Tag Archives: PassCypher HSM

Sovereign Passwordless Authentication — Quantum-Resilient Security

Corporate visual showing sovereign passwordless authentication and RAM-only quantum-resistant cryptology by Freemindtronic

Quantum-Resilient Sovereign Passwordless Authentication stands as a core doctrine of modern cybersecurity. Far beyond the FIDO model, this approach restores full control of digital identity by eliminating reliance on clouds, servers, or identity federations. Designed to operate offline, it relies on proof-of-possession, volatile-memory execution (RAM-only), and segmented AES-256-CBC / PGP encryption, ensuring universal non-persistent authentication. Originating from Freemindtronic Andorra 🇦🇩, this architecture redefines the concept of passwordless through a sovereign, scientific lens aligned with NIST SP 800-63B, Microsoft, and ISO/IEC 29115 frameworks. This article explores its foundations, doctrinal differences from federated models, and its role in building truly sovereign cybersecurity.

Executive Summary — Foundations of the Sovereign Passwordless Authentication Model

Quick read (≈ 4 min): The term passwordless, often linked to the FIDO standard, actually refers to a family of authentication models — only a few of which ensure true sovereignty. The offline sovereign model designed by Freemindtronic Andorra 🇦🇩 eliminates any network or cloud dependency and is built upon proof-of-possession and volatile-memory operations.

This approach represents a doctrinal shift: it redefines digital identity through RAM-only cryptology, AES-256-CBC encryption, and PGP segmentation with zero persistence.
By removing all centralisation, this model enables universal, offline, and quantum-resilient authentication — fully aligned with NIST, Microsoft, and ISO/IEC frameworks.

⚙ A Sovereign Model in Action

Sovereign architectures fundamentally diverge from FIDO and OAuth models.
Where those rely on registration servers and identity federators, PassCypher HSM and PassCypher NFC HSM operate in complete air-gap isolation.
All critical operations — key generation, signing, verification, and destruction — occur exclusively in volatile memory.
This offline passwordless authentication demonstrates that cryptologic sovereignty can be achieved without depending on any third-party infrastructure.

🌍 Universal Scope

The sovereign passwordless model applies to all environments — industrial, military, healthcare, or defence.
It outlines a neutral, independent, and interoperable digital doctrine capable of protecting digital identities beyond FIDO or WebAuthn standards.

Reading Parameters

Quick summary reading time: ≈ 4 minutes
Advanced summary reading time: ≈ 6 minutes
Full article reading time: ≈ 35 minutes
Publication date: 2025-11-04
Last update: 2025-11-04
Complexity level: Expert — Cryptology & Sovereignty
Technical density: ≈ 78 %
Languages available: FR · EN
Specificity: Doctrinal analysis — Passwordless models, digital sovereignty
Reading order: Summary → Definitions → Doctrine → Architecture → Impacts
Accessibility: Screen-reader optimised — anchors & semantic tags
Editorial type: Cyberculture Chronicle — Doctrine & Sovereignty
Strategic significance: 8.3 / 10 normative and strategic scope
About the author: Jacques Gascuel, inventor and founder of Freemindtronic Andorra, expert in HSM architectures, cryptographic sovereignty, and offline security.

Editorial Note — This article will be progressively enriched in line with the international standardization of sovereign passwordless models and ongoing ISO/NIST developments related to offline authentication. This content is authored in accordance with the AI Transparency Declaration issued by Freemindtronic Andorra FM-AI-2025-11-SMD5

Sovereign Localisation (Offline)

PassCypher HSM and PassCypher NFC HSM devices embed 14 languages offline with no internet connection required.
This design guarantees linguistic confidentiality and technical neutrality in any air-gapped environment.

2026 Awards Cyberculture Digital Security Distinction Excellence EviOTP NFC HSM Technology EviPass EviPass NFC HSM technology EviPass Technology finalists PassCypher PassCypher

Quantum-Resistant Passwordless Manager — PassCypher finalist, Intersec Awards 2026 (FIDO-free, RAM-only)

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Cyberculture

NGOs Legal UN Recognition

2025 Cyberculture Legal information

French IT Liability Case: A Landmark in IT Accountability

2024 Articles Cyberculture Legal information

ANSSI Cryptography Authorization: Complete Declaration Guide

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Cyberculture DataShielder

Google Workspace Data Security: Legal Insights

Awards Cyberculture EviCypher Technology International Inventions Geneva NFC HSM technology

Geneva International Exhibition of Inventions 2021

2024 Articles Cyberculture legal Legal information News

End-to-End Messaging Encryption Regulation – A European Issue

Articles Contactless passwordless Cyberculture EviOTP NFC HSM Technology EviPass NFC HSM technology multi-factor authentication Passwordless MFA

How to choose the best multi-factor authentication method for your online security

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Articles Cyberculture EviPass Password

Human Limitations in Strong Passwords Creation

2023 Articles Cyberculture EviCypher NFC HSM News Technologies

Telegram and the Information War in Ukraine

Articles Cyberculture EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology

Communication Vulnerabilities 2023: Avoiding Cyber Threats

Articles Cyberculture NFC HSM technology Technical News

RSA Encryption: How the Marvin Attack Exposes a 25-Year-Old Flaw

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2023 Articles Cyberculture EviCore HSM OpenPGP Technology EviCore NFC HSM Browser Extension EviCore NFC HSM Technology Legal information Licences Freemindtronic

Unitary patent system: why some EU countries are not on board

2024 Crypto Currency Cryptocurrency Cyberculture Legal information

EU Sanctions Cryptocurrency Regulation: A Comprehensive Overview

2023 Articles Cyberculture Eco-friendly Electronics GreenTech Technologies

The first wood transistor for green electronics

2018 Articles Cyberculture Legal information News

Why does the Freemindtronic hardware wallet comply with the law?

2023 Articles Cyberculture Technologies

NRE Cost Optimization for Electronics: A Comprehensive Guide

The articles displayed above ↑ belong to the same editorial section Cyberculture — Doctrine and Sovereignty.
They extend the reflection on RAM-only cryptology, digital sovereignty, and the evolution toward passwordless authentication.
Each article deepens the doctrinal, technical, and regulatory foundations of sovereign cybersecurity as defined by the Freemindtronic Andorra model.

Advanced Summary — Doctrine and Strategic Scope of the Sovereign Passwordless Model

The sovereign passwordless authentication model is not a mere technological evolution but a doctrinal shift in how digital identity is authenticated.
While dominant standards such as FIDO2, WebAuthn, or OAuth rely on servers, identity federations, and cloud infrastructures, the sovereign model promotes controlled disconnection, volatile-memory execution, and proof-of-possession without persistence.
This approach reverses the traditional trust paradigm — transferring authentication legitimacy from the network to the user.

↪ A Threefold Doctrinal Distinction

Three major families now coexist within the passwordless ecosystem:

  • Cloud passwordless (e.g., Microsoft, Google) — Dependent on a server account, convenient but non-sovereign;
  • Federated passwordless (OAuth / OpenID Connect) — Centralised around a third-party identity provider, prone to data correlation;
  • Offline sovereign (PassCypher, NFC HSM) — Local execution, physical proof, complete absence of persistence.

↪ Strategic Foundation

By eliminating dependency on remote infrastructures, the sovereign passwordless model strengthens structural quantum resilience and ensures the geopolitical neutrality of critical systems.
It naturally aligns with regulatory frameworks such as GDPR, NIS2, and DORA, all of which require full control over identity data and cryptographic secrets.

⮞ Summary — Doctrine and Reach

  • The sovereign passwordless model removes both passwords and external dependencies.
  • It is based on proof-of-possession, embedded cryptology, and ephemeral memory.
  • It guarantees regulatory compliance and sovereign resilience against quantum threats.

↪ Geopolitical and Industrial Implications

This model provides a strategic advantage to organisations capable of operating outside cloud dependency.
For critical sectors — defence, energy, healthcare, and finance — it delivers unprecedented cryptologic autonomy and reduces exposure to transnational cyberthreats.
Freemindtronic Andorra 🇦🇩 exemplifies this transition through a European, neutral, and universal approach built around a fully offline, interoperable ecosystem.

✓ Applied Sovereignty

The RAM-only design and segmented encryption model (PGP + AES-256-CBC) form the foundation of a truly sovereign passwordless authentication.
Each session acts as a temporary cryptographic environment destroyed immediately after use.
This principle of absolute volatility prevents re-identification, interception, and post-execution compromise.

This Advanced Summary therefore marks the boundary between dependent passwordless authentication and true digital sovereignty.
The next section will outline the cryptographic foundations of this doctrine, illustrated through PassCypher HSM and PassCypher NFC HSM technologies.

[/ux_text]

Cryptographic Foundations of the Sovereign Passwordless Model

The sovereign passwordless authentication model is grounded in precise cryptographic principles engineered to operate without any network dependency or data persistence.
It merges the robustness of classical cryptology (PKI, AES) with modern RAM-only architectures to guarantee a truly independent passwordless authentication.
These three technical pillars sustain the coherence of a quantum-resilient system — achieved not through post-quantum algorithms (PQC), but through the structural absence of exploitable data.

🔹 Public Key Infrastructure (PKI)

The PKI (Public Key Infrastructure) remains the foundation of global digital trust, establishing a cryptographic link between identity and public key.
In the sovereign framework, this public key is never stored on a server; it is derived temporarily during a local challenge-response validated by a physical token.
This ephemeral derivation prevents replication, impersonation, or remote interception.
Its design aligns with international cryptographic frameworks including the NIST SP 800-63B (US), the ENISA standards (EU), Japan’s CRYPTREC recommendations, and China’s Cybersecurity Law and national encryption standards.

🔹 Local Biometrics

Local biometrics — fingerprint, facial, retinal, or voice recognition — reinforce proof-of-possession without transmitting any biometric model or image.
The sensor serves as a local trigger verifying user presence, while storing no persistent data.
This principle complies with major privacy and cybersecurity frameworks including GDPR (EU), CCPA (US), UK Data Protection Act, Japan’s APPI, and China’s PIPL and CSL laws on secure local data processing.

🔹 Embedded Cryptology and Segmented Architecture (RAM-only)

At its core, the sovereign passwordless model relies on embedded cryptology and segmented PGP encryption executed entirely in volatile memory.
In technologies such as PassCypher, each key is divided into independent fragments loaded exclusively in RAM at runtime.
These fragments are encrypted under a hybrid PGP + AES-256-CBC scheme, ensuring complete segregation of identities and secrets.

This dynamic segmentation prevents all persistence: once the session ends, all data is instantly destroyed.
The device leaves no exploitable trace, giving rise to a form of quantum resilience by design — not through algorithmic defence, but through the sheer absence of decryptable material.
This architecture also aligns with secure “air-gapped” operational environments widely adopted across defence, industrial, and financial infrastructures in the US, Europe, and Asia-Pacific.

⮞ Summary — Technical Foundations

  • Public keys are derived and validated locally, never persisted on remote servers.
  • Biometric verification operates offline, without storing models or identifiers.
  • Embedded RAM-only cryptology guarantees volatility and untraceability of secrets.
  • The system is quantum-resilient by design — not via PQC, but via absence of exploitable matter.

↪ Compliance and Independence

These principles ensure native compliance with global cybersecurity and privacy frameworks while maintaining full independence from proprietary standards.
Whereas FIDO-based architectures rely on persistence and synchronisation, the sovereign model establishes erasure as a security doctrine.
This approach introduces a new paradigm: zero persistence as the cornerstone of digital trust.

The next section presents the PassCypher case study — the first internationally recognised sovereign implementation of these cryptographic foundations, certified for RAM-only operation and structural quantum resilience across EU, US, and Asia-Pacific frameworks.

PassCypher — The Sovereign Passwordless Authentication Model

PassCypher, developed by Freemindtronic Andorra 🇦🇩, represents the first tangible implementation of the sovereign passwordless authentication model.
This technology, an official finalist at the Intersec Awards 2026 in Dubai, marks a major doctrinal milestone in global cybersecurity.
It demonstrates that universal, offline, RAM-only authentication can deliver structural resilience to quantum threats.

The international Intersec jury described the innovation as:

“Offline passwordless security resistant to quantum attacks.”

This recognition celebrates not only a product, but a sovereign engineering philosophy
a model where trust is localised, secrets are volatile, and validation depends on no external server.
Each session executes entirely in volatile memory (RAM-only), each key is fragmented and encrypted, and every identity is based on a physical proof-of-possession.

↪ RAM-only Architecture and Operation

Within PassCypher, PGP keys are divided into independent fragments, encrypted via a hybrid AES-256-CBC + PGP algorithm, and loaded temporarily into memory during execution.
When the session ends, fragments are erased instantly, leaving no exploitable trace.
No data is ever written, synchronised, or exported — rendering the system tamper-proof by design and quantum-resilient through non-persistence.

↪ Integration into Critical Environments

Compatible with Zero Trust and air-gapped infrastructures, PassCypher operates without servers, browser extensions, or identity federations.
It meets the compliance expectations of critical sectors — defence, healthcare, finance, and energy — by aligning with GDPR (EU), NIS2, DORA, CCPA (US), and APPI (Japan) frameworks while avoiding any externalisation of identity data.
This sovereign authentication approach guarantees total independence from cloud ecosystems and digital superpowers.

⮞ Summary — PassCypher Doctrine

  • RAM-only: all cryptographic operations occur in volatile memory, without storage.
  • Proof of possession: local validation using a physical NFC or HSM key.
  • Zero persistence: automatic erasure after each session.
  • Quantum-resilient: structural resilience without post-quantum algorithms (PQC).
  • Universal interoperability: works across all systems, independent of cloud services.

↪ Applied Sovereign Doctrine

PassCypher materialises a security-by-erasure philosophy.
By eliminating the very concept of a password, it replaces stored secrets with an ephemeral proof-of-possession.
This paradigm shift redefines digital sovereignty: trust no longer resides in a server, but in local, verifiable, and non-persistent execution.

Strategic Impact

The recognition of PassCypher at the Intersec Awards 2026 positions Freemindtronic Andorra 🇦🇩 at the forefront of the global transition toward sovereign authentication.
This neutral, interoperable model paves the way for an international standard built on controlled disconnection, embedded cryptology, and structural resilience to quantum threats.

The next section introduces an Enhanced Sovereign Glossary to standardise the technical terminology of the passwordless model — from proof-of-possession to quantum-resilient architecture.

Weaknesses of FIDO / Passkey Systems — Limits and Attack Vectors

The FIDO / passkey protocols represent significant progress in reducing password dependence.
However, and this must be clearly stated, they do not eliminate all vulnerabilities.
Several operational and tactical vectors persist — WebAuthn interception, OAuth persistence, clickjacking via extensions — all of which undermine sovereignty and non-traceability.
It is therefore essential to expose the known weaknesses and, in parallel, highlight sovereign counter-approaches that offer greater structural resilience.

⮞ Observed Weaknesses — Weak Signals within FIDO / WebAuthn Systems

Vulnerabilities of Federated Systems — Sovereign Mitigations

The table below summarises the main vulnerabilities observed in federated authentication systems (OAuth, WebAuthn, extensions) and the mitigation strategies proposed by sovereign RAM-only models.

Vulnerability Impact Exploitation Scenario Sovereign Mitigation
OAuth / 2FA Persistence Session hijacking, prolonged exposure Tokens stored in cloud/client reused by attacker Avoid persistence — use ephemeral RAM-only credentials and local proof-of-possession
WebAuthn Interception Authentication hijack, impersonation Man-in-the-browser / hijacking of registration or auth flow Remove WebAuthn dependency for sovereign contexts — local cryptographic challenge in volatile memory
Extension Clickjacking User action exfiltration, fake prompts Compromised browser extension simulates authentication UI Disable sensitive extensions — prefer hardware validation (NFC / HSM) and absence of browser-based UX
Metadata & Traceability Identity correlation, privacy leaks Identity federation produces exploitable logs and metadata Zero-leakage: no server registry, no sync, key segmentation in volatile memory

⮞ Summary — Why Sovereign Models Mitigate These Weaknesses

RAM-only architectures eliminate exploitation vectors linked to persistence, identity federation, and web interfaces.
They prioritise local proof-of-possession, embedded cryptology, and volatile-memory execution to ensure structural resilience.

⮞ Summary — Why FIDO Alone Is Not Enough for Sovereignty

  • FIDO improves UX-level security but often retains infrastructure dependency (servers, synchronisation).
  • Integration-chain attacks (extensions, OAuth flows, WebAuthn) reveal that the surface remains significant.
  • True sovereignty requires complementary principles: RAM-only execution, physical proof, zero persistence, and local cryptology.

✓ Recommended Sovereign Countermeasures

  • Adopt physical, non-exportable authenticators (NFC / HSM) validated locally.
  • Use ephemeral-first schemes: derivation → use → destruction in RAM.
  • Avoid any cloud synchronisation or storage of keys and metadata.
  • Strictly restrict and audit extensions and client components; prefer hardware UX validation.
  • Document and monitor weak signals (e.g., Tycoon 2FA, DEF CON findings) to adapt security policies.

In summary, while FIDO and passkeys remain valuable for mainstream security, they are insufficient to guarantee digital sovereignty.
For critical contexts, the sovereign alternative — built on local proof-of-possession and volatility — reduces the attack surface and eliminates exfiltration paths tied to cloud and federated systems.

The next section introduces an Enhanced Sovereign Glossary to unify the technical and operational terminology of this doctrine.

FIDO vs TOTP / HOTP — Two Authentication Philosophies

The debate between FIDO and TOTP/HOTP systems illustrates two radically different visions of digital trust.
On one side, FIDO promotes a federated, cloud-centric model based on public/private key pairs tied to identity servers.
On the other, TOTP and HOTP protocols — though older — represent a decentralised and local approach, conceptually closer to the sovereign paradigm.

Doctrinal Comparison — FIDO2 vs TOTP vs RAM-only

The following table highlights the core doctrinal and technical differences between FIDO2/WebAuthn, TOTP/HOTP, and the sovereign RAM-only approach.
It reveals how each model defines trust, cryptologic dependency, and strategic sovereignty.

🔹 Quick Definitions

  • FIDO2 / WebAuthn — Modern authentication standard based on public/private key pairs, managed through a browser or hardware authenticator, requiring a registration server.
  • TOTP / HOTP — One-time password (OTP) protocols based on a locally shared secret and a synchronised computation (time or counter).

🔹 Core Doctrinal Differences

Criterion FIDO2 / WebAuthn TOTP / HOTP Sovereign Approach (RAM-only)
Architecture Server + identity federation (browser, cloud) Local + time/counter synchronisation Offline, no synchronisation, no server
Secret Public/private key pair registered on a server Shared secret between client and server Ephemeral secret generated and destroyed in RAM
Interoperability Limited to FIDO-compatible platforms Universal (RFC 6238 / RFC 4226) Universal (hardware + protocol-independent cryptology)
Network Resilience Dependent on registration service Operates without cloud Designed for air-gapped environments
Sovereignty Low — dependent on major ecosystems Medium — partial control of the secret Total — local autonomy, zero persistence
Quantum-Resistance Dependent on algorithms (non-structural) None — reusable secret Structural — nothing remains to decrypt post-execution

🔹 Strategic Reading

FIDO prioritises UX convenience and global standardisation, but introduces structural dependencies on cloud and identity federation.
OTP protocols (TOTP/HOTP), though dated, retain the advantage of operating offline without browser constraints.
The sovereign model combines the simplicity of OTPs with the cryptologic strength of RAM-only segmentation — it removes shared secrets, replaces them with ephemeral challenges, and guarantees a purely local proof-of-possession.

⮞ Summary — Comparative Doctrine

  • FIDO: centralised architecture, cloud dependency, simplified UX but limited sovereignty.
  • TOTP/HOTP: decentralised and compatible, but vulnerable if the shared secret is exposed.
  • Sovereign RAM-only: merges the best of both — proof-of-possession, non-persistence, zero dependency.

🔹 Perspective

From a digital sovereignty standpoint, the RAM-only model emerges as the conceptual successor to TOTP:
it maintains the simplicity of local computation while eliminating shared secrets and persistent keys.
This represents a doctrinal evolution toward an authentication model founded on possession and volatility — the twin pillars of truly autonomous cybersecurity.

SSH vs FIDO — Two Paradigms of Passwordless Authentication

The history of passwordless authentication did not begin with FIDO — it is rooted in SSH key-based authentication, which has secured critical infrastructures for over two decades.
Comparing SSH and FIDO/WebAuthn reveals two fundamentally different visions of digital sovereignty:
one open and decentralised, the other standardised and centralised.

🔹 SSH — The Ancestor of Sovereign Passwordless

The SSH (Secure Shell) protocol is based on asymmetric key pairs (public / private).
The user holds their private key locally, and identity is verified via a cryptographic challenge.
No password is exchanged or stored — making SSH inherently passwordless.
Moreover, SSH can operate offline during initial key establishment and does not depend on any third-party identity server.

🔹 FIDO — The Federated Passwordless

By contrast, FIDO2/WebAuthn introduces a normative authentication framework where the public key is registered with an authentication server.
While cryptographically sound, this model depends on a centralised infrastructure (browser, cloud, federation).
Thus, FIDO simplifies user experience but transfers trust to third parties (Google, Microsoft, Apple, etc.), thereby limiting sovereignty.

🔹 Doctrinal Comparison

Criterion SSH (Public/Private Key) FIDO2 / WebAuthn Sovereign RAM-only Model
Architecture Direct client/server, local key Federated server via browser Offline, no dependency
User Secret Local private key (non-exportable) Stored in a FIDO authenticator (YubiKey, TPM, etc.) Fragmented, ephemeral in RAM
Interoperability Universal (OpenSSH, RFC 4251) Limited (WebAuthn API, browser required) Universal, hardware-based (NFC / HSM)
Cloud Dependency None Often required (federation, sync) None
Resilience High — offline capable Moderate — depends on provider Structural — no persistent data
Sovereignty High — open-source model Low — dependent on private vendors Total — local proof-of-possession
Quantum-Resistance RSA/ECC vulnerable long term RSA/ECC vulnerable — vendor dependent Structural — nothing to decrypt post-execution

🔹 Doctrinal Analysis

SSH and FIDO represent two distinct doctrines of passwordless identity:

  • SSH: technical sovereignty, independence, simplicity — but lacking a unified UX standard.
  • FIDO: global usability and standardisation — but dependent on centralised infrastructures.

The RAM-only model introduced by PassCypher merges both philosophies:
it preserves the local proof-of-possession of SSH while introducing ephemeral volatility that eliminates all persistence — even within hardware.

⮞ Summary — SSH vs FIDO

  • SSH is historically the first sovereign passwordless model — local, open, and self-hosted.
  • FIDO establishes cloud-standardised passwordless authentication — convenient but non-autonomous.
  • The RAM-only model represents the doctrinal synthesis: local proof-of-possession + non-persistence = full sovereignty.

🔹 Perspective

The future of passwordless authentication extends beyond simply removing passwords:
it moves toward architectural neutrality — a model in which the secret is neither stored, nor transmitted, nor reusable.
The SSH of the 21st century may well be PassCypher RAM-only: a cryptology of possession — ephemeral, structural, and universal.

FIDO vs OAuth / OpenID — The Identity Federation Paradox

Both FIDO2/WebAuthn and OAuth/OpenID Connect share a common philosophy: delegating identity management to a trusted third party.
While this model improves convenience, it introduces a strong dependency on cloud identity infrastructures.
In contrast, the sovereign RAM-only model places trust directly in physical possession and local cryptology, removing all external identity intermediaries.

Criterion FIDO2 / WebAuthn OAuth / OpenID Connect Sovereign RAM-only
Identity Management Local registration server Federation via Identity Provider (IdP) No federation — local identity only
Persistence Public key stored on a server Persistent bearer tokens None — ephemeral derivation and RAM erasure
Interoperability Native via browser APIs Universal via REST APIs Universal via local cryptology
Risks Identity traceability Token reuse / replay No storage, no correlation possible
Sovereignty Limited (third-party server) Low (cloud federation) Total — offline, RAM-only execution

⮞ Summary — FIDO vs OAuth

  • Both models retain server dependency and identity traceability.
  • The sovereign model eliminates identity federation and persistence entirely.
  • It establishes local trust without intermediaries, ensuring complete sovereignty.

TPM vs HSM — The Hardware Trust Dilemma

Hardware sovereignty depends on where the key physically resides.
The TPM (Trusted Platform Module) is built into the motherboard and tied to the manufacturer, while the HSM (Hardware Security Module) is an external, portable, and isolated component.
The sovereign RAM-only model goes one step further by removing even HSM persistence: keys exist only temporarily in volatile memory.

Criterion TPM HSM Sovereign RAM-only
Location Fixed on motherboard External module (USB/NFC) Volatile — memory only
Vendor Dependency Manufacturer-dependent (Intel, AMD…) Independent, often FIPS-certified Fully independent — sovereign
Persistence Permanent internal storage Encrypted internal storage None — auto-erased after session
Portability Non-portable Portable Universal (NFC key / mobile / portable HSM)
Sovereignty Low Medium Total

⮞ Summary — TPM vs HSM

  • TPM depends on the hardware manufacturer and operating system.
  • HSM offers more independence but still maintains persistence.
  • The RAM-only model ensures total hardware sovereignty through ephemeral, non-persistent execution.

FIDO vs RAM-only — Cloud-free Is Not Offline

Many confuse cloud-free with offline.
A FIDO system may operate without the cloud, but it still depends on a registration server and a browser.
The RAM-only model, by contrast, executes and destroys the key directly in volatile memory: no data is stored, synchronised, or recoverable.

Criterion FIDO2 / WebAuthn Sovereign RAM-only
Server Dependency Yes — registration and synchronisation required No — 100% local operation
Persistence Public key persisted on server None — destroyed after execution
Interoperability Limited to WebAuthn Universal — any cryptologic protocol
Quantum Resilience Non-structural Structural — nothing to decrypt
Sovereignty Low Total

⮞ Summary — FIDO vs RAM-only

  • FIDO still depends on browsers and registration servers.
  • RAM-only removes all traces and dependencies.
  • It is the only truly offline and sovereign model.

Password Manager Cloud vs Offline HSM — The True Secret Challenge

Cloud-based password managers promise simplicity and synchronisation but centralise secrets and expose users to large-scale compromise risks.
The Offline HSM / RAM-only approach ensures that identity data never leaves the hardware environment.

Criterion Cloud Password Manager Offline HSM / RAM-only
Storage Encrypted cloud, persistent Volatile RAM, no persistence
Data Control Third-party server User only
Interoperability Proprietary apps Universal (key, NFC, HSM)
Attack Surface High (cloud, APIs, browser) Near-zero — full air-gap
Sovereignty Low Total

⮞ Summary — Cloud vs Offline HSM

  • Cloud models centralise secrets and create systemic dependency.
  • The HSM/RAM-only approach returns full control to the user.
  • Result: sovereignty, security, and GDPR/NIS2 compliance.

FIDO vs Zero Trust — Authentication and Sovereignty

The Zero Trust paradigm (NIST SP 800-207) enforces continuous verification but does not prescribe how authentication should occur.
FIDO partially meets these principles, while the sovereign RAM-only model fully embodies them:
never trust, never store.

Zero Trust Principle FIDO Implementation Sovereign RAM-only Implementation
Verify explicitly Server validates the FIDO key Local validation via proof-of-possession
Assume breach Persistent sessions Ephemeral sessions, RAM-only
Least privilege Cloud role-based access Key segmentation per use (micro-HSM)
Continuous validation Server-based session renewal Dynamic local proof, no persistence
Protect data everywhere Cloud-side encryption Local AES-256-CBC + PGP encryption

⮞ Summary — FIDO vs Zero Trust

  • FIDO partially aligns with Zero Trust principles.
  • The sovereign model fully realises them — with no cloud dependency.
  • Result: a cryptologic, sovereign, RAM-only Zero Trust architecture.

FIDO Is Not an Offline System — Scientific Distinction Between “Hardware Authenticator” and Sovereign HSM

The term “hardware” in the FIDO/WebAuthn framework is often misunderstood as implying full cryptographic autonomy.
In reality, a FIDO2 key performs local cryptographic operations but still depends on a software and server environment (browser, OS, identity provider) to initiate and validate authentication.
Without this software chain, the key is inert — no authentication, signing, or verification is possible.
It is therefore not a true air-gapped system but rather an “offline-assisted” one.

FIDO Model — Doctrinal Diagram

  • Remote server (Relying Party): generates and validates the cryptographic challenge.
  • Client (browser or OS): carries the challenge via the WebAuthn API.
  • Hardware authenticator (FIDO key): signs the challenge using its non-exportable private key.

Thus, even though the FIDO key is physical, it remains dependent on a client–server protocol.
This architecture excludes true cryptographic sovereignty — unlike EviCore sovereign NFC HSMs used by PassCypher.

Doctrinal Comparison — The Five Passwordless Authentication Models

To grasp the strategic reach of the sovereign model, it must be viewed across the full spectrum of passwordless architectures.
Five doctrines currently dominate the global landscape: FIDO2/WebAuthn, Federated OAuth, Hybrid Cloud, Industrial Air-Gap, and Sovereign RAM-only.
The table below outlines their structural differences.

Model Persistence Dependency Resilience Sovereignty
FIDO2 / WebAuthn Public key stored on server Federated server / browser Moderate (susceptible to WebAuthn exploits) Low (cloud-dependent)
Federated OAuth Persistent tokens Third-party identity provider Variable (provider-dependent) Limited
Hybrid Cloud Partial (local cache) Cloud API / IAM Moderate Medium
Industrial Air-gap None Isolated / manual High Strong
Sovereign RAM-only (Freemindtronic) None (zero persistence) Zero server dependency Structural — quantum-resilient Total — local proof-of-possession

⮞ Summary — Position of the Sovereign Model

The sovereign RAM-only model is the only one that eliminates persistence, server dependency, and identity federation.
It relies solely on physical proof-of-possession and embedded cryptology, ensuring complete sovereignty and structural quantum resilience.

FIDO vs PKI / Smartcard — Normative Heritage and Cryptographic Sovereignty

Before FIDO, PKI (Public Key Infrastructure) and Smartcards already formed the backbone of strong authentication.
Guided by standards such as ISO/IEC 29115 and NIST SP 800-63B, they relied on proof-of-possession and hierarchical public key management.
While FIDO2/WebAuthn sought to modernise this legacy by removing passwords, it did so at the cost of increased browser and server dependency.
The sovereign RAM-only model retains PKI’s cryptologic rigour but eliminates persistence and hierarchy: keys are derived, used, and erased — without external infrastructure.

Criterion PKI / Smartcard FIDO2 / WebAuthn Sovereign RAM-only
Core Principle Proof-of-possession via X.509 certificate Challenge-response via browser Offline physical proof, no hierarchy
Architecture Hierarchical (CA / RA) Client-server / browser Autonomous, fully local
Persistence Key stored on card Public key stored on server None — ephemeral in volatile memory
Interoperability ISO 7816, PKCS#11 WebAuthn / proprietary APIs Universal (PGP, AES, NFC, HSM)
Normative Compliance ISO 29115, NIST SP 800-63B Partial (WebAuthn, W3C) Structural — compliant with ISO/NIST frameworks without dependency
Sovereignty High (national cards) Low (FIDO vendors / cloud) Total (local, non-hierarchical, RAM-only)

↪ Heritage and Doctrinal Evolution

The RAM-only sovereign model does not reject PKI; it preserves its proof-of-possession principle while removing hierarchical dependency and persistent storage.
Where FIDO reinterprets PKI through the browser, the sovereign model transcends it — internalising cryptology, replacing hierarchy with local proof, and erasing stored secrets permanently.

⮞ Summary — FIDO vs PKI / Smartcard

  • PKI ensures trust through hierarchy, FIDO through browsers, and the sovereign model through direct possession.
  • RAM-only inherits ISO/NIST cryptographic discipline — but without servers, CAs, or persistence.
  • Result: a post-PKI authentication paradigm — universal, sovereign, and structurally quantum-resilient.

FIDO/WebAuthn vs Username + Password + TOTP — Security, Sovereignty & Resilience

To clarify the debate, this section compares FIDO/WebAuthn with the traditional username + password + TOTP schema, adding the sovereign RAM-only reference.
It evaluates phishing resistance, attack surface, cloud dependency, and execution speed — critical factors in high-security environments such as defence, healthcare, finance, and energy.

🔹 Quick Definitions

  • FIDO/WebAuthn: public-key authentication (client/server) reliant on browsers and registration servers.
  • ID + Password + TOTP: traditional model using static credentials and time-based OTP — simple but vulnerable to MITM and phishing.
  • Sovereign RAM-only (PassCypher HSM PGP): local proof-of-possession with ephemeral cryptology executed in volatile memory — no server, no cloud, no persistence.
Criterion FIDO2 / WebAuthn Username + Password + TOTP Sovereign RAM-only (PassCypher HSM PGP)
Phishing Resistance ✅ Origin-bound (phishing-resistant) ⚠️ OTP phishable (MITM, MFA fatigue) ✅ Local validation — no browser dependency
Attack Surface Browser, extensions, registration servers Brute force, credential stuffing, OTP interception Total air-gap, local RAM challenge
Cloud / Federation Dependency ⚠️ Mandatory registration server 🛠️ Varies by IAM ❌ None — fully offline operation
Persistent Secret Public key stored server-side Password + shared OTP secret ✅ Ephemeral in RAM — zero persistence
User Experience (UX) Good — browser-native integration Slower — manual password & TOTP entry Ultra-fluid: 2–3 clicks (ID + Password) + 1 click for TOTP.
Full authentication ≈ under 4s — no typing, no network exposure.
Sovereignty / Neutrality ⚠️ Browser and FIDO server dependent 🛠️ Medium (self-hostable but persistent) ✅ Total — independent, offline, local
Compliance & Traceability Server-side WebAuthn logs / metadata Access logs, reusable OTPs GDPR/NIS2-compliant — no stored or transmitted data
Quantum Resilience Algorithm-dependent Low — reusable secrets ✅ Structural — nothing to decrypt post-use
Operational Cost FIDO keys + IAM integration Low but high user maintenance Local NFC HSM — one-time cost, zero server maintenance

🔹 Operational Analysis

Manual entry of username, password, and TOTP takes on average 12–20 seconds, with a high risk of human error.
In contrast, PassCypher HSM PGP automates these steps through embedded cryptology and local proof-of-possession:
2–3 clicks for ID + password, plus a third click for TOTP — full authentication in under 4 seconds, with no typing or network exposure.

⮞ Summary — Advantage of the Sovereign Model

  • FIDO removes passwords but depends on browsers and identity servers.
  • TOTP adds temporal security but remains vulnerable to interception and MFA fatigue.
  • PassCypher HSM PGP unites speed, sovereignty, and structural security: air-gap, zero persistence, hardware proof.

✓ Sovereign Recommendations

  • Replace manual password/TOTP entry with a RAM-only HSM module for automated authentication.
  • Adopt an ephemeral-first policy: derive → execute → destroy instantly in volatile memory.
  • Eliminate browser and extension dependencies — validate identities locally via air-gap.
  • Quantify performance gains and human error reduction in critical architectures.

FIDO Hardware with Biometrics (Fingerprint) vs NFC HSM PassCypher — Technical Comparison

Some modern FIDO keys integrate an on-device biometric sensor (match-on-device) to reduce the risk of misuse by third parties.
While this enhancement improves usability, it does not remove the software dependency (WebAuthn, OS, firmware) nor the persistence of private keys stored in the Secure Element.
In contrast, the NFC HSM PassCypher devices combine physical possession, configurable multifactor authentication, and segmented RAM-only architecture, ensuring total independence from server infrastructures.

Verifiable Technical Points

  • Match-on-device: Fingerprints are verified locally within the secure element. Templates are not exported but remain bound to proprietary firmware.
  • Fallback PIN: When biometric verification fails, a PIN or recovery phrase is required to access the key.
  • Liveness / Anti-spoofing: Resistance to fingerprint spoofing varies by manufacturer. Liveness detection algorithms are not standardised nor always disclosed.
  • Credential Persistence: FIDO private keys are stored permanently inside a secure element — they persist after usage.
  • Interface Dependency: FIDO relies on WebAuthn and requires a server interaction for validation, preventing full air-gap operation.

Comparative Table

Criterion Biometric FIDO Keys NFC HSM PassCypher
Secret Storage Persistent in secure element ⚠️ Segmented AES-256-CBC encryption; volatile keys erased after execution
Biometrics Match-on-device; local template; fallback PIN. Liveness check varies by vendor; methods are not standardised or always disclosed. 🛠️ Managed via NFC smartphone; combinable with contextual factors (e.g., geolocation zone).
Storage Capacity Limited credentials (typically 10–100 depending on firmware) Up to 100 secret labels (e.g. 50 TOTP + 50 ID/Password pairs)
Air-gap Capability No — requires browser, OS, and WebAuthn server Yes — fully offline architecture, zero network dependency
MFA Policies Fixed by manufacturer: biometrics + PIN Fully customisable: up to 15 factors and 9 trust criteria per secret
Post-compromise Resilience Residual risk if device and PIN are compromised No persistent data after session (RAM-only)
Cryptographic Transparency Proprietary firmware and algorithms Documented and auditable algorithms (EviCore / PassCypher)
UX / User Friction Requires WebAuthn + browser + OS; fallback PIN required 🆗 TOTP: manual PIN entry displayed on Android NFC app (standard OTP behaviour).
ID + Password: contactless auto-fill secured by NFC pairing between smartphone and Chromium browser.
Click field → encrypted request → NFC pass → field auto-filled.

Factual Conclusion

Biometric FIDO keys improve ergonomics and reduce casual misuse, but they do not alter the persistent nature of the model.
NFC HSM PassCypher, with their RAM-only operation, segmented cryptography, and zero server dependency, deliver a sovereign, auditable, and contextual solution for strong authentication without external trust.

Comparative UX Friction — Hardware Level

Ease of use is a strategic factor in authentication adoption. The following table compares hardware devices based on friction level, software dependency, and offline capability.

Hardware System User Friction Level Usage Details
FIDO Key (no biometrics) ⚠️ High Requires browser + WebAuthn server + physical button. No local control.
FIDO Key with Biometrics 🟡 Medium Local biometric + fallback PIN; depends on firmware and browser integration.
Integrated TPM (PC) ⚠️ High Transparent for user but system-bound, non-portable, not air-gapped.
Standard USB HSM 🟡 Medium Requires insertion, third-party software, and often a password. Limited customisation.
Smartcard / Chip Card ⚠️ High Needs physical reader, PIN, and middleware. High friction outside managed environments.
NFC HSM PassCypher ✅ Low to None Contactless use; automatic ID/Password filling; manual PIN for TOTP (standard OTP behaviour).

Strategic Reading

  • TOTP: Manual PIN entry is universal across OTP systems (Google Authenticator, YubiKey, etc.). PassCypher maintains this logic — but fully offline and RAM-only.
  • ID + Password: PassCypher uniquely provides contactless auto-login secured by cryptographic pairing between NFC smartphone and Chromium browser.
  • Air-gap: All other systems depend on an OS, browser, or server. PassCypher is the only one that operates in a 100% offline mode, including for auto-fill operations.

⮞ Summary

PassCypher NFC HSM achieves the lowest friction level possible for a sovereign, secure, and multifactor authentication system.
No other hardware model combines:

  • RAM-only execution
  • Contactless auto-login
  • Up to 15 configurable factors
  • Zero server dependency
  • Fluid UX on Android and PC

Sovereign Multifactor Authentication — The PassCypher NFC HSM Model

Beyond a hardware comparison, the PassCypher NFC HSM model, based on EviCore NFC HSM technology, embodies a true sovereign multifactor authentication doctrine.
It is founded on segmented cryptology and volatile memory, where each secret acts as an autonomous entity protected by encapsulated AES-256-CBC encryption layers.
Each derivation depends on contextual, physical, and logical criteria.
Even if one factor is compromised, the secret remains indecipherable without full reconstruction of the segmented key.

Architecture — 15 Modular Factors

Each NFC HSM PassCypher module can combine up to 15 authentication factors, including 9 configurable dynamic trust criteria per secret.
This granularity surpasses FIDO, TPM, and PKI standards, granting the user verifiable, sovereign control over their access policies.

Factor Description Purpose
1️⃣ NFC Pairing Key Authenticates the Android terminal using a unique pairing key. Initial HSM access.
2️⃣ Anti-counterfeit Key Hardware ECC BLS12-381 128-bit key integrated in silicon. HSM authenticity and exchange integrity.
3️⃣ Administrator Password Protects configuration and access policies. Hierarchical control.
4️⃣ User Password / Biometric Local biometric or cognitive factor on NFC smartphone. Interactive user validation.
5–13️⃣ Contextual Factors Up to 9 per secret: geolocation, BSSID, secondary password, device fingerprint, barcode, phone ID, QR code, time condition, NFC tap. Dynamic multi-context protection.
14️⃣ Segmented AES-256-CBC Encryption Encapsulation of each factor within a segmented key. Total cryptographic isolation.
15️⃣ RAM-only Erasure Instant destruction of derived keys post-use. Removes post-session attack vectors.

Cryptographic Doctrine — Segmented Key Encapsulation

The system is based on independent cryptographic segments, where each trust label is encapsulated and derived from the main key.
No session key exists outside volatile memory, guaranteeing non-reproducibility and non-persistence of secrets.

Cryptographic Outcomes

  • PGP AES-256-CBC encapsulation of each segment
  • No data persisted outside volatile memory
  • Combinatorial multifactor authentication
  • Native protection against cloning and reverse engineering
  • Post-quantum resilience by segmented design

This architecture positions PassCypher NFC HSM as the first truly sovereign, auditable, and non-persistent authentication model
fully operational without servers or external trust infrastructures.
It defines a new benchmark for post-quantum security and sovereign passwordless standardisation.

Zero Trust, Compliance, and Sovereignty in Passwordless Authentication

The sovereign passwordless model does not oppose the Zero Trust paradigm — it extends it.
Designed for environments where verification, segmentation, and non-persistence are essential, it translates the principles of NIST SP 800-207 into a hardware-based, disconnected logic.

Zero Trust Principle (NIST) Sovereign Implementation
Verify explicitly Local proof-of-possession via physical key
Assume breach Ephemeral RAM-only sessions — instant destruction
Least privilege Keys segmented by purpose (micro-HSM)
Continuous evaluation Dynamic authentication without persistent sessions
Protect data everywhere Embedded AES-256-CBC / PGP encryption — off-cloud
Visibility and analytics Local audit without persistent logs — RAM-only traceability

⮞ Summary — Institutional Compliance

The sovereign model is inherently compliant with GDPR, NIS2, DORA and ISO/IEC 27001 frameworks:
no data is exported, retained, or synchronised.
It exceeds Zero Trust principles by eliminating persistence itself and ensuring local traceability without network exposure.

Passwordless Timeline — From FIDO to Cryptologic Sovereignty

  • 2009: Creation of the FIDO Alliance.
  • 2014: Standardisation of FIDO UAF/U2F.
  • 2015: Freemindtronic Andorra 🇦🇩 launches the first NFC HSM PassCypher — an offline, passwordless authentication system based on proof-of-physical-possession.
    A foundational milestone in the emergence of a sovereign civilian model.
  • 2017: Integration of the WebAuthn standard within the W3C.
  • 2020: Introduction of passkeys (Apple/Google) and the first major cloud dependencies.
  • 2021: EviCypher — an authentication system using segmented cryptographic keys — wins the Gold Medal at the Geneva International Inventions Exhibition.
    Based on cryptographic fragmentation and volatile memory, it becomes the core technology powering PassCypher NFC HSM and PassCypher HSM PGP ecosystems.
  • 2021: PassCypher NFC HSM receives the Most Innovative Hardware Password Manager award at the RSA Conference 2021 Global InfoSec Awards, confirming the maturity of the civilian offline model.
  • 2022: Presentation at Eurosatory 2022 of a version dedicated to sovereign and defense use
    the PassCypher HSM PGP, featuring RAM-only architecture and EviCypher segmented cryptography, offering structural quantum resilience.
  • 2023: Public identification of vulnerabilities in WebAuthn, OAuth, and passkeys highlights the necessity of a truly sovereign offline model.
  • 2026: PassCypher is selected as an Intersec Awards finalist in Dubai, recognised as the Best Cybersecurity Solution for its civilian RAM-only sovereign model.

⮞ Summary — The Path Toward Cryptologic Sovereignty

From 2015 to 2026, Freemindtronic Andorra 🇦🇩 has built a sovereign continuum of innovation:
the invention of the NFC HSM PassCypher (civilian), the EviCypher technological foundation (Geneva Gold Medal 2021), international recognition (RSA 2021),
the RAM-only sovereign defense model (Eurosatory 2022), and institutional consecration (Intersec 2026).
This trajectory establishes the sovereign passwordless doctrine as a dual-use standard — civil and defense — based on proof-of-possession and segmented volatile cryptology.

Interoperability and Sovereign Migration

Organisations can progressively adopt the sovereign model without disruption.
Migration occurs in three phases:
hybrid (FIDO + local coexistence), air-gapped (offline validation), then sovereign (RAM-only).
Integrated NFC and HSM modules ensure backward compatibility while eliminating cloud dependencies.

✓ Sovereign Migration Methodology

  1. Identify cloud dependencies and OAuth federations.
  2. Introduce local PassCypher modules (HSM/NFC).
  3. Activate local proof-of-possession for critical access.
  4. Remove remaining synchronisations and persistence layers.
  5. Validate GDPR/NIS2 compliance through sovereign audit.

This model ensures backward compatibility, operational continuity, and a smooth transition toward cryptologic sovereignty.

Weak Signals — Quantum and AI

The acceleration of quantum computing and generative AI introduces unprecedented security challenges.
The sovereign model distinguishes itself through intrinsic resilience — it does not rely on computational strength but on the controlled disappearance of the secret.

  • Quantum Threats: Persistent PKI architectures become vulnerable to factorisation attacks.
  • AI-driven Attacks: Biometric systems can be bypassed using deepfakes or synthetic models.
  • Structural Resilience: The sovereign model avoids these threats by design — there is nothing to decrypt or reproduce.

⮞ Summary — Post-Quantum Doctrine

True resistance does not emerge from a new post-quantum algorithm, but from a philosophy:
the principle of the ephemeral secret.
This concept could inspire future European and international standards for sovereign passwordless authentication.

Official and Scientific Definitions of Passwordless

Understanding the term passwordless requires distinguishing between institutional definitions (NIST, ISO, Microsoft) and the scientific foundations of authentication.
These definitions demonstrate that passwordless authentication is not a product, but a method — based on proof of possession, proof of knowledge, and proof of existence of the user.

🔹 NIST SP 800-63B Definition

According to NIST SP 800-63B — Digital Identity Guidelines:

“Authentication establishes confidence in the identities of users presented electronically to an information system. Each authentication factor is based on something the subscriber knows, has, or is.”

In other words, authentication relies on three factor types:

  • Something you know — knowledge: a secret, PIN, or passphrase.
  • Something you have — possession: a token, card, or hardware key.
  • Something you are — inherence: a biometric or physical trait.

🔹 ISO/IEC 29115:2013 Definition

The ISO/IEC 29115 defines the Entity Authentication Assurance Framework (EAAF), which specifies four assurance levels (IAL, AAL, FAL) based on factor strength and independence.
AAL3 represents multi-factor passwordless authentication combining possession and inherence through a secure hardware token.
The PassCypher model aligns with the AAL3 logic — with no persistence or server dependency.

🔹 Microsoft Definition — Passwordless Authentication

From Microsoft Entra Identity documentation:

“Passwordless authentication replaces passwords with strong two-factor credentials resistant to phishing and replay attacks.”

However, these implementations still rely on cloud identity services and federated trust models — limiting sovereignty.

🔹 Doctrinal Synthesis

All definitions converge on one point:
Passwordless does not mean “without secret,” but rather “without persistent password.”
In a sovereign model, trust is local — proof is rooted in physical possession and ephemeral cryptology, not centralised identity.

⮞ Summary — Official Definitions

  • NIST defines three factors: know / have / are.
  • ISO 29115 formalises AAL3 as the reference for passwordless assurance.
  • Microsoft describes a phishing-resistant model, but still cloud-federated.
  • The Freemindtronic sovereign model transcends these by eliminating persistence and network dependency.

Sovereign Glossary (Enriched)

This glossary presents the key terms of sovereign passwordless authentication, founded on possession, volatility, and cryptologic independence.

Term Sovereign Definition Origin / Reference
Passwordless Authentication without password entry, based on possession and/or inherence, with no persistent secret. NIST SP 800-63B / ISO 29115
Sovereign Authentication No cloud, server, or federation dependency; validated locally in volatile memory. Freemindtronic Doctrine
RAM-only All cryptographic execution occurs in volatile memory only; no persistent trace. EviCypher (Geneva Gