una transacción legítima, cuando en realidad está autorizando una transferencia maliciosa o exponiendo su frase semilla.

Implicación directa: A diferencia de credenciales robadas o TOTP clonados, estas fugas afectan a activos financieros inmediatos. Miles de millones de dólares en valor líquido dependen de tales extensiones.
Por tanto, el DOM se convierte no solo en un vector de compromiso de identidad, sino también en un canal de exfiltración monetaria.

⮞ Resumen

Las extensiones de billeteras cripto reutilizan el DOM para la interacción con el usuario. Esta elección arquitectónica las expone a las mismas fallas que los gestores de contraseñas: frases semilla, claves privadas y firmas de transacciones pueden ser interceptadas mediante overlay redressing y secuestro de autocompletado.

Contramedida soberana: SeedNFC HSM — respaldo hardware de claves privadas y frases semilla, mantenidas fuera del DOM, con inyección segura vía NFC↔HID BLE.
Las claves nunca abandonan el HSM; cada operación requiere un disparador físico del usuario, anulando el redressing en DOM.De forma complementaria, PassCypher HSM PGP y PassCypher NFC HSM protegen OTPs y credenciales de acceso a plataformas de trading, evitando así compromisos laterales entre cuentas.

Sandbox Fallida y Browser-in-the-Browser (BITB)

Los navegadores presentan su sandbox como una fortaleza inexpugnable.
Sin embargo, los ataques de clickjacking extensiones DOM y Browser-in-the-Browser (BITB) demuestran lo contrario.
Una simple superposición y un marco de autenticación falso pueden engañar al usuario, haciéndole creer que interactúa con Google, Microsoft o su banco, cuando en realidad está entregando secretos a una página fraudulenta.
Incluso las directivas frame-ancestors y algunas políticas CSP fallan en prevenir estas ilusiones de interfaz.

Aquí es donde las tecnologías soberanas cambian la ecuación.
Con EviBITB (IRDR), Freemindtronic integra en PassCypher HSM PGP un motor de detección y destrucción de iframes maliciosos, neutralizando intentos BITB en tiempo real.
Activable con un solo clic, funciona en modo manual, semiautomático o automático, totalmente serverless y sin base de datos, garantizando defensa instantánea (explicación · guía detallada).

La piedra angular sigue siendo la Sandbox URL.
Cada identificador o clave criptográfica se vincula a una URL de referencia almacenada de forma segura en el HSM cifrado.
Cuando una página solicita autocompletado, la URL activa se compara con la referencia. Si no coincide, no se inyecta ningún dato.
Así, incluso si un iframe logra evadir la detección, la Sandbox URL bloquea los intentos de exfiltración.

Esta barrera de doble capa también se extiende al uso en escritorio.
Mediante el emparejamiento seguro NFC entre un smartphone Android y la aplicación Freemindtronic con PassCypher NFC HSM, los usuarios se benefician de protección anti-BITB en escritorio.
Los secretos permanecen cifrados dentro del HSM NFC y solo se descifran en memoria RAM durante unos milisegundos, lo justo para el autocompletado — nunca persisten en el DOM.

⮞ Resumen técnico (ataque neutralizado por EviBITB + Sandbox URL)

El clickjacking extensiones DOM explota superposiciones CSS invisibles (opacity:0, pointer-events:none) para redirigir clics a un campo oculto inyectado desde el Shadow DOM (ej. protonpass-root).
Mediante focus() y rastreo de cursor, la extensión activa el autocompletado, insertando credenciales, TOTP o passkeys en un formulario invisible que se exfiltra inmediatamente.

Con EviBITB (IRDR), estos iframes y overlays son destruidos en tiempo real, eliminando el vector malicioso.
La Sandbox URL valida el destino frente a la referencia cifrada en HSM (PassCypher HSM PGP o NFC HSM). Si no coincide, el autocompletado se bloquea.
Resultado: ningún clic atrapado, ninguna inyección, ninguna fuga.
Los secretos permanecen fuera del DOM, incluso en uso de escritorio vía emparejamiento NFC HSM con smartphone Android.

Protección frente a clickjacking extensiones DOM y Browser-in-the-Browser con EviBITB y Sandbox URL dentro de PassCypher HSM PGP / NFC HSM

✪ Ilustración – El escudo EviBITB y el bloqueo Sandbox URL evitan el robo de credenciales desde un formulario de login atrapado por clickjacking.

⮞ Liderazgo técnico global

Hasta la fecha, PassCypher HSM PGP, incluso en su edición gratuita, sigue siendo la única solución conocida capaz de neutralizar prácticamente los ataques Browser-in-the-Browser (BITB) y clickjacking extensiones DOM.
Mientras gestores como 1Password, LastPass, Dashlane, Bitwarden, Proton Pass… siguen exponiendo usuarios a overlays invisibles e inyecciones Shadow DOM, PassCypher se apoya en una doble barrera soberana:

  • EviBITB, motor anti-iframe que destruye marcos de redirección maliciosos en tiempo real (guía detallada, artículo técnico);
  • Sandbox URL, que vincula identificadores a una URL de referencia dentro de un contenedor cifrado AES-256 CBC PGP, bloqueando cualquier exfiltración en caso de discrepancia.

Esta combinación posiciona a Freemindtronic, desde Andorra, como pionero. Para el usuario final, instalar la extensión gratuita PassCypher HSM PGP ya eleva la seguridad más allá de los estándares actuales en todos los navegadores Chromium.

Señales Estratégicas desde DEF CON 33

En los pasillos electrificados de DEF CON 33, no solo parpadean insignias: también lo hacen nuestras certezas.
Entre una cerveza tibia y un frenético CTF, las conversaciones convergen en un punto común: el navegador ya no es una zona de confianza.
En consecuencia, el clickjacking extensiones DOM no se trata como una clase de bug, sino como un fallo estructural que afecta por igual a gestores de contraseñas, passkeys y billeteras cripto.

  • El DOM se convierte en un campo minado: ya no aloja solo “XSS básicos”; ahora porta primitivas de identidad — gestores, passkeys y wallets — haciendo del secuestro de autocompletado vía Shadow DOM un riesgo de primer orden.
  • La promesa de “resistencia al phishing” se tambalea: ver una passkey ser phished en vivo equivale a ver a Neo apuñalado por un script kiddie — dramático, pero trivial una vez que la interfaz es subvertida.
  • Lentitud industrial: algunos proveedores publican parches en 48h; otros se pierden en comités y notas de prensa. Mientras tanto, millones siguen expuestos a flaws de seguridad en extensiones y overlays invisibles.
  • Zero Trust reforzado: cualquier secreto que toque el DOM debe considerarse ya comprometido — desde credenciales hasta TOTP y passkeys.
  • Retorno del hardware soberano: a medida que las ilusiones cloud se desmoronan, la atención se dirige a contramedidas Zero-DOM offline: PassCypher NFC HSM, PassCypher HSM PGP y SeedNFC para respaldo cifrado de claves cripto. Zero DOM, cero ilusión de interfaz.

⮞ Resumen

En DEF CON 33, los expertos entregaron un mensaje claro: los navegadores ya no actúan como bastiones protectores.
En lugar de confiar en parches cosméticos, la verdadera solución radica en adoptar arquitecturas soberanas, offline y Zero-DOM.
En estos entornos, los secretos permanecen cifrados, anclados en hardware y gestionados bajo un control soberano de acceso.En consecuencia, las frases clave a retener son: clickjacking extensiones DOM, vulnerabilidades gestores contraseñas 2025 y passkeys resistentes al phishing.

Contramedidas Soberanas (Zero DOM)

Los parches de proveedores pueden tranquilizar a corto plazo, sin embargo, no resuelven el problema de fondo: el DOM sigue siendo un colador.
La única respuesta duradera es eliminar los secretos de su alcance.
Este principio, conocido como Zero DOM, dicta que ningún dato sensible debe residir, transitar ni depender del navegador.
En otras palabras, el clickjacking extensiones DOM se neutraliza no con remiendos, sino con soberanía arquitectónica.

Flujo de protección Zero DOM — credenciales, passkeys y claves cripto bloqueadas de exfiltración DOM, aseguradas por HSM PGP y NFC HSM con sandbox URL

✪ Ilustración — Flujo Zero DOM: los secretos permanecen dentro del HSM, inyectados vía HID en RAM efímera, haciendo imposible la exfiltración DOM.

En este paradigma, los secretos (credenciales, TOTP, passkeys, claves privadas) se preservan en HSMs hardware offline.
El acceso solo es posible mediante activación física (NFC, HID, emparejamiento seguro) y deja una huella efímera en RAM.
Esto elimina por completo la exposición al DOM.

Operación soberana: NFC HSM, HID BLE y HSM PGP

NFC HSM ↔ Android ↔ Activación en navegador:
Con el NFC HSM, la activación no ocurre con un simple toque.
Requiere presentar físicamente el módulo NFC HSM bajo un smartphone Android con NFC.
La aplicación Freemindtronic recibe la solicitud del ordenador emparejado (vía PassCypher HSM PGP), activa el módulo seguro y transmite el secreto cifrado sin contacto al ordenador.
Todo el proceso es end-to-end cifrado, con descifrado solo en RAM volátil — nunca en el DOM.

NFC HSM ↔ Activación HID BLE:
Emparejado con un emulador de teclado Bluetooth HID (ej. InputStick), la aplicación NFC inyecta credenciales directamente en los campos de login mediante un canal AES-128 CBC cifrado BLE.
De este modo, garantiza autocompletado seguro fuera del DOM, incluso en equipos no emparejados, neutralizando keyloggers y ataques DOM clásicos.

Activación HSM PGP local:
En escritorio, con PassCypher HSM PGP, un solo clic sobre el campo activa el autocompletado instantáneo.
El secreto se descifra localmente desde su contenedor AES-256 CBC PGP, únicamente en RAM volátil, sin NFC y nunca transitando por el DOM.
Esto garantiza una arquitectura soberana de autocompletado, resistente por diseño a extensiones maliciosas y overlays invisibles.

A diferencia de los gestores cloud o passkeys FIDO, estas soluciones no aplican parches reactivos: eliminan la superficie de ataque por diseño.
Es la esencia del enfoque soberano-por-diseño: arquitectura descentralizada, sin servidor central y sin base de datos a filtrar.

⮞ Resumen

Zero DOM no es un parche, sino un cambio doctrinal.
Mientras los secretos vivan en el navegador, seguirán siendo vulnerables.
Al trasladarlos fuera del DOM, cifrados en HSMs y activados físicamente, se vuelven inalcanzables para ataques de clickjacking o BITB.

PassCypher HSM PGP — Tecnología Zero-DOM patentada & gestión soberana de claves anti-phishing

Mucho antes de la revelación del DOM extension clickjacking en DEF CON 33, Freemindtronic tomó una decisión diferente. Desde 2015 nuestro I+D aplica un principio fundacional: nunca usar el DOM para transportar secretos. Esa doctrina Zero-Trust dio lugar a la arquitectura Zero-DOM patentada de PassCypher HSM PGP, que mantiene credenciales, TOTP/HOTP, passkeys y claves criptográficas confinadas en contenedores hardware HSM — nunca inyectadas en un entorno manipulable del navegador.

Un avance único en gestores de contraseñas

  • Zero-DOM nativo — ningún dato sensible toca el navegador.
  • HSM-PGP integrado — contenedores cifrados AES-256-CBC con segmentación de claves patentada.
  • Autonomía soberana — cero servidor, cero base de datos central, cero dependencia cloud.

Protección BITB reforzada (EviBITB)

Desde 2020, PassCypher HSM PGP incorpora EviBITB, una tecnología que neutraliza en tiempo real ataques Browser-in-the-Browser: destruye iframes maliciosos, detecta overlays fraudulentos y valida el contexto UI de forma serverless, sin base de datos y anónima. EviBITB puede funcionar en modo manual, semiautomático o totalmente automático para minimizar el riesgo BITB y el secuestro invisible del DOM.

EviBITB en PassCypher HSM PGP: detección y destrucción en tiempo real de iFrames maliciosos
EviBITB integrado en PassCypher HSM PGP: detección y destrucción en tiempo real de iFrames de redirección y overlays maliciosos.

¿Por qué resiste ataques al nivel DEF CON 33?

Porque nada transita por el DOM, no existe contraseña maestra que pueda extraerse, y los contenedores permanecen cifrados en todo momento. El descifrado ocurre únicamente en RAM volátil, durante el instante necesario para ensamblar los segmentos de clave; una vez completado el autocompletado, todo se borra inmediatamente sin dejar rastro explotable.

Características clave

  • Autofill blindado — un clic basta, pero siempre vía sandbox de URL; nunca en claro dentro del navegador.
  • EviBITB integrado — neutraliza iframes y overlays en tiempo real (manual / semiauto / automático), completamente serverless.
  • Herramientas criptográficas integradas — generación y gestión de claves AES-256 segmentadas y claves PGP sin dependencias externas.
  • Compatibilidad universal — funciona con cualquier sitio mediante software + extensión de navegador, sin plugins adicionales.
  • Arquitectura soberana — cero servidor, cero base central, cero DOM: resiliencia por diseño donde los gestores cloud fallan.

Implementación inmediata

Sin configuración compleja: instala la extensión PassCypher HSM PGP desde la Chrome Web Store o Edge Add-ons, activa la opción BITB y obtén protección Zero-DOM soberana al instante.

⮞ Resumen

PassCypher HSM PGP redefine la gestión de secretos: contenedores siempre cifrados, claves segmentadas, descifrado efímero en RAM, Zero-DOM y cero cloud. Es una solución hardware passwordless soberana diseñada para resistir las amenazas actuales y anticipar ataques cuánticos.

PassCypher NFC HSM — Gestor Soberano sin Contraseñas

Los gestores de contraseñas basados en software caen en la trampa de un simple iframe.
Sin embargo, PassCypher NFC HSM sigue un camino diferente: nunca permite que tus credenciales y contraseñas transiten por el DOM.
El nano-HSM las mantiene cifradas offline y solo las libera por un instante efímero en memoria volátil — lo justo para autenticar.

Funcionamiento en el lado del usuario:

  • Secretos intocables — el NFC HSM cifra y almacena credenciales que nunca aparecen ni se filtran.
  • TOTP/HOTP — la app Android PassCypher NFC HSM o el PassCypher HSM PGP en escritorio los generan y muestran al instante bajo demanda.
  • Entrada manual — el usuario introduce un PIN o TOTP directamente en el campo de login en un ordenador o teléfono NFC Android. La app muestra el código generado por el módulo NFC HSM. El mismo proceso aplica a credenciales, passkeys y otros secretos.
  • Autocompletado sin contacto — el usuario presenta el módulo NFC HSM a un smartphone o PC, que ejecuta el autofill de forma transparente, incluso emparejado con PassCypher HSM PGP.
  • Autofill en escritorio — con PassCypher HSM PGP en Windows o macOS, un clic sobre el campo de login completa usuario y contraseña, con validación opcional.
  • Anti-BITB distribuido — el emparejamiento seguro NFC ↔ Android ↔ navegador (Win/Mac/Linux) activa EviBITB para destruir iframes maliciosos en tiempo real.
  • Modo HID BLE — un emulador de teclado Bluetooth HID inyecta credenciales fuera del DOM, bloqueando tanto ataques DOM como keyloggers.

⮞ Resumen

PassCypher NFC HSM materializa Zero Trust (cada acción requiere validación física) y Zero Knowledge (ningún secreto se expone jamás).
Un salvaguarda soberano de identidad por diseño, que neutraliza clickjacking, ataques BITB, typosquatting, keylogging, IDN spoofing, inyecciones DOM, clipboard hijacking y extensiones maliciosas, anticipando incluso ataques cuánticos.

✪ Ataques Neutralizados por PassCypher NFC HSM

Tipo de ataque Descripción Estado con PassCypher
Clickjacking / UI Redressing Iframes u overlays invisibles que secuestran clics Neutralizado (EviBITB)
BITB (Browser-in-the-Browser) Marcos falsos de navegador simulando login Neutralizado (sandbox + emparejamiento)
Keylogging Captura de pulsaciones por malware Neutralizado (modo HID BLE)
Typosquatting URLs parecidas que imitan dominios legítimos Neutralizado (validación física)
Ataque Homográfico (IDN spoofing) Sustitución Unicode en nombres de dominio Neutralizado (Zero DOM)
Inyección DOM / DOM XSS Scripts maliciosos en el DOM Neutralizado (arquitectura fuera del DOM)
Clipboard Hijacking Intercepción o manipulación de datos del portapapeles Neutralizado (sin uso del portapapeles)
Extensiones maliciosas Plugins de navegador comprometidos Neutralizado (emparejamiento + sandbox)
Ataques Cuánticos (anticipados) Cálculo masivo para romper claves criptográficas Mitigado (claves segmentadas + AES-256 CBC + PGP)
[/row_inner]

SeedNFC + HID Bluetooth — Inyección Segura de Wallets

Las extensiones de navegador para billeteras cripto viven en el DOM — y los atacantes explotan esa debilidad.
Con SeedNFC HSM, la lógica se invierte: el enclave nunca libera claves privadas ni frases semilla.
Cuando los usuarios inicializan o restauran una wallet (web o escritorio), el sistema realiza la entrada mediante una emulación HID Bluetooth — como un teclado hardware — sin portapapeles, sin DOM y sin dejar rastros de claves privadas, públicas o credenciales de hot wallets.

Flujo operativo (anti-DOM, anti-portapapeles):

  • Custodia — el SeedNFC HSM cifra y almacena la semilla/clave privada (nunca la exporta, nunca la revela).
  • Activación física — el módulo NFC HSM autoriza la operación cuando el usuario lo presenta de forma contactless a través de la app Freemindtronic (smartphone Android NFC).
  • Inyección HID BLE — el sistema “teclea” la semilla (o fragmento/format requerido) directamente en el campo de la wallet, fuera del DOM y fuera del portapapeles, resistiendo incluso keyloggers de software.
  • Protección BITB — los usuarios pueden activar EviBITB (motor anti-BITB destruye iframes) dentro de la app, neutralizando overlays y redirecciones maliciosas en la configuración o recuperación.
  • Efimeridad — la RAM volátil mantiene temporalmente los datos durante la entrada HID, para borrarlos al instante.

Casos de uso típicos:

  • Onboarding o recuperación de wallets (MetaMask, Phantom, etc.) sin exponer nunca la clave privada al navegador ni al DOM. El HSM mantiene el secreto cifrado y lo descifra solo en RAM, el tiempo mínimo necesario.
  • Operaciones sensibles en escritorio (air-gap lógico), con validación física por el usuario: presentar el módulo NFC HSM bajo un smartphone NFC Android para autorizar, sin teclado ni DOM.
  • Backup seguro multi-activo: un HSM hardware offline almacena frases semilla, claves maestras y privadas, permitiendo reutilización sin copiar, exportar ni exponer. La activación siempre ocurre por medios físicos, soberanos y auditables.

⮞ Resumen

En primer lugar, SeedNFC HSM con HID BLE inyecta claves privadas o públicas directamente en los campos de hot wallets mediante un emulador HID Bluetooth Low Energy, evitando tanto la escritura manual como la transferencia por portapapeles.
Además, el canal cifra los datos con AES-128 CBC, mientras el módulo NFC activa físicamente la operación, garantizando un proceso seguro y verificable.
Por último, el enclave HSM mantiene los secretos estrictamente confinados, fuera del DOM y más allá del alcance de extensiones maliciosas, asegurando así protección soberana por diseño.

Escenarios de Explotación y Rutas de Mitigación

Las revelaciones de DEF CON 33 no son el final del juego, sino una advertencia.
Lo que sigue puede resultar aún más corrosivo:

  • Phishing impulsado por IA + secuestro del DOM — mañana ya no serán kits de phishing caseros, sino LLMs generando superposiciones DOM en tiempo real, virtualmente indistinguibles de portales legítimos de banca o nube.
    Estos ataques de clickjacking potenciados por IA convertirán el robo de credenciales vía Shadow DOM en un arma a escala.
  • Tapjacking móvil híbrido — la pantalla táctil se convierte en un campo minado: aplicaciones apiladas, permisos invisibles y gestos en segundo plano secuestrados para validar transacciones o exfiltrar OTPs.
    Esto representa la evolución del tapjacking de phishing hacia un compromiso sistémico en entornos móviles.
  • HSM preparado para la era post-cuántica — la próxima línea de defensa no será un parche del navegador, sino HSMs resistentes a la computación cuántica, capaces de soportar los algoritmos de Shor o Grover.
    Soluciones como PassCypher HSM PGP y SeedNFC, ya concebidas como anclajes soberanos Zero-DOM post-cloud, encarnan este cambio de paradigma.

⮞ Resumen

Los atacantes del futuro no confiarán en parches del navegador: los sortearán.
Para mitigar la amenaza, se impone una ruptura: soportes hardware offline, HSMs resistentes a la cuántica y arquitecturas soberanas Zero-DOM.
Rechaza todas las demás opciones: siguen siendo parches frágiles de software que inevitablemente se quebrarán.

Síntesis Estratégica

El clickjacking extensiones DOM revela una verdad contundente: los navegadores y las extensiones no son entornos de confianza.
Los parches llegan en oleadas fragmentadas, la exposición de usuarios alcanza decenas de millones y los marcos regulatorios permanecen en un eterno desfase.

¿El único camino soberano? Una estricta gobernanza del software, combinada con salvaguardas hardware offline fuera del DOM (PassCypher NFC HSM / PassCypher HSM PGP), donde los secretos permanecen cifrados, offline e intocables por técnicas de redressing.

La Vía Soberana:

  • Gobernanza estricta de software y extensiones
  • Seguridad de identidad respaldada en hardware (PassCypher NFC HSM / HSM PGP)
  • Secretos cifrados, fuera del DOM, fuera de la nube, redress-proof

Doctrina de Soberanía Cibernética en Hardware —

  • Considerar cualquier secreto que toque el DOM como ya comprometido.
  • Activar la identidad digital únicamente mediante acciones físicas (NFC, HID BLE, HSM PGP).
  • Fundar la confianza en el aislamiento hardware, no en el sandbox del navegador.
  • Auditar extensiones como si fueran infraestructuras críticas.
  • Garantizar resiliencia post-cuántica aislando físicamente las claves.
Punto Ciego Regulatorio —
CRA, NIS2 o RGS (ANSSI) refuerzan la resiliencia del software, pero ninguno aborda los secretos incrustados en el DOM.
La custodia en hardware sigue siendo el único recurso soberano — y solo los estados capaces de producir y certificar sus propios HSMs pueden garantizar una verdadera soberanía digital.
Continuidad Estratégica —
El clickjacking en DOM se suma a una secuencia oscura: ToolShell, secuestro de eSIM, Atomic Stealer… cada uno exponiendo los límites estructurales de la confianza en software.
La doctrina de una ciberseguridad soberana anclada en hardware ya no es opcional. Se ha convertido en una línea base estratégica fundamental.

Glosario

DOM (Document Object Model)

Representación en memoria de la estructura HTML/JS de una página web; permite a scripts y extensiones acceder y modificar elementos de la página.

Shadow DOM

Subárbol DOM encapsulado usado para aislar componentes (web components); puede ocultar elementos al resto del documento.

Clickjacking (secuestro de clics)

Técnica de «UI redressing» que engaña al usuario para que haga clic en elementos ocultos o superpuestos.

DOM-Based Extension Clickjacking

Variante donde una página maliciosa combina iframes invisibles, Shadow DOM y redirecciones (focus()) para forzar a una extensión a inyectar secretos en un formulario falso.

Autofill / Autorrelleno

Mecanismo de gestores/extensiones que inserta automáticamente credenciales, códigos OTP o passkeys en campos web.

Passkey

Credencial de autenticación WebAuthn (basada en clave pública). Las passkeys almacenadas en el dispositivo son más resistentes al phishing; las sincronizadas en la nube son más vulnerables.

WebAuthn / FIDO

Estándar de autenticación con clave pública (FIDO2) para inicios de sesión sin contraseña; la seguridad depende del modelo de almacenamiento (sincronizado vs device-bound).

TOTP / HOTP

Códigos de un solo uso generados por algoritmo temporal (TOTP) o por contador (HOTP) para autenticación de dos factores.

HSM (Hardware Security Module)

Módulo hardware seguro para generar, almacenar y usar claves criptográficas sin exponerlas en claro fuera de la enclave.

PGP (Pretty Good Privacy)

Estándar de cifrado híbrido con claves públicas/privadas; aquí usado para proteger contenedores cifrados AES-256-CBC.

AES-256 CBC

Algoritmo de cifrado simétrico (modo CBC) con clave de 256 bits — usado para cifrar contenedores de secretos.

Claves segmentadas

Fragmentación de claves en segmentos para aumentar la resistencia y permitir el ensamblaje seguro en RAM efímera.

RAM efímera

Memoria volátil donde los secretos se descifran brevemente para autofill y se borran inmediatamente — sin persistencia en disco ni en el DOM.

NFC (Near Field Communication)

Tecnología sin contacto para activar físicamente un HSM y autorizar la liberación local de un secreto.

HID-BLE (Bluetooth Low Energy HID)

Emulación de teclado por BLE para inyectar datos directamente en un campo sin pasar por el DOM ni el portapapeles.

Sandbox URL

Mecanismo que vincula cada secreto a una URL esperada almacenada en el HSM; si la URL activa no coincide, el autofill se bloquea.

Browser-in-the-Browser (BITB)

Ataque por imitación de una ventana de navegador dentro de un iframe — engaña al usuario simulando un sitio o cuadro de autenticación.

EviBITB

Motor anti-BITB serverless que detecta y destruye iframes/overlays maliciosos en tiempo real y valida el contexto UI de forma anónima.

SeedNFC

Solución HSM para custodia de seed phrases/ claves privadas; realiza la inyección fuera del DOM vía HID/NFC.

Iframe

Marco HTML que incorpora otra página; los iframes invisibles (opacity:0, pointer-events:none) son comunes en ataques de UI redressing.
focus()
Llamada JavaScript que sitúa el foco en un campo. Abusada para redirigir eventos de usuario a inputs controlados por el atacante.

Overlay

Capa visual que oculta la interfaz real y puede engañar al usuario sobre el origen de una acción.

Exfiltración

Extracción no autorizada de datos sensibles del objetivo (credenciales, TOTP, passkeys, claves privadas).

Phishable

Describe un mecanismo (p. ej. passkeys sincronizadas) susceptible de ser comprometido por falsificación de interfaz o overlays — por tanto vulnerable al phishing.

Content-Security-Policy (CSP)

Política web que controla orígenes de recursos; útil pero insuficiente por sí sola frente a variantes avanzadas de clickjacking.

X-Frame-Options / frame-ancestors

Cabeceras HTTP / directivas CSP destinadas a limitar la inclusión en iframes; pueden ser eludidas en escenarios de ataque complejos.

Keylogging

Captura maliciosa de pulsaciones de teclado; mitigada por inyecciones HID seguras (sin teclado software ni portapapeles).

Nota: este glosario unifica el vocabulario técnico de la crónica. Para definiciones normativas y referencias, consulte OWASP, NIST y los estándares FIDO/WebAuthn.

🔥 En resumen: la nube quizá parchee mañana, pero el hardware ya protege hoy.

⮞ Nota — Lo que esta crónica no cubre:

Ante todo, este análisis no proporciona ni una prueba de concepto explotable ni un tutorial técnico para reproducir ataques de clickjacking extensiones DOM o phishing de passkeys.
Además, no aborda los aspectos económicos de las criptomonedas ni las implicaciones legales específicas fuera de la UE.

En cambio, el objetivo es claro: ofrecer una lectura soberana y estratégica.
Es decir, ayudar a los lectores a comprender fallos estructurales, identificar riesgos sistémicos y, sobre todo, resaltar las contramedidas Zero-DOM hardware (PassCypher, SeedNFC) como vía hacia una seguridad resiliente y resistente al phishing.

En última instancia, esta perspectiva invita a decisores y expertos en seguridad a mirar más allá de los parches temporales de software y adoptar arquitecturas soberanas basadas en hardware.

DOM Extension Clickjacking — Risks, DEF CON 33 & Zero-DOM fixes

Movie poster style illustration of DOM extension clickjacking unveiled at DEF CON 33, showing hidden iframes, Shadow DOM hijack, and sovereign Zero-DOM countermeasures

DOM extension clickjacking — a technical chronicle of DEF CON 33 demonstrations, their impact, and Zero-DOM countermeasures. See the Executive Summary below for a 4-minute overview.

Executive Summary — DOM Extension Clickjacking

Snapshot (17 Sep 2025):At DEF CON 33, live demos showed DOM-based extension clickjacking and overlay attacks that can exfiltrate credentials, TOTP codes, synced passkeys and crypto keys from browser extensions and wallets. Initial testing reported ~40M exposed installations. Several vendors published mitigations in Aug–Sep 2025 (e.g. Bitwarden, Dashlane, Enpass, NordPass, ProtonPass, RoboForm); others remained reported vulnerable (1Password, LastPass, iCloud Passwords, KeePassXC-Browser). See the status table for per-product details.

Impact: systemic — secrets that touch the DOM can be covertly exfiltrated; overlays (BITB) make synced passkeys phishable. Recommended mitigation: move to Zero-DOM hardware flows (HSM/NFC) or adopt structural injection re-engineering. See §Sovereign Countermeasures for options.

⚡ The Discovery

Las Vegas, early August 2025. DEF CON 33 takes over the Las Vegas Convention Center. Between hacker domes, IoT villages, Adversary Village, and CTF competitions, the atmosphere turns electric. On stage, Marek Tóth simply plugs in his laptop, launches the demo, and presses Enter.
Immediately, the star attack emerges: DOM extension clickjacking. Easy to code yet devastating to execute, it relies on a booby-trapped page, invisible iframes, and a malicious focus() call. These elements trick autofill managers into pouring credentials, TOTP codes, and passkeys into a phantom form. As a result, DOM-based extension clickjacking surfaces as a structural threat.

⧉ Second Demo — Phishable Passkeys (overlay)

At DEF CON 33, Allthenticate showed that synced passkeys can also be phished through simple overlay and redirection — no DOM injection required.
We cover the full implications in the dedicated section Phishable Passkeys and in attribution & sources. Also worth noting: DEF CON 33 and Black Hat 2025 highlighted another critical demonstration — BitUnlocker — targeting BitLocker via WinRE (see here)

⚠ Strategic Message — Systemic Risks

With just two demos — one targeting password managers and wallets, the other aimed directly at passkeys — two pillars of cybersecurity collapsed. The message is clear: as long as secrets reside in the DOM, they remain vulnerable. Moreover, as long as cybersecurity depends on the browser and the cloud, a single click can overturn everything. As OWASP reminds us, clickjacking has always been a well-known threat. Yet here, the extension layer itself collapses.

⎔ The Sovereign Alternative — Zero-DOM Countermeasures

Fortunately, another way has existed for more than a decade — one that does not rely on the DOM.
With PassCypher HSM PGP, PassCypher NFC HSM, and SeedNFC for hardware backup of cryptographic keys, your credentials, passwords, and TOTP/HOTP secrets never touch the DOM. Instead, they remain encrypted in offline HSMs, securely injected via URL sandboxing or manually entered through the Android NFC application, and always protected by anti-BITB safeguards.
Therefore, this is not a patch, but a patented sovereign passwordless architecture: decentralized, with no server, no central database, and no master password. It frees secret management from centralized dependencies such as FIDO/WebAuthn.

Chronicle to Read
Estimated reading time: 37–39 minutes
Date updated: 2025-10-02
Complexity level: Advanced / Expert
Linguistic specificity: Sovereign lexicon — high technical density
Available languages: CAT ·EN ·ES ·FR
Accessibility: Screen-reader optimized — semantic anchors included
Editorial type: Strategic Chronicle
About the author: Jacques Gascuel, inventor and founder of Freemindtronic®.
As a specialist in sovereign security technologies, he designs and patents hardware systems for data protection, cryptographic sovereignty, and secure communications. His expertise also includes compliance with ANSSI, NIS2, GDPR, and SecNumCloud frameworks, as well as defense against hybrid threats via sovereign-by-design architectures.

Key takeaways —

  • DOM injection by extensions enables stealth exfiltration (credentials, TOTP, passkeys, keys).
  • Some vendors released mitigations (Aug–Sep 2025); structural fixes are rare.
  • Long term: adopt Zero-DOM hardware flows or re-engineer injection logic.

Anatomy of DOM extension clickjacking: a malicious page, hidden iframe, and autofill hijack exfiltrating credentials, passkeys, and crypto-wallet keys.

Anatomy of DOM extension clickjacking attack with hidden iframe, Shadow DOM and stealth credential exfiltration
Anatomy of DOM extension clickjacking: a malicious page, hidden iframe and autofill hijack exfiltrating credentials, passkeys and crypto-wallet keys.

2025 Digital Security

Persistent OAuth Flaw: How Tycoon 2FA Hijacks Cloud Access

2025 Digital Security

Spyware ClayRat Android : faux WhatsApp espion mobile

2025 Digital Security

Android Spyware Threat Clayrat : 2025 Analysis and Exposure

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2025 Digital Security Technical News

Sovereign SSH Authentication with PassCypher HSM PGP — Zero Key in Clear

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Digital Security Technical News

Générateur de mots de passe souverain – PassCypher Secure Passgen WP

2025 Digital Security Technical News

Quantum computer 6100 qubits ⮞ Historic 2025 breakthrough

2025 Digital Security Technical News

Ordinateur quantique 6100 qubits ⮞ La percée historique 2025

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2025 Digital Security

Email Metadata Privacy: EU Laws & DataShielder

2025 Digital Security

Chrome V8 confusió RCE — Actualitza i postura Zero-DOM

2025 Digital Security

Chrome V8 confusion RCE — Your browser was already spying

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

In sovereign cybersecurity This chronicle is part of the Digital Security section, continuing our research into exploits, systemic vulnerabilities, and hardware-based zero trust countermeasures.

☰ Quick navigation

[/ux_text]

🚨 DEF CON 33 — Key points

  • Two live demos: DOM extension clickjacking (password managers/wallets) and phishable synced passkeys (overlay attacks).
  • ~11 managers tested; initial impact estimated at ~40M exposed installations.
  • Mitigation direction: fast UI/conditional fixes vs. rare structural Zero-DOM solutions.
  • See the status table and §Sovereign Countermeasures for details.

What is DOM-based extension clickjacking?

DOM-based extension clickjacking hijacks a browser extension (password manager or crypto wallet) by abusing the browser’s Document Object Model. A deceptive page chains invisible iframes, Shadow DOM and a malicious focus() call to trigger autofill into an invisible form. The extension “believes” it is interacting with a legitimate field and pours secrets there — credentials, TOTP/HOTP codes, passkeys, even private keys. Because these secrets touch the DOM, they can be exfiltrated silently.

⮞ Doctrinal insight: DOM-based extension clickjacking is not an isolated bug — it is a design flaw. Any extension that injects secrets into a manipulable DOM is inherently vulnerable. Only Zero-DOM architectures (structural separation, HSM/NFC, out-of-browser injection) remove this attack surface.

How dangerous is it?

This vector is far from minor: it exploits the autofill logic itself and operates without user awareness. The attacker does not merely overlay an element; they force the extension to fill a fake form as if nothing were wrong, making exfiltration undetectable by superficial inspection.

Typical attack flow

  1. Preparation — the malicious page embeds an iframe that is invisible and a Shadow DOM that masks the real context; inputs are rendered non-visible (opacity:0, pointer-events:none).
  2. Bait — the victim clicks a benign element; redirections and a malicious focus() redirect the event to an attacker-controlled input.
  3. Exfiltration — the extension believes it is interacting with a legitimate field and automatically injects credentials, TOTP, passkeys or private keys into the fake DOM; the data is immediately exfiltrated.

This mechanism spoofs visual cues, bypasses classic protections (X-Frame-Options, Content-Security-Policy, frame-ancestors) and turns autofill into an invisible data-exfiltration channel. Browser-in-the-Browser (BITB) overlays and Shadow DOM manipulation further increase the risk, making synced passkeys and credentials phishable.

⮞ Summary

The attack combines invisible iframes, Shadow DOM manipulation and focus() redirections to hijack autofill extensions. Secrets are injected into a phantom form, giving the attacker direct access to sensitive data (credentials, TOTP/HOTP, passkeys, private keys). Bottom line: as long as secrets transit the DOM, the attack surface remains open.

History of Clickjacking (2002–2025)

Clickjacking has become the persistent parasite of the modern web. The term emerged in the early 2000s, when Jeremiah Grossman and Robert Hansen described a deceptive scenario: tricking a user into clicking on something they cannot actually see. An optical illusion applied to code, it quickly became a mainstream attack technique (OWASP).

  • 2002–2008: Emergence of “UI redressing”: HTML layers + transparent iframes trapping users (Hansen Archive).
  • 2009: Facebook falls victim to Likejacking (OWASP).
  • 2010: Cursorjacking emerges — shifting the pointer to mislead user clicks (OWASP).
  • 2012–2015: Exploitation via iframes, online ads, and malvertising (MITRE CVE) (Infosec).
  • 2016–2019: Tapjacking spreads on mobile platforms (Android Security Bulletin).
  • 2020–2024: Rise of “hybrid clickjacking” combining XSS and phishing (OWASP WSTG).
  • 2025: At DEF CON 33, Marek Tóth unveils a new level: DOM-Based Extension Clickjacking. This time, not only websites, but browser extensions (password managers, crypto wallets) inject invisible forms, enabling stealth exfiltration of secrets.

At DEF CON 33, Marek Tóth publicly revealed DOM extension clickjacking, marking a structural shift from visual trickery to systemic weakness in password managers and crypto wallets.

❓How long have you been exposed?

Clickjacking and invisible iframes have been known for years; Shadow DOM usage is not new. The DEF CON 33 findings reveal a decade-old design pattern: extensions that trust the DOM for secret injection are inherently exposed.

Synthesis:
In just 20 years, clickjacking evolved from a simple visual trick into a systemic sabotage of identity managers. DEF CON 33 marks a breaking point: the threat is no longer just malicious websites, but the very core of browser extensions and autofill. Hence the urgency of Zero-DOM approaches anchored in sovereign hardware like PassCypher.

Vulnerable Password Managers & CVE disclosure (snapshot — 2 Oct 2025)

Updated: 2 October 2025
Following Marek Tóth’s disclosure at DEF CON 33, several vendors have issued patches or mitigations, but response times vary widely. The new column indicates the estimated time between the presentation (8 August 2025) and the release of a patch/mitigation.

Manager Credentials TOTP Passkeys Status Official patch / note ⏱️ Patch delay
1Password Yes Yes Yes Mitigations (v8.11.x) Blog 🟠 >6 weeks (mitigation)
Bitwarden Yes Yes Partial Patched (v2025.8.2) Release 🟢 ~4 weeks
Dashlane Yes Yes Yes Patched Advisory 🟢 ~3 weeks
LastPass Yes Yes Yes Patched (Sep 2025) Release 🟠 ~6 weeks
Enpass Yes Yes Yes Patched (v6.11.6) Release 🟠 ~5 weeks
iCloud Passwords Yes No Yes Vulnerable (under review) 🔴 >7 weeks (no patch)
LogMeOnce Yes No Yes Patched (v7.12.7) Release 🟢 ~4 weeks
NordPass Yes Yes Partial Patched (mitigations) Release 🟠 ~5 weeks
ProtonPass Yes Yes Partial Patched (mitigations) Releases 🟠 ~5 weeks
RoboForm Yes Yes Yes Patched Update 🟢 ~4 weeks
Keeper Partial No No Partial patch (v17.2.0) Release 🟠 ~6 weeks (partial)

⮞ Key insight:

Even after patches, the problem remains architectural: as long as secrets transit the DOM, they remain exposed.
Zero-DOM solutions (PassCypher HSM PGP, PassCypher NFC HSM, SeedNFC) eliminate the attack surface by ensuring secrets never leave their encrypted container.
Zero-DOM = zero attack surface.

Note: snapshot as of 2 October 2025. For per-product versions, release notes and CVE identifiers, see the table and vendors’ official advisories.

Technologies of Correction Used

Since the public disclosure of DOM Extension Clickjacking at DEF CON 33, vendors have rushed to release patches. Yet these fixes remain uneven, mostly limited to UI adjustments or conditional checks. No vendor has yet re-engineered the injection engine itself.

Before diving into the correction methods, here’s a visual overview of the main technologies vendors have deployed to mitigate DOM Extension Clickjacking. This image outlines the spectrum from cosmetic patches to sovereign Zero-DOM solutions.

Infographic showing five correction methods against DOM Extension Clickjacking: autofill restriction, subdomain filtering, Shadow DOM detection, contextual isolation, and Zero-DOM hardware
Five vendor responses to DOM Extension Clickjacking: from UI patches to sovereign Zero-DOM hardware.

Objective

This section explains how vendors attempted to fix the flaw, distinguishes cosmetic patches from structural corrections, and highlights sovereign Zero-DOM hardware approaches.

Correction Methods Observed (as of August 2025)

Method Description Affected Managers
Autofill Restriction Switch to “on-click” mode or default deactivation Bitwarden, Dashlane, Keeper
Subdomain Filtering Blocking autofill on non-authorized subdomains ProtonPass, RoboForm
Shadow DOM Detection Refusal to inject if the field is encapsulated inside Shadow DOM NordPass, Enpass
Contextual Isolation Checks before injection (iframe, opacity, focus) Bitwarden, ProtonPass
Hardware Sovereign (Zero DOM) Secrets never transit through the DOM: NFC HSM, HSM PGP, SeedNFC PassCypher, EviKey, SeedNFC (non-vulnerable by design)

📉 Limits Observed

  • Patches did not change the injection engine, only its activation triggers.
  • No vendor introduced a structural separation between UI and secret flows.
  • Any manager still tied to the DOM remains structurally exposed to clickjacking variants.
⮞ Strategic Transition
These patches show reaction, not rupture. They address symptoms, not the structural flaw.
To understand what separates a temporary patch from a doctrinal fix, let’s move to the next analysis.

Correction Technologies Against DOM Extension Clickjacking — Technical & Doctrinal Analysis

DOM extension clickjacking is a structural design flaw: secrets injected into a manipulable DOM can be hijacked unless the injection flow is architecturally separated from the browser.

What Current Fixes Do Not Address

  • No vendor has rebuilt its injection engine.
  • Fixes mostly limit activation (disable autofill, subdomain filters, detect some invisible elements) rather than change the injection model.

What a Structural Fix Would Require

  • Remove dependency on the DOM for secret injection.
  • Isolate the injection engine outside the browser (hardware or separate secure process).
  • Use hardware authentication (NFC, PGP, secure enclave) and require explicit physical/user validation.
  • Forbid interaction with invisible or encapsulated elements by design.

Typology of Fixes

Level Correction Type Description
Cosmetic UI/UX, autofill disabled by default No change to injection logic, only its trigger
Contextual DOM filtering, Shadow DOM, subdomains Adds conditions, but still relies on the DOM
Structural Zero DOM, hardware-based (PGP, NFC, HSM) Eliminates DOM use for secrets, separates UI and secret flows

Doctrinal Tests to Verify Patches

To check whether a vendor’s fix is structural, researchers can:

  • Inject an invisible field (opacity:0) inside an iframe and verify injection behavior.
  • Check whether extensions still inject secrets into encapsulated or non-visible inputs.
  • Verify whether autofill actions are auditable or blocked when context mismatches occur.

There is currently no widely adopted industry standard (NIST/OWASP/ISO) governing extension injection logic, separation of UI and secret flows, or traceability of autofill actions.

⮞ Conclusion
Current fixes are largely stopgaps. The durable solution is architectural: remove secrets from the DOM using Zero-DOM patterns and hardware-backed isolation (HSM/NFC/PGP), rather than piling UI patches on top of a flawed injection model.

Systemic Risks & Exploitation Vectors

DOM extension clickjacking is not an isolated bug but a systemic design flaw. When an extension’s injection flow is compromised, the impact goes well beyond a single leaked password: it can cascade through authentication layers and core infrastructure.

Critical scenarios

  • Persistent access — cloned TOTP or recovered session tokens can re-register “trusted” devices and preserve access after resets.
  • Passkey replay — an exfiltrated passkey can act as a reusable master token outside normal control boundaries.
  • SSO compromise — leaked OAuth/SAML tokens from an enterprise extension can expose entire IT systems.
  • Supply-chain exposure — weak or malicious extensions create a structural browser-level attack surface.
  • Crypto-asset theft — wallet extensions that rely on DOM injection can leak seed phrases, private keys, or sign malicious transactions.

⮞ Summary

The consequences reach far beyond credential theft: cloned TOTPs, replayed passkeys, compromised SSO tokens and exfiltrated seed phrases are all realistic outcomes. As long as secrets transit the DOM, they remain an exfiltration vector.

Sovereign threat comparison

Attack Target Secrets Sovereign countermeasure
ToolShell RCE SharePoint / OAuth SSL certs, SSO tokens Hardware-backed storage & signing (HSM/PGP)
eSIM hijack Mobile identity Carrier profiles Hardware anchoring (SeedNFC)
DOM clickjacking Browser extensions Credentials, TOTP, passkeys Zero-DOM + HSM / sandboxed autofill
Crypto-wallet hijack Wallet extensions Private keys, seed phrases HID/NFC injection from HSM (no DOM, no clipboard)
Atomic Stealer macOS clipboard PGP keys, wallet data Encrypted channels + HSM input (no clipboard)

Regional Exposure & Linguistic Impact — Anglophone World

Region Estimated Anglophone Users Password-Manager Adoption Sovereign Zero-DOM Countermeasures
Global English-speakers ≈1.5 billion users Strong (North America, UK, Australia) PassCypher HSM PGP, SeedNFC
North America (USA + Canada Anglophone) ≈94 million users (36 % of US adults) Growing awareness; still low uptake PassCypher HSM PGP, NFC HSM
United Kingdom High internet and crypto-wallet penetration Maturing adoption; rising regulations PassCypher HSM PGP, EviBITB

Strategic insight: the Anglophone sphere represents a large exposure surface; prioritize Zero-DOM, hardware-anchored mitigations in regional roadmaps. Sources: ICLS, Security.org, DataReportal.

Exposed Crypto Wallet Extensions

Crypto wallet extensions (MetaMask, Phantom, TrustWallet) often rely on DOM interactions; overlays or invisible iframes can trick users into signing malicious transactions or exposing seed phrases. See §Sovereign Countermeasures for hardware mitigations.

SeedNFC HSM — hardware mitigation (concise)

Sovereign countermeasure: SeedNFC HSM provides hardware-backed storage for private keys and seed phrases kept outside the DOM. Injection is performed via secure NFC↔HID BLE channels and requires a physical user trigger, preventing DOM redressing and overlay-based signing attacks. See the full SeedNFC technical subsection for implementation details and usage flows.

[/ux_text] [/col] [/row]

Fallible Sandbox & Browser-in-the-Browser (BITB)

Browsers present their sandbox as a strong boundary — but DOM extension clickjacking and Browser-in-the-Browser (BITB) attacks show that UI-level illusions can still deceive users. A fake authentication frame or overlay can impersonate a trusted provider (Google, Microsoft, banks) and cause users to approve actions that release secrets or sign transactions. Standard directives such as frame-ancestors or some CSP rules do not necessarily block these interface forgeries.

Sandbox URL mechanism (technical): a robust Zero-DOM approach binds each credential or cryptographic reference to an expected URL (the “sandbox URL”) stored inside an encrypted HSM. Before any autofill or signing operation, the active page URL is compared to the HSM reference. If the URLs do not match, the secret is not released. This URL-level validation prevents exfiltration even when overlays or hidden frames evade visual detection.

Anti-iframe detection & mitigation (technical): real-time defenses inspect and neutralize suspicious iframe/overlay patterns (e.g., invisible elements, nested Shadow DOM, anomalous focus() sequences, unexpected pointer-events overrides). Detection heuristics include opacity, stacking context, focus redirections, and iframe ancestry checks; mitigation can remove or isolate the forged UI before any user interaction is processed.

For desktop flows, secure pairing between an Android NFC device and an HSM-enabled application allows secrets to be decrypted only in volatile RAM for a fraction of a second and injected outside the browser DOM, reducing persistence and exposure on the host system.

⮞ Technical Summary (attack defeated by sandbox URL + iframe neutralization)

The DOM extension clickjacking chain typically uses invisible CSS overlays (opacity:0, pointer-events:none), embedded iframes and encapsulated Shadow DOM nodes. By chaining focus() calls and cursor tracking, an extension may be tricked into autofilling credentials or signing transactions into attacker-controlled fields that are immediately exfiltrated. URL-based sandboxing plus real-time iframe neutralization closes this vector.

DOM extension clickjacking and Browser-in-the-Browser protection with EviBITB and Sandbox URL inside PassCypher HSM PGP / NFC HSM

✪ Illustration – Sandbox URL and iframe-neutralization protect credentials from clickjacking-trapped login forms.

⮞ Practical referenceFor a practical Zero-DOM implementation and product-level details (antiframe tooling, HSM URL binding and desktop pairing), see §PassCypher HSM PGP and §Sovereign Countermeasures.

BitUnlocker — Attaque sur BitLocker via WinRE

At DEF CON 33 and Black Hat USA 2025, the research team STORM presented a critical attack against BitLocker called BitUnlocker. This technique bypasses BitLocker protections by exploiting logical weaknesses in the Windows Recovery Environment (WinRE).

Attack vectors

  • boot.sdi parsing — manipulation of the boot loading process
  • ReAgent.xml — modification of the recovery configuration file
  • Tampered BCD — exploitation of Boot Configuration Data settings

Methodology

The researchers targeted the boot chain and its recovery components to:

  • Identify logical vulnerabilities in WinRE;
  • Develop exploits capable of exfiltrating BitLocker secrets;
  • Propose countermeasures to reinforce BitLocker and WinRE security.

Strategic impact

This attack demonstrates that even encryption systems considered robust can be undermined via indirect vectors — in this case, the Windows recovery chain. It highlights the need for a defense-in-depth approach that protects not only cryptographic primitives but also the integrity of boot and recovery environments.

Phishable Passkeys — Overlay Attacks at DEF CON 33

At DEF CON 33, an independent demonstration showed that synced passkeys — often presented as “phishing-resistant” — can be silently exfiltrated using a simple overlay + redirect. Unlike DOM extension clickjacking, this vector requires no DOM injection: it abuses UI trust and browser-rendered frames to trick users and harvest synced credentials.

How the overlay attack works (summary)

  • Overlay / redirect: a fake authentication frame or overlay is shown that mimics a platform login.
  • Browser trust abused: the UI appears legitimate, so users approve actions or prompts that release synced passkeys.
  • Synced export: once the attacker gains access to the password manager, synced passkeys and credentials can be exported and reused.

Synced vs device-bound — core difference

  • Synced passkeys: stored and replicated via cloud/password-manager infrastructure — convenient but a single point of failure and phishable by UI-forgery attacks.
  • Device-bound passkeys: stored in a device secure element (hardware) and never leave the device — not subject to cloud-sync export, therefore far more resistant to overlay phishing.

Proofs & evidence

Strategic takeaway: overlay-based UI forgery proves that “phishing-resistance” depends on storage and trust model. Where passkeys are synced via cloud/password-managers they are phishable; device-bound credentials (secure element / hardware keys) remain the robust alternative. This reinforces the Zero-DOM + sovereign hardware doctrine.

Phishable Passkeys @ DEF CON 33 — Attribution & Technical Note

Principal Researcher: Dr. Chad Spensky (Allthenticate)

Technical Co-authors: Shourya Pratap Singh, Daniel Seetoh, Jonathan (Jonny) Lin — Passkeys Pwned: Turning WebAuthn Against Itself (DEF CON 33)

Contributors acknowledged: Shortman, Masrt, sails, commandz, thelatesthuman, malarum (intro slide)

References:

Key takeaway: overlay-based UI forgery can exfiltrate synced passkeys without touching the DOM. This reinforces our doctrine: Zero-DOM + sovereign out-of-browser validation.

Strategic Signals from DEF CON 33

DEF CON 33 crystallised a shift in assumptions about browser security. Key takeaways below are concise and action-oriented.

  • Browsers are unreliable trust zones. The DOM should not be treated as a safe place for secrets.
  • Synced passkeys & DOM-injected secrets are phishable. UI-forgery and overlay techniques can defeat cloud-synced credentials.
  • Vendor responses vary; structural fixes are rare. Quick UI patches help, but few vendors have adopted architectural changes.
  • Prioritise hardware Zero-DOM approaches. Offline, hardware-anchored flows reduce exposure and belong in security roadmaps.

Summary

Rather than relying on cosmetic fixes, organisations should plan for doctrinal changes: treat any secret that touches the DOM as suspect and accelerate adoption of hardware-backed, Zero-DOM mitigations in product and policy roadmaps.

Sovereign Countermeasures (Zero DOM)

Vendor patches can reduce immediate risk but do not remove the root cause: secrets flowing through the DOM. Zero DOM means secrets should never reside in, transit through, or depend on the browser. The durable defence is architectural — keep credentials, TOTP, passkeys and private keys inside offline hardware and only expose them briefly in volatile memory when explicitly activated.

Zero DOM countermeasures flow — credentials, passkeys and crypto keys blocked from DOM exfiltration, secured by HSM PGP and NFC HSM sandbox URL injection

✪ Illustration — Zero DOM Flow: secrets remain inside the HSM, injected via HID into ephemeral RAM, making DOM exfiltration impossible.

In a Zero-DOM design, secrets are stored in offline HSMs and released only after an explicit physical action (NFC tap, HID pairing, local confirmation). Decryption happens in volatile RAM for the minimal time required to fill a field; nothing persists in the DOM or on disk.

Sovereign operation: NFC HSM, HID-BLE and HSM-PGP

NFC HSM ↔ Android ↔ Browser: the user physically presents the NFC HSM to an NFC-enabled Android device. The companion app verifies the request from the host, activates the module, and transmits the encrypted secret contactlessly to the host. Decryption occurs only in volatile RAM; the browser never holds the secret in clear.

NFC HSM ↔ HID-BLE: when paired with a Bluetooth HID emulator, the system types credentials straight into the target field over an AES-128-CBC encrypted BLE channel, avoiding clipboard, keyboard logging, and DOM exposure.

Local HSM-PGP activation: on desktop, a PassCypher-style HSM-PGP container decrypts locally (AES-256-CBC PGP) into RAM on a single user action. The secret is injected without traversing the DOM and is erased immediately after use.

This architecture removes the injection surface rather than patching it: no central server, no master password to extract, and no persistent cleartext inside the browser. Implementations should combine sandboxed URL checking, minimal ephemeral memory windows, and auditable activation logs to verify each autofill operation.

⮞ Summary

Zero DOM is a structural defence: keep secrets in hardware, require physical activation, decrypt only in RAM, and block any DOM-based injection or exfiltration.

passcypher-hsm-pgp

PassCypher HSM PGP — Patented Zero-DOM Technology & Sovereign Anti-Phishing Key Management

Long before DOM Extension Clickjacking was publicly exposed at DEF CON 33, Freemindtronic adopted a different approach. Since 2015 our R&D has followed a simple founding principle: never use the DOM to carry secrets. That Zero-Trust doctrine produced the patented Zero-DOM architecture behind PassCypher HSM PGP, which keeps credentials, TOTP/HOTP, passkeys and cryptographic keys confined in hardware HSM containers — never injected into a manipulable browser environment.

A unique advance in password managers

  • Native Zero-DOM — no sensitive data ever touches the browser.
  • Integrated HSM-PGP — AES-256-CBC encrypted containers with patented segmented-key protection.
  • Sovereign autonomy — no server, no central database, no cloud dependency.

Reinforced BITB protection (EviBITB)

Since 2020 PassCypher HSM PGP embeds EviBITB, a serverless engine that neutralizes Browser-in-the-Browser (BITB) attacks in real time by detecting and destroying malicious iframes and fraudulent overlays and validating UI context anonymously. EviBITB can operate manually, semi-automatically or fully automatically to drastically reduce BITB and invisible DOM-hijacking risk.

EviBITB embedded in PassCypher HSM PGP: real-time iframe and overlay detection and mitigation
EviBITB embedded in PassCypher HSM PGP: real-time detection and destruction of redirect iFrames and malicious overlays.

Why it resists DEF CON-style attacks

Nothing ever transits the DOM, there is no master password to extract, and containers remain encrypted at rest. Decryption occurs only in volatile RAM for the brief instant required to assemble key segments; after autofill the data is erased, leaving no exploitable trace.

Key features

  • Shielded autofill — single-click autofill via sandboxed URL, never exposed in cleartext in the browser.
  • Embedded EviBITB — real-time iframe/overlay neutralization (manual / semi / automatic), fully serverless.
  • Integrated crypto tooling — segmented AES-256 key generation and PGP key management without external dependencies.
  • Universal compatibility — works with any website via the extension; no additional plugins required.
  • Sovereign architecture — zero server, zero central DB, zero DOM; designed to remain resilient where cloud managers fail.

Immediate implementation

No complex setup is required. Install the PassCypher HSM PGP extension from the Chrome Web Store or Edge Add-ons, enable the BITB option, and benefit instantly from Zero-DOM sovereign protection.

⮞ Summary

PassCypher HSM PGP redefines secret management: permanently encrypted containers, segmented keys, ephemeral decryption in RAM, Zero-DOM and zero-cloud. A hardware-centric, passwordless solution engineered to resist current threats and anticipate quantum-era risks.

PassCypher NFC HSM — Sovereign Passwordless Manager

Software password managers fall into the trap of a simple iframe, but PassCypher NFC HSM follows a different path: it never lets your credentials and passwords transit through the DOM. The nano-HSM keeps them encrypted offline and only releases them for a fleeting instant in volatile memory — just long enough to authenticate.

User-side operation:

  • Untouchable secrets — the NFC HSM encrypts and stores credentials so they never appear or leak.
  • TOTP/HOTP — the PassCypher NFC HSM Android app or the PassCypher HSM PGP on desktop generates and displays them instantly on demand.
  • Manual entry — the user enters a PIN or TOTP directly into the login field on a computer or Android NFC phone. The PassCypher app shows the code generated by the NFC HSM module. The same process applies to credentials, passkeys, and other secrets.
  • Contactless autofill — the user simply presents the PassCypher NFC HSM module to a smartphone or computer, which executes autofill seamlessly, even when paired with PassCypher HSM PGP.
  • Desktop autofill — with PassCypher HSM PGP on Windows or macOS, the user clicks the integrated login field button to auto-complete login and password, with optional auto-validation.
  • Distributed anti-BITB — the NFC ↔ Android ↔ browser (Win/Mac/Linux) secure pairing triggers EviBITB to destroy malicious iframes in real time.
  • HID BLE mode — a paired Bluetooth HID keyboard emulator injects credentials outside the DOM, blocking both DOM-based attacks and keyloggers.

⮞ Summary

PassCypher NFC HSM embodies Zero Trust (every action requires physical validation) and Zero Knowledge (no secret is ever exposed). A sovereign hardware identity safeguard by design, it neutralizes clickjacking, BITB attacks, typosquatting, keylogging, IDN spoofing, DOM injections, clipboard hijacking, malicious extensions, while anticipating quantum attacks.

✪ Attacks Neutralized by PassCypher NFC HSM

Attack Type Description Status with PassCypher
Clickjacking / UI Redressing Invisible iframes or overlays that hijack user clicks Neutralized (EviBITB)
BITB (Browser-in-the-Browser) Fake browser frames simulating login windows Neutralized (sandbox + pairing)
Keylogging Keystroke capture by malware Neutralized (HID BLE mode)
Typosquatting Lookalike URLs mimicking legitimate domains Neutralized (physical validation)
Homograph Attack (IDN spoofing) Unicode substitution deceiving users on domain names Neutralized (Zero DOM)
DOM Injection / DOM XSS Malicious scripts injected into the DOM Neutralized (out-of-DOM architecture)
Clipboard Hijacking Interception or modification of clipboard data Neutralized (no clipboard usage)
Malicious Extensions Browser compromised by rogue plugins Neutralized (pairing + sandbox)
Quantum Attacks (anticipated) Massive computation to break crypto keys Mitigated (segmented keys + AES-256 CBC + PGP)

SeedNFC + HID Bluetooth — Secure Wallet Injection

Browser wallet extensions thrive in the DOM — and attackers exploit that weakness. With SeedNFC HSM, the logic flips: the enclave never releases private keys or seed phrases. When users initialize or restore a wallet (web or desktop), the system performs input through a Bluetooth HID emulation — like a hardware keyboard — with no clipboard, no DOM, and no trace for private keys, public keys, or even hot wallet credentials.

Operational flow (anti-DOM, anti-clipboard):

  • Custody — the SeedNFC HSM encrypts and stores the seed/private key (never exports it, never reveals it).
  • Physical activation — the NFC HSM authorizes the operation when the user presents it contactlessly via the Freemindtronic app (Android NFC smartphone).
  • HID BLE injection — the system types the seed (or required fragment/format) directly into the wallet input field, outside the DOM and outside the clipboard, resisting even software keyloggers.
  • BITB protection — users can activate EviBITB (anti-BITB iframe destroyer) inside the app, which neutralizes overlays and malicious redirections during onboarding or recovery.
  • Ephemerality — volatile RAM temporarily holds the data during HID input, then instantly erases it.

Typical use cases:

  • Onboarding or recovery of wallets (MetaMask, Phantom, etc.) without ever exposing the private key to the browser or DOM. The HSM keeps the secret encrypted and decrypts it only in RAM, for the minimal time required.
  • Sensitive operations on desktop (logical air-gap), with physical validation by the user: the user presents the NFC HSM module under an Android NFC smartphone to authorize the action, without keyboard interaction or DOM exposure.
  • Secure multi-asset backup: an offline hardware HSM stores seed phrases, master keys, and private keys, allowing reuse without copying, exporting, or capturing. Users perform activation exclusively through physical, sovereign, and auditable means.

⮞ Summary

First of all, SeedNFC HSM with HID BLE injects private or public keys directly into hot wallet fields via a Bluetooth Low Energy HID emulator, thereby bypassing both keyboard typing and clipboard transfer. Moreover, the channel encrypts data with AES-128 CBC, while the NFC module physically triggers activation, ensuring a secure and verifiable process.
In addition, users can enable anti-BITB protection to neutralize malicious overlays and deceptive redirections.
Finally, the HSM enclave keeps secrets strictly confined, outside the DOM and beyond the reach of malicious extensions, thus guaranteeing sovereign protection by design.

Exploitation Scenarios & Mitigation Paths

The DEF CON 33 revelations are a warning — threats will evolve beyond simple patches. Key near-term scenarios to watch:

  • AI-driven clickjacking: LLMs and automation create realistic, real-time DOM overlays and Shadow-DOM traps at scale — making phishing + DOM hijack far more scalable and convincing.
  • Hybrid mobile tapjacking: stacked UI elements, invisible gestures, and background app interactions enable large-scale mobile validation/exfiltration (OTP, transaction approvals).
  • Post-quantum HSMs: long-term mitigation requires hardware anchors and quantum-resistant key management — move the security boundary into certified HSMs and out of the browser. See §Sovereign Countermeasures for architectural guidance.

⮞ Summary

Future attackers will bypass browser fixes. Mitigation requires a rupture: offline hardware anchors, post-quantum HSM planning, and Zero-DOM designs rather than incremental software band-aids.

Strategic Synthesis

DOM extension clickjacking shows that browsers and extensions cannot be treated as trusted execution zones for secrets. Patches reduce risk but do not eliminate the structural exposure.

The sovereign path — three priorities

  • Governance: treat extensions and autofill engines as critical infrastructure — tighten development controls, mandatory audits, and incident disclosure rules.
  • Architectural change: adopt Zero-DOM designs so secrets never transit the browser; require physical activation for sensitive operations.
  • Hardware resilience: invest in hardware anchors and post-quantum HSM roadmaps to remove single-point failures in cloud/sync models.

Doctrine — concise

  • Consider any secret that touches the DOM as potentially compromised.
  • Prefer physical activation (NFC, HID BLE, HSM flows) for high-value operations.
  • Audit and regulate extension injection logic as a security-critical function.
Regulatory note — Existing regimes (CRA, NIS2, national frameworks) improve software resilience but generally do not address secrets embedded in the DOM. Policymakers should close this blind spot by requiring provable separation of UI and secret flows.

 

Glossary

DOM (Document Object Model)

In-memory representation of a web page’s HTML/JS structure; allows scripts and extensions to access and modify page elements.

Shadow DOM

Encapsulated DOM subtree used to isolate web components; can hide elements from the rest of the document.

Clickjacking

UI redressing technique that tricks users into clicking hidden or overlaid elements.

DOM-Based Extension Clickjacking

Attack variant where a malicious page chains invisible iframes, Shadow DOM and focus() redirects to coerce an extension into injecting secrets into a fake form.

Autofill

Mechanism used by password managers and browser extensions to automatically populate credentials, OTPs or passkeys into web fields.

Passkey

WebAuthn authentication credential (public-key based). Passkeys are phishing-resistant when stored device-bound in a secure element; cloud-synced passkeys are more exposed.

WebAuthn / FIDO

Public-key authentication standard (FIDO2) for passwordless logins; security depends on storage model (synced vs device-bound).

TOTP / HOTP

One-time codes generated by time-based (TOTP) or counter-based (HOTP) algorithms for two-factor authentication.

HSM (Hardware Security Module)

Hardware device that securely generates, stores and uses cryptographic keys without exposing them in cleartext outside the enclave.

PGP (Pretty Good Privacy)

Hybrid encryption standard using public/private keys; here used to protect AES-256-CBC encrypted containers.

AES-256 CBC

Symmetric encryption algorithm (CBC mode) with 256-bit keys — used to encrypt secret containers.

Segmented keys

Key fragmentation approach: keys are split into segments to increase resistance and are assembled securely in ephemeral RAM.

Ephemeral RAM

Volatile memory where secrets are briefly decrypted for an autofill operation and immediately erased — no persistence to disk or DOM.

NFC (Near Field Communication)

Contactless technology used to physically activate an HSM and authorize local secret release.

HID-BLE (Bluetooth Low Energy HID)

BLE keyboard emulation mode to inject data directly into fields without using the DOM or clipboard.

Sandbox URL

Mechanism binding each secret to an expected URL stored inside the HSM; if the active URL does not match, autofill is blocked.

Browser-in-the-Browser (BITB)

Overlay attack that simulates a browser window inside an iframe — tricks users into interacting with a fake authentication frame.

EviBITB

Serverless anti-BITB engine that detects and destroys malicious iframes/overlays in real time and validates UI context anonymously.

SeedNFC

Hardware HSM solution for seed phrase / private key custody; performs out-of-DOM injection via HID/NFC.

Iframe

HTML frame embedding another page; invisible iframes (opacity:0, pointer-events:none) are commonly used in UI redressing attacks.
focus()
JavaScript call that sets focus on a field. Abused to redirect user events to attacker-controlled inputs.

Overlay

Visual layer (fake window/frame) that masks the real interface and deceives the user about the origin of an action.

Exfiltration

Unauthorized extraction of sensitive data from the target (credentials, TOTP, passkeys, private keys).

Phishable

Describes a mechanism (e.g., cloud-synced passkeys) that can be compromised by UI forgery or overlays — therefore vulnerable to phishing.

Content-Security-Policy (CSP)

Web policy controlling resource origins; useful but alone insufficient against advanced clickjacking variants.

X-Frame-Options / frame-ancestors

HTTP headers / CSP directives intended to limit iframe inclusion; can be bypassed in complex attack scenarios.

Keylogging

Malicious capture of keystrokes; mitigated by secure HID injection (no software keyboard or clipboard use).

Note: this glossary standardises terms used in the chronicle. For normative definitions and standards, consult OWASP, NIST and FIDO/WebAuthn specifications.

🔥 In short: cloud patches help, but hardware and Zero-DOM architectures prevent class failures.

⮞ Note — What this chronicle does not cover:

This article does not provide exploitable PoCs or step-by-step attack instructions for DOM clickjacking or passkey phishing. It also does not analyse cryptocurrency economics or specific legal cases beyond a strategic security viewpoint.

The objective: explain structural flaws, quantify systemic risks, and outline Zero-DOM hardware countermeasures as the robust mitigation path. For implementation details, see §Sovereign Countermeasures and the product subsections collected there.

 

Clickjacking extensions DOM: Vulnerabilitat crítica a DEF CON 33

Cartell digital en català sobre el clickjacking d’extensions DOM amb PassCypher — contraatac sobirà Zero DOM

DOM extension clickjacking — el clickjacking d’extensions basat en DOM, mitjançant iframes invisibles, manipulacions del Shadow DOM i overlays BITB — posa en risc els gestors de contrasenyes; vegeu §Passkeys phishables. Aquesta crònica resumeix les demostracions de DEF CON 33 (DOM-based extension clickjacking i passkeys phishables), el seu impacte i les contramesures Zero-DOM (PassCypher, SeedNFC, EviBITB).

Resum Executiu

⮞ Nota de lectura

Si només voleu retenir l’essencial, el Resum Executiu (≈4 minuts) és suficient. Per a una visió completa i tècnica, continueu amb la lectura íntegra de la crònica (≈35 minuts).

⚡ El descobriment

Las Vegas, principis d’agost de 2025. El DEF CON 33 vibra al Centre de Convencions. Entre doms de hackers, pobles IoT, Adversary Village i competicions CTF, l’aire és dens de passió, insígnies i soldadures improvisades. A l’escenari, Marek Tóth no necessita artificis: connecta el portàtil, mira el públic i prem Enter. L’atac estrella: el Clickjacking d’extensions basat en DOM. Senzill de codificar, devastador d’executar: pàgina trampa, iframes invisibles, una crida focus() maliciosa… i els gestors d’autoemplenament aboquen en un formulari fantasma identificadors, contrasenyes, TOTP i passkeys.
en un formulari fantasma.

✦ Impacte immediat en gestors de contrasenyes

Els resultats són contundents. Marek Tóth va analitzar 11 gestors de contrasenyes: tots mostraven vulnerabilitats per disseny.
En 10 de 11 casos, es van exfiltrar credencials i secrets.
Segons SecurityWeek, prop de 40 milions d’instal·lacions continuen exposades.
La vulnerabilitat s’estén més enllà: fins i tot els crypto-wallets van deixar escapar claus privades, exposant directament actius digitals.

⧉ Segona demostració — Passkeys phishables (overlay)

A DEF CON 33, Allthenticate va demostrar que les Vegeu §Passkeys phishables poden ser pescades mitjançant una simple superposició i redirecció — cap injecció DOM requerida. L’anàlisi completa està disponible a la secció dedicada Phishable Passkeys i a atribució & fonts.

🚨 El missatge

En només dues demos, dos pilars de la ciberseguretat — gestors de contrasenyes i Vegeu §Passkeys phishables — s’ensorren del pedestal. El missatge és brutal: mentre els teus secrets visquin al DOM, mai no estaran segurs. I mentre la ciberseguretat depengui del navegador i del núvol, un sol clic pot capgirar-ho tot. Com recorda OWASP, el clickjacking és un clàssic — però aquí és la capa d’extensions la que queda pulveritzada.

🔑 L’alternativa

Saviez-vous qu’il existe depuis plus de dix ans une autre voie, une voie qui ne passe pas par les départements français d’outre-mer ? Avec PassCypher HSM PGP, PassCypher NFC HSM et SeedNFC pour la conservation des clés cryptographiques matérielles, vos identifiants TOTP/HOTP, vos mots de passe et vos clés secrètes ne voient jamais le DOM. Il ne s’agit pas d’un patch, mais d’une architecture propriétaire souveraine, décentralisée, serverless et databaseless, sans mot de passe maître, qui libère la gestion des secrets des dépendances centralisées telles que FIDO/WebAuthn.

Crònica per llegir
Temps estimat de lectura: 35 minuts
Data d’actualització: 2025-10-02
Nivell de complexitat: Avançat / Expert
Especificitat lingüística: Lèxic sobirà — alta densitat tècnica
Llengües disponibles: CAT · EN · ES · FR
Accessibilitat: Optimitzat per a lectors de pantalla — ancoratges semàntics integrats
Tipus editorial: Crònica estratègica
Sobre l’autor: Text escrit per Jacques Gascuel, inventor i fundador de Freemindtronic®.
Especialista en tecnologies de seguretat sobirana, dissenya i patenta sistemes de maquinari per a la protecció de dades, la sobirania criptogràfica i les comunicacions segures.
La seva experiència cobreix el compliment dels estàndards ANSSI, NIS2, RGPD i SecNumCloud, així com la lluita contra les amenaces híbrides mitjançant arquitectures sobiranes by design.

TL;DR — Al DEF CON 33, el clickjacking d’extensions basat en DOM va demostrar un risc sistèmico per a les extensions de navegador que injecten secrets al DOM. Exfiltrats: identificadors (logins), codis TOTP, Vegeu §Passkeys phishables i claus criptogràfiques. Tècniques: iframes invisibles, manipulació del Shadow DOM, superposicions Browser-in-the-Browser (BITB). Impacte inicial: ≈ 40 milions d’instal·lacions notificades com a exposades en la divulgació. Estat (11 de setembre de 2025): diversos proveïdors han publicat correccions oficials per als mètodes descrits (Bitwarden, Dashlane, Enpass, NordPass, ProtonPass, RoboForm, Keeper [parcial], LogMeOnce), mentre que altres continuen reportats com a vulnerables (1Password, iCloud Passwords, LastPass, KeePassXC-Browser). Contramesura: fluxos de maquinari Zero-DOM (PassCypher NFC/PGP, SeedNFC) mantenen els secrets fora del DOM del navegador. Principi: Zero DOM — eliminar la superfície d’atac.
Infografia en català mostrant l’anatomia d’un atac de clickjacking basat en DOM amb pàgina maliciosa, iframe invisible i exfiltració de secrets cap a l’atacant.
✪ Anatomia d’un atac de clickjacking d’extensions DOM: pàgina enganyosa, iframes invisibles i exfiltració de secrets cap a l’atacant. Representació pedagògica en llengua catalana.

2025 Digital Security

Persistent OAuth Flaw: How Tycoon 2FA Hijacks Cloud Access

2025 Digital Security

Spyware ClayRat Android : faux WhatsApp espion mobile

2025 Digital Security

Android Spyware Threat Clayrat : 2025 Analysis and Exposure

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2025 Digital Security Technical News

Sovereign SSH Authentication with PassCypher HSM PGP — Zero Key in Clear

2025 Digital Security Tech Fixes Security Solutions Technical News

SSH Key PassCypher HSM PGP — Sécuriser l’accès multi-OS à un VPS

2025 Digital Security Technical News

Générateur de mots de passe souverain – PassCypher Secure Passgen WP

2025 Digital Security Technical News

Quantum computer 6100 qubits ⮞ Historic 2025 breakthrough

2025 Digital Security Technical News

Ordinateur quantique 6100 qubits ⮞ La percée historique 2025

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2025 Digital Security

Email Metadata Privacy: EU Laws & DataShielder

2025 Digital Security

Chrome V8 confusió RCE — Actualitza i postura Zero-DOM

2025 Digital Security

Chrome V8 confusion RCE — Your browser was already spying

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

En ciberseguretat sobirana ↑ Aquesta crònica s’inscriu dins l’apartat Digital Security, en la continuïtat de les investigacions realitzades sobre exploits i contramesures de maquinari zero trust.

Què és el clickjacking d’extensions basat en el DOM?

DOM-based extension clickjacking segresta una extensió del navegador (gestor de contrasenyes o wallet) fent un mal ús del Document Object Model. Una pàgina enganyosa encadena iframes invisibles, Shadow DOM i una crida maliciosa a focus() per desencadenar l’autofill en un formulari invisible. L’extensió «creu» que actua sobre el camp correcte i hi aboca secrets — credencials, codis TOTP/HOTP, passkeys, fins i tot claus privades. Com que aquests secrets toquen el DOM, poden ser exfiltrats de manera silenciosa.

⮞ Perspectiva doctrinal: El DOM-based extension clickjacking no és un error aïllat sinó un defecte de disseny. Qualsevol extensió que injecti secrets en un DOM manipulable és intrínsecament vulnerable. Només les arquitectures Zero-DOM (separació estructural, HSM/NFC, injecció fora del navegador) eliminen aquesta superfície d’atac.

Quin nivell de perillositat té?

Aquest vector no és menor: explota la lògica mateixa de l’autofill i actua sense que l’usuari se n’adoni. L’atacant no es limita a superposar un element; força l’extensió a omplir un formulari fals com si res, fent que l’exfiltració sigui indetectable a simple vista.

Flux típic de l’atac

  1. Preparació — la pàgina maliciosa integra una iframe invisible i un Shadow DOM que amaga el context real; els camps són ocultats (opacity:0, pointer-events:none).
  2. Ham — la víctima clicca un element innocent; redireccions i un focus() maliciós redirigeixen l’esdeveniment cap a un camp controlat per l’atacant.
  3. Exfiltració — l’extensió pensa que interactua amb un camp legítim i injecta automàticament credencials, TOTP, passkeys o claus privades al DOM fals; les dades s’exfiltren immediatament.

Aquest mecanisme enganya els senyals visuals, evita proteccions clàssiques (X-Frame-Options, Content-Security-Policy, frame-ancestors) i converteix l’autofill en un canal d’exfiltració invisible. Els overlays tipus Browser-in-the-Browser (BITB) i les manipulacions del Shadow DOM agreugen el risc, fent que les passkeys sincronitzades i les credencials siguin susceptibles de phishing.

⮞ Resum

L’atac combina iframes invisibles, manipulació del Shadow DOM i redireccions via focus() per segrestar les extensions d’autofill. Els secrets s’injecten en un formulari fantasma, donant a l’atacant accés directe a dades sensibles (credencials, TOTP/HOTP, passkeys, claus privades). Moraleja: mentre els secrets transitin pel DOM, la superfície d’atac segueix oberta.

Història del Clickjacking (2002–2025)

El clickjacking ha evolucionat durant dècades. El concepte va néixer als primers anys 2000 amb Jeremiah Grossman i Robert Hansen: enganyar un usuari perquè faci clic en un element que no veu realment. Va passar de ser una il·lusió òptica aplicada al codi a una tècnica d’atac habitual (OWASP).

  • 2002–2008: Aparició del “UI redressing”: capes HTML i iframes transparents atrapant usuaris.
  • 2009: Facebook afectat per likejacking.
  • 2010: Aparició del cursorjacking (desplaçar el cursor per enganyar el clic).
  • 2012–2015: Exploits via iframes, anuncis maliciosos i malvertising.
  • 2016–2019: Tapjacking a mòbils.
  • 2020–2024: “Hybrid clickjacking” combinant XSS i phishing.
  • 2025: A DEF CON 33, Marek Tóth presenta el salt: DOM-Based Extension Clickjacking, on les extensions injecten formularis invisibles i habiliten exfiltració silenciosa de secrets.

❓Des de quan hi ha exposició?

Les tècniques d’iframes invisibles i Shadow DOM són conegudes des de fa anys. Les descobertes de DEF CON 33 revelen un patró de disseny d’una dècada: extensions que confien en el DOM per injectar secrets estan inherentment exposades.

Síntesi: En 20 anys, el clickjacking ha passat d’una trampa visual a una sabotatge sistèmic contra gestors d’identitat; DEF CON 33 marca un punt d’inflexió i subratlla la urgència d’enfocaments Zero-DOM amb hardware sobirà.

Clickjacking extensions DOM — Anatomia de l’atac

El clickjacking extensions DOM no és una variant trivial: desvia la lògica mateixa dels gestors d’autoemplenament. Aquí, l’atacant no es limita a recobrir un botó amb una iframe; força l’extensió a omplir un formulari fals com si fos legítim.

Esquema de clickjacking d'extensions DOM en tres fases: Preparació, Esquer i Exfiltració amb extensió d’autocompleció vulnerada
Esquema visual del clickjacking d’extensions DOM: una pàgina maliciosa amb iframe invisible (Preparació), un element Shadow com a esquer (Esquer) i l’exfiltració d’identificadors, TOTP i claus a través de l’extensió d’autocompleció (Exfiltració).

Desplegament típic d’un atac:

  1. Preparació — La pàgina trampa carrega una iframe invisible i un Shadow DOM que oculta el context real.
  2. Esquer — L’usuari fa clic en un element aparentment innocu; una crida focus() redirigeix l’esdeveniment cap al camp invisible controlat per l’atacant.
  3. Exfiltració — L’extensió creu interactuar amb un camp legítim i injecta identificadors, TOTP, passkeys i fins i tot claus privades directament dins del fals DOM.

Aquesta mecànica distorsiona els senyals visuals, esquiva les defenses clàssiques (X-Frame-Options, CSP, frame-ancestors) i transforma l’autoemplenament en un canal d’exfiltració invisible. A diferència del clickjacking “tradicional”, l’usuari no fa clic en un lloc de tercers: és la seva pròpia extensió la que queda atrapada per la seva confiança en el DOM.

⮞ Resum

L’atac combina iframes invisibles, Shadow DOM i focus() per atrapar els gestors d’autoemplenament. Els gestors de contrasenyes injecten els seus secrets no pas al lloc previst, sinó en un formulari fantasma, oferint a l’atacant accés directe a dades sensibles.

Gestors vulnerables & divulgació CVE (instantània — 2 oct. 2025)

Actualitzat: 2 d’octubre 2025
Arran de la divulgació a DEF CON 33 per Marek Tóth, diversos venedors van publicar correccions o mitigacions, però la velocitat de resposta varia molt. La nova columna indica el temps estimat entre la presentació (8 d’agost de 2025) i la publicació d’un patch/mitigació.

Gestor Credencials TOTP Passkeys Estat Patch / nota oficial ⏱️ Temps de patch
1Password Mitigacions (v8.11.x) Blog 🟠 >6 setmanes (mitigació)
Bitwarden Parcial Corregit (v2025.8.2) Release 🟢 ~4 setmanes
Dashlane Corregit Advisory 🟢 ~3 setmanes
LastPass Corregit (set. 2025) Release 🟠 ~6 setmanes
Enpass Corregit (v6.11.6) Release 🟠 ~5 setmanes
iCloud Passwords No Vulnerable (en revisió) 🔴 >7 setmanes (sense patch)
LogMeOnce No Corregit (v7.12.7) Release 🟢 ~4 setmanes
NordPass Parcial Corregit (mitigacions) Release 🟠 ~5 setmanes
ProtonPass Parcial Corregit (mitigacions) Releases 🟠 ~5 setmanes
RoboForm Corregit Update 🟢 ~4 setmanes
Keeper Parcial No No Patch parcial (v17.2.0) Release 🟠 ~6 setmanes (parcial)

⮞ Perspectiva estratègica:

Fins i tot després de les correccions, el problema continua sent arquitectònic: mentre els secrets transitin pel DOM, romandran exposats.
Les solucions Zero-DOM (PassCypher HSM PGP, PassCypher NFC HSM, SeedNFC) eliminen la superfície d’atac garantint que els secrets no surtin mai del contenidor xifrat.
Zero-DOM = superfície d’atac nul·la.

Nota: instantània al 2 d’octubre de 2025. Per versions per producte, notes de llançament i CVE associats, consulteu la taula i les pàgines oficials dels venedors.

Tecnologies de correcció utilitzades

Des de la divulgació pública a DEF CON 33, els venedors han publicat actualitzacions. No obstant això, la majoria són pegats superficials o comprovacions condicionals; cap fabricant ha re-construït l’enginy d’injecció completament.

Imatge resum: aquestes tecnologies van des de pegats estètics fins a solucions Zero-DOM basades en hardware.

Infografia sobre les defenses contra el clickjacking d’extensions DOM: X-Frame-Options, CSP, retards d’autofill i diàlegs flotants.
Quatre mètodes de correcció contra el clickjacking d’extensions DOM: des de polítiques de seguretat fins a estratègies.

Objectiu

Explicar com els venedors han intentat mitigar la fallada, distingir pegats cosmètics de correccions estructurals i destacar enfocaments sobirans Zero-DOM.

Mètodes observats (agost 2025)

Mètode Descripció Gestors afectats
Restricció d’autoemplenament Mode “on-click” o desactivació per defecte Bitwarden, Dashlane, Keeper
Filtrat de subdominis Bloqueig d’autoemplenament en subdominis no autoritzats ProtonPass, RoboForm
Detecció Shadow DOM Refusar injectar si el camp és encapsulat NordPass, Enpass
Aïllament contextual Comprovacions prèvies a la injecció (iframe, opacitat, focus) Bitwarden, ProtonPass
Hardware sobirà (Zero-DOM) Secrets mai transiten pel DOM: NFC HSM, HSM PGP, SeedNFC PassCypher, EviKey, SeedNFC

Limitacions observades

  • Els pegats no modifiquen l’enginy d’injecció, només el seu disparador.
  • No s’ha introduït separació estructural entre UI i fluxos de secrets.
  • Qualsevol gestor encara lligat al DOM roman exposat estructuralment.
⮞ Transició estratègica
Aquests pegats són reaccions, no ruptures. Tracten símptomes, no la falla arquitectònica.

Anàlisi tècnica i doctrinal de les correccions

DOM extension clickjacking és una fallada de disseny estructural: secrets injectats en un DOM manipulable poden ser segrestats tret que el flux d’injecció quedi separat arquitectònicament del navegador.

Què no solucionen les correccions actuals

  • Cap venedor ha re-construït l’enginy d’injecció.
  • Les mesures principalment limiten l’activació (desactivar autoemplenament, filtres de subdomini, detecció d’elements invisibles) en lloc de canviar el model d’injecció.

Què requeriria una correcció estructural

  • Eliminar la dependència del DOM per a la injecció de secrets.
  • Aïllar l’enginy d’injecció fora del navegador (hardware o procés segur separatat).
  • Usar autenticació hardware (NFC, PGP, enclausura segura) i exigir validació física/indicació explícita de l’usuari.
  • Prohibir per disseny la interacció amb elements invisibles o encapsulats.

Tipologia de correccions

Nivell Tipus de correcció Descripció
Cosmètic UI/UX, autoemplenament desactivat per defecte No canvia l’enginy d’injecció, només el disparador
Contextual Filtrat DOM, Shadow DOM, subdominis Afegeix condicions, però encara depèn del DOM
Estructural Zero-DOM, hardware (PGP, NFC, HSM) Elimina l’ús del DOM per secrets; separa UI i fluxos de secrets

Tests doctrinals per verificar patches

Per comprovar si una correcció és realment estructural, els investigadors poden:

  • Injectar un camp invisible (opacity:0) dins d’un iframe i verificar el comportament d’injecció.
  • Comprovar si les extensions encara injecten secrets a inputs encapsulats o no visibles.
  • Verificar si les accions d’autoemplenament són registrables i bloquejades en cas de desajust de context.

No existeix actualment un estàndard industrial àmpliament adoptat (NIST/OWASP/ISO) que reguli la lògica d’injecció d’extensions, la separació UI/secret o la traçabilitat de les accions d’autoemplenament.

⮞ Conclusió
Les correccions actuals són solucions temporals. La resposta duradora és arquitectònica: treure els secrets del DOM amb patrons Zero-DOM i aïllament hardware (HSM/NFC/PGP).

Riscos sistèmics i vectors d’explotació

DOM extension clickjacking no és un bug aïllat; és una fallada de disseny sistèmica. Quan el flux d’injecció d’una extensió queda compromès, l’impacte pot expandir-se més enllà d’una contrasenya filtrada i degradar capes completes d’autenticació i infraestructures.

Escenaris crítics

  • Accés persistent — un TOTP clonat o tokens de sessió recuperats poden re-registrar dispositius “de confiança”.
  • Reproducció de passkeys — una passkey exfiltrada pot funcionar com un token mestre reutilitzable fora del control habitual.
  • Compromís SSO — tokens OAuth/SAML filtrats poden exposar sistemes IT complets.
  • Exposició supply-chain — extensions mal regulades creen una superfície d’atac estructural a nivell de navegador.
  • Robatori d’actius cripto — extensions de moneder que usen DOM poden filtrar seed phrases i claus privades o signar transaccions malicioses.

⮞ Resum

Les conseqüències van més enllà del robo de credencials: TOTPs clonats, passkeys reproduïdes, tokens SSO compromesos i seed phrases exfiltrades són resultats realistes. Mentre els secrets transitin pel DOM, representen un vector d’exfiltració.

Comparativa de amenaces sobiranes
Atac Objectiu Secrets Contramesura sobirana
ToolShell RCE SharePoint / OAuth Certificats SSL, tokens SSO Emmagatzematge i signatura hardware (HSM/PGP)
eSIM hijack Identitat mòbil Perfils de operador Ancoratge hardware (SeedNFC)
DOM clickjacking Extensions de navegador Credencials, TOTP, passkeys Zero-DOM + HSM / autoemplenament sandoxed
Crypto-wallet hijack Extensions de moneder Claus privades, seed phrases Injecció HID/NFC des de HSM (no DOM, no clipboard)
Atomic Stealer Portapapers macOS Claus PGP, dades de wallets Xarxes xifrades + entrada HSM (no clipboard)

Exposició regional i impacte lingüístic — Àmbit anglosaxó (notes)

Regió Usuaris angloparlants Adopció de gestors Contramesures Zero-DOM
Món anglòfon ≈1.5 mil milions Alta (NA, UK, AU) PassCypher HSM PGP, SeedNFC
Amèrica del Nord ≈94M usuaris (36% adults EUA) Creixent consciència; adopció encara moderada PassCypher HSM PGP, NFC HSM
Regne Unit Alta penetració d’internet i moneders Adopció madura; regulacions en augment PassCypher HSM PGP, EviBITB

Insight estratègic: l’espai anglosaxó representa una superfície d’exposició significativa; prioritzar Zero-DOM i mitigacions hardware als fulls de ruta regionals. Fonts: ICLS, Security.org, DataReportal.

Moneders cripto exposats

Les extensions de moneder (MetaMask, Phantom, TrustWallet) sovint utilitzen interaccions amb el DOM; sobreposicions o iframes invisibles poden enganyar l’usuari perquè signi transaccions malicioses o exposi la seed phrase. Vegeu §Sovereign Countermeasures per mitigacions hardware.

SeedNFC HSM — mitigació hardware (concisa)

Contramesura sobirana: SeedNFC HSM ofereix emmagatzematge hardware per claus privades i seed phrases fora del DOM. L’injecció es realitza via canals xifrats NFC↔HID BLE i requereix un desencadenament físic per part de l’usuari, impedint injeccions per redressing o firmes per sobreposició. Vegeu la subsecció técnica de SeedNFC per més detalls d’implementació.

Sandbox vulnerable & Browser-in-the-Browser (BITB)

Els navegadors ofereixen un “sandbox” com a frontera, però el DOM extension clickjacking i les tècniques BITB demostren que les il·lusions d’interfície poden enganyar els usuaris. Un marc d’autenticació fals o una sobreposició poden suplantar proveïdors (Google, Microsoft, bancs) i fer que l’usuari autoritzi accions que alliberen secrets o signen transaccions. Directives com frame-ancestors o certes polítiques CSP no garanteixen bloqueig complet d’aquestes forgeries d’interfície.

Mecanisme de Sandbox URL (tècnic): una solució Zero-DOM robusta lliga cada credencial o referència criptogràfica a una URL esperada (“sandbox URL”) emmagatzemada dins d’un HSM xifrat. Abans d’un autoemplenament o signatura, la URL activa es compara amb la referència de l’HSM; si no coincideixen, el secret no s’allibera. Aquesta validació a nivell d’URL evita exfiltracions encara que les sobreposicions eludeixin la detecció visual.

Detecció i mitigació anti-iframe (tècnic): defenses en temps real inspeccionen i neutralitzen patrons sospitosos d’iframe/overlay (elements invisibles, Shadow DOM anidat, seqüències anòmales de focus(), pointer-events alterats). Les heurístiques inclouen opacitat, context de pila, redireccions de focus i comprovacions d’ancestria d’iframe; la mitigació pot eliminar o aïllar la UI forjada abans de qualsevol interacció.

Per a fluxos d’escriptori, l’enllaç segur entre un dispositiu Android NFC i una aplicació amb HSM permet que els secrets es desxifrin només en RAM volàtil durant una fracció de segon i s’injectin fora del DOM, reduint persistència i exposició en l’host.

⮞ Resum tècnic (atac neutralitzat per sandbox URL + neutralització d’iframe)

La cadena d’atac sol utilitzar sobreposicions CSS invisibles (opacity:0, pointer-events:none), iframes embeguts i nodes Shadow DOM encapsulats. Seqüències de focus() i seguiment del cursor poden induir l’extensió a confeccionar autoemplenament a camps controlats per l’atacant i exfiltrar les dades. L’enllaç d’URL i la neutralització en temps real dels iframes tanca aquest vector.

Il·lustració de la protecció anti-BitB i anti-clickjacking amb EviBITB i Sandbox URL integrats a PassCypher HSM PGP / NFC HSM
✪ Il·lustració – L’escut anti-BITB i el cadenat Sandbox URL bloquegen l’exfiltració de credencials en un formulari manipulat per clickjacking.

⮞ Referència pràctica Per una implementació Zero-DOM pràctica i detalls de producte (antiframe, lligams d’URL HSM, enllaç d’escriptori), consulteu §PassCypher HSM PGP i §Sovereign Countermeasures.

BitUnlocker — Atac contra BitLocker via WinRE

Al DEF CON 33 i al Black Hat USA 2025, el grup d’investigació STORM va presentar una explotació crítica contra BitLocker anomenada BitUnlocker. Aquesta tècnica eludeix les proteccions de BitLocker aprofitant falles lògiques en l’entorn de recuperació de Windows (WinRE).

Vectors d’atac

  • Parsing de boot.sdi: manipulació del procés de càrrega.
  • ReAgent.xml: modificació del fitxer de configuració de recuperació.
  • BCD segrestat: explotació de les dades de configuració d’arrencada.

Metodologia

Els investigadors van centrar-se en la cadena d’arrencada i els components de recuperació per:

  • Identificar vulnerabilitats lògiques dins de WinRE.
  • Desenvolupar exploits capaços d’exfiltrar secrets de BitLocker.
  • Proposar contramesures per endurir la seguretat de BitLocker i WinRE.

Impacte estratègic

Aquest atac demostra que fins i tot un sistema de xifrat de disc considerat robust pot ser compromès mitjançant vectors indirectes en la cadena d’arrencada i recuperació. Subratlla la necessitat d’una defensa en profunditat que integri no només la criptografia, sinó també la protecció i la integritat dels entorns d’arrencada i restauració.

Passkeys phishables — Atacs per superposició a DEF CON 33

A DEF CON 33, una demostració independent va mostrar que les passkeys sincronitzades — sovint presentades com a «resistents al phishing» — poden ser exfiltrades silenciosament utilitzant una simple superposició + redirecció. A diferència del clickjacking d’extensions basat en DOM, aquest vector no requereix cap injecció al DOM: abusa de la confiança en la interfície i dels marcs renderitzats pel navegador per enganyar usuaris i capturar credencials sincronitzades.

Com funciona l’atac per superposició (resum)

  • Superposició / redirecció: es mostra un marc o una superposició d’autenticació fals que imita una pàgina de login legítima.
  • Abús de la confiança del navegador: la UI sembla vàlida, així que els usuaris aproven accions o prompts que alliberen passkeys sincronitzades.
  • Exportació sincronitzada: un cop l’atacant accedeix al gestor o al flux sincronitzat, les passkeys i credencials sincronitzades poden ser exportades i reutilitzades.

Sincronitzades vs lligades al dispositiu — diferència clau

  • Passkeys sincronitzades: emmagatzemades i replicades via núvol/gestor — còmode però punt únic de fallada i susceptible a atacs d’usurpació d’interfície.
  • Passkeys lligades al dispositiu: emmagatzemades en un element segur del dispositiu (hardware) i mai no surten del dispositiu — no són exportables pel núvol i resulten molt més resistents als atacs per superposició.

Proves i evidència

Conseqüència estratègica: la forja d’UI demostra que la “resistència al phishing” depèn del model d’emmagatzematge i confiança. Les passkeys sincronitzades són phisbles; les emmagatzemades en elements segurs del dispositiu romanen el millor recurs. Això reforça la doctrina Zero-DOM + hardware sobirà.

Passkeys phishables @ DEF CON 33 — Atribució i nota tècnica

Investigador principal: Dr. Chad Spensky (Allthenticate)
Coautors tècnics: Shourya Pratap Singh, Daniel Seetoh, Jonathan (Jonny) Lin — Passkeys Pwned: Turning WebAuthn Against Itself (DEF CON 33)
Contribuïdors reconeguts: Shortman, Masrt, sails, commandz, thelatesthuman, malarum (slide d’introducció)

Referències:

Concepte clau: La forja d’UI pot exfiltrar passkeys sincronitzades sense tocar el DOM. Reforça la necessitat de validar fora del navegador (Zero-DOM + validació sobirana fora de navegador).

Senyal estratègic DEF CON 33

DEF CON 33 va cristal·litzar un canvi de supòsits sobre la seguretat del navegador. A continuació, les conclusions concises i orientades a l’acció:

  • Els navegadors no són zones de confiança fiables. No tracteu el DOM com un espai segur per secrets.
  • Passkeys sincronitzades i secrets injectats al DOM són phisbles. Les tècniques d’overlay poden vèncer credencials sincronitzades.
  • Les respostes dels venedors són desiguals; escasses correccions estructurals. Els pegats UI són útils però insuficients.
  • Prioritzeu enfocaments hardware Zero-DOM. Fluxos offline i ancoratges hardware redueixen l’exposició i han d’aparèixer als roadmaps.

Resum

En comptes d’acontentar-se amb pegats cosmètics, les organitzacions han de planificar canvis doctrinals: tractar com a sospitosos els secrets que toquen el DOM i accelerar l’adopció de mitigacions Zero-DOM basades en hardware als productes i polítiques.

Contramesures sobiranes (Zero DOM)

Els pegats de venedors redueixen el risc immediat però no eliminen la causa arrel: els secrets que flueixen pel DOM. Zero-DOM significa que els secrets no han de residir, transitar ni dependre del navegador. La defensa duradora és arquitectònica: mantenir credencials, TOTP, passkeys i claus privades dins d’hardware offline i exposar-les breument només en RAM volàtil quan s’activa explícitament.

"Diagrama

En disseny Zero-DOM, els secrets s’emmagatzemen en HSMs offline i s’alliberen només després d’una acció física (NFC, HID pair, confirmació local). La desxifració es produeix en RAM volàtil el temps mínim necessari; res no queda en clar al DOM ni al disc.

Operació sobirana: NFC HSM, HID-BLE i HSM-PGP

NFC HSM ↔ Android ↔ Navegador:
L’usuari presenta físicament el NFC HSM davant d’un dispositiu Android amb NFC. L’app corroborarà la sol·licitud de l’host, activarà el mòdul i transmetrà el secret xifrat a l’host. La desxifració només passa en RAM volàtil; el navegador mai té el secret en clar.

NFC HSM ↔ HID-BLE:
Quan està emparellat amb un emulador HID Bluetooth, el sistema escriu credencials directament al camp objectiu per un canal BLE xifrat AES-128-CBC, evitant clipboard, keyloggers i exposició DOM.

Activació local HSM-PGP:
En escriptori, un contenidor HSM-PGP (AES-256-CBC PGP) es desxifra localment en RAM amb una acció d’usuari; la injecció no travessa el DOM i s’esborra immediatament després d’uso.

Aquesta arquitectua elimina la superfície d’injecció en lloc de parchejar-la: sense servidor central, sense contrasenya mestra a extreure i sense text clar persistent al navegador. Les implementacions han d’incloure comprovacions d’URL sandboxed, finestres efímeres de memòria i registres auditable d’activacions per verificar cada operació d’autoemplenament.

⮞ Resum

Zero-DOM és una defensa estructural: manteniu secrets en hardware, exigiu activació física, desxifreu només en RAM i bloquegeu qualsevol injecció o exfiltració basada en DOM.

PassCypher HSM PGP — Tecnologia Zero-DOM (patentada des de 2015)

Abans de la descoberta pública de DOM extension clickjacking a DEF CON 33, Freemindtronic ja havia adoptat una alternativa arquitectònica: des del 2015 apliquem el principi de no portar mai secrets pel DOM. Aquesta doctrina és la base de l’arquitectura Zero-DOM patentada de PassCypher, que emmagatzema credencials, TOTP/HOTP i claus criptogràfiques en contenidors HSM hardware — mai injectades en un entorn manipulable.

Un avenç en gestors de contrasenyes

  • Zero-DOM natiu — cap dada sensible toca el navegador.
  • HSM-PGP integrat — contenidors xifrats (AES-256-CBC PGP) amb segmentació de claus patentada.
  • Autonomia sobirana — sense servidor, sense base de dades, sense dependències al núvol.

Protecció reforçada BITB

Des del 2020 PassCypher HSM PGP integra EviBITB, un motor que detecta i neutralitza en temps real iframes i overlays maliciosos (Browser-in-the-Browser). Opera serverless i pot funcionar en modes manual, semi-automàtic o automàtic, millorant notablement la resistència contra atacs BITB i clickjacking d’extensions.

EviBITB integrat a PassCypher HSM PGP: detecció i mitigació d'iFrames i overlays de redirecció
EviBITB integrat a PassCypher HSM PGP: detecció i mitigació d’iFrames i overlays de redirecció per reduir el risc BITB i el clickjacking d’extensions DOM.

Implementació immediata

L’usuari no necessita configuracions complexes: instal·leu l’extensió PassCypher HSM PGP des del Chrome Web Store o l’add-on d’Edge, activeu l’opció BITB i obtindreu protecció Zero-DOM sobirana.

Característiques clau

  • Autoemplenament blindat — sempre via sandbox URL, mai en clar dins el navegador.
  • EviBITB integrat — destrucció d’iframes i overlays maliciosos en temps real (manual / semi / automàtic).
  • Eines criptogràfiques — generació i gestió de claus segmentades (AES-256 + PGP).
  • Compatibilitat — funciona amb qualsevol web mitjançant l’extensió; no requereix plugins addicionals.
  • Arquitectura sobirana — zero servidor, zero base de dades, zero DOM.

⮞ Resum

PassCypher HSM PGP re-defineix la gestió de secrets: contenidors permanentment xifrats, desxifrat efímer en RAM, autoemplenament via sandbox URL i protecció anti-BITB. És una solució hardware orientada a resistir les amenaces actuals i a preparar la transició cap a resiliència quàntica.

PassCypher NFC HSM — Gestor passwordless sobirà

Els gestors de programari cauen amb un sol iframe; PassCypher NFC HSM evita que les credencials transitin pel DOM. El nano-HSM les manté xifrades offline i l’alliberament només es produeix un instant en RAM per autenticar.

Funcionament a l’usuari:

  • Secrets intocables — el NFC HSM encripta i emmagatzema credencials sense exposar-les.
  • TOTP/HOTP — l’app Android o PassCypher HSM PGP genera i mostra codis al moment.
  • Entrada manual — l’usuari introdueix PIN o TOTP al camp; l’app mostra el codi generat pel HSM.
  • autoemplenament contactless — presentant el mòdul NFC l’usuari executa autoemplenament de manera segura i fora del DOM.
  • autoemplenament d’escriptori — PassCypher HSM PGP permet completar camps amb un clic i validacions opcionales.
  • Anti-BITB distribuït — l’enllaç NFC ↔ Android ↔ navegador activa EviBITB per destruir iframes maliciosos en temps real.
  • Mode HID BLE — un emulador Bluetooth HID injecta credencials fora del DOM, bloquejant atacs DOM i keyloggers.

⮞ Resum

PassCypher NFC HSM encarna Zero Trust (cada acció requereix validació física) i Zero Knowledge (cap secret s’exposa). Per disseny, neutralitza clickjacking, BITB, typosquatting, keylogging, IDN spoofing, injeccions DOM, clipboard hijacking i extensions malicioses, i anticipa atacs quàntics.

✪ Atacs neutralitzats per PassCypher NFC HSM

Tipus d’atac Descripció Estat amb PassCypher
Clickjacking / UI redressing Iframes invisibles o overlays que secweisen clics Neutralitzat (EviBITB)
BITB Marcs falsos que simulen finestres de login Neutralitzat (sandbox + enllaç)
Keylogging Captura de pulsacions Neutralitzat (HID BLE)
Typosquatting URLs lookalike Neutralitzat (validació física)
DOM Injection / DOM XSS Scripts maliciosos al DOM Neutralitzat (arquitectura out-of-DOM)
Clipboard Hijacking Intercepció del clipboard Neutralitzat (sense ús clipboard)
Malicious Extensions Plugins maliciosos Neutralitzat (pairing + sandbox)
Atacs quàntics (anticipats) Trencament massiu de claus Mitigat (segmentació de claus + AES-256 CBC + PGP)
[/row]

SeedNFC + HID Bluetooth — Injecció segura dels wallets

Les extensions de moneder prosperen en el DOM i els atacants exploten aquesta feblesa. Amb SeedNFC HSM, la lògica canvia: l’enclau mai allibera claus privades o seed phrases. Durant la inicialització o restauració d’un moneder, el sistema usa emulació Bluetooth HID — com un teclat hardware — sense clipboard, sense DOM i sense rastre per a claus privades o credencials.

Flux operatiu (anti-DOM, anti-clipboard):

  • Custòdia — SeedNFC HSM xifra i emmagatzema la seed/cla privada (mai l’exporta).
  • Activació física — l’usuari autoritza contactless via l’app Android NFC.
  • Injecció HID BLE — el sistema tecleja la seed o el fragment necessari directament al camp del moneder, fora del DOM i del clipboard.
  • Protecció BITB — l’usuari pot activar EviBITB dins l’app per neutralitzar overlays maliciosos durant l’onboarding o recuperació.
  • Efemeritat — la RAM conté temporalment les dades durant l’entrada HID i s’esborra immediatament.

Casos d’ús típics

  • Onboarding o recuperació de moneders (MetaMask, Phantom) sense exposar la clau al navegador.
  • Operacions sensibles a escriptori amb validació física per part de l’usuari via NFC.
  • Còpia de seguretat offline multi-actiu: HSM emmagatzema seed phrases i claus mestres per reutilització sense exportació.

⮞ Resum

SeedNFC HSM amb HID BLE injecta claus directament via emulador HID BLE, evitant teclat i clipboard. El canal xifra amb AES-128 CBC i l’activació física del mòdul assegura un procés verificable i segur. A més, es pot activar protecció anti-BITB per neutralitzar overlays.

Escenaris d’explotació i vies de mitigació

Les revelacions de DEF CON 33 són una alerta; les amenaces evolucionaran més enllà dels pegats. Cal vigilar els següents escenaris:

  • Clickjacking impulsat per IA: LLMs generaran overlays i trampes Shadow DOM en temps real, fent phishing + DOM hijack a gran escala.
  • Tapjacking híbrid mòbil: piles d’aplicacions, gestos invisibles i interaccions en segon pla per validar transaccions o exfiltrar OTPs a mòbil.
  • HSMs post-quàntics: la mitigació a llarg termini requerirà ancoratges hardware i gestió de claus resistent a ordinadors quàntics — moure el límit de seguretat cap a HSMs certificats i fora del navegador.

⮞ Resum

Els atacants futurs evitaran els pegats del navegador; la mitigació exigeix una ruptura: ancoratges hardware offline, planificació HSM post-quàntic i dissenys Zero-DOM en comptes de pegats de programari.

 

Síntesi estratègica

DOM extension clickjacking demostra que navegadors i extensions no són entorns d’execució de confiança per secrets. Els pegats redueixen risc però no eliminen l’exposició estructural.

Camí sobirà — tres prioritats

  • Governança: tractar extensions i motors d’autoemplenament com infraestructura crítica — controls de desenvolupament estrictes, auditories obligatòries i normes de divulgació d’incidents.
  • Canvi arquitectònic: adoptar dissenys Zero-DOM perquè els secrets no transitin pel navegador; exigir activació física per operacions d’alt valor.
  • Resiliència hardware: invertir en ancoratges hardware i en fulls de ruta HSM post-quàntics per eliminar punts únics de fallada en models cloud/sync.

Doctrina — concisa

  • Considerar qualsevol secret que toqui el DOM com potencialment compromès.
  • Preferir activació física (NFC, HID BLE, HSM) per operacions d’alt valor.
  • Auditar i regular la lògica d’injecció d’extensions com a funció crítica de seguretat.
Nota reguladora — marcs existents (CRA, NIS2, marcs nacionals) milloren la resiliència del programari però rarament aborden secrets integrats al DOM. Els responsables polítics han de tancar aquest punt cec exigint separació provable entre UI i fluxos de secrets.

Glossari

  • DOM (Document Object Model): estructura interna de la pàgina al navegador.
  • Clickjacking: tècnica que enganya l’usuari perquè faci clic en elements ocults o disfressats.
  • Shadow DOM: subarbre encapsulat que aïlla components.
  • Zero-DOM: arquitectura de seguretat on els secrets mai toquen el DOM, eliminant el risc d’injecció.
🔥 En resum: els pegats al núvol ajuden, però l’hardware i les arquitectures Zero-DOM eviten falles de classe.

⮞ Nota — Què no cobreix aquesta crònica:

Aquesta anàlisi no proporciona PoC explotables ni tutorials pas a pas per reproduir DOM clickjacking o passkey phishing. Tampoc analitza l’economia de les criptomonedes ni casos legals específics més enllà d’un punt de vista estratègic de seguretat.

L’objectiu és explicar falles estructurals, quantificar riscos sistèmics i traçar contramesures Zero-DOM basades en hardware. Per detalls d’implementació, consulteu §Sovereign Countermeasures i les subseccions de producte.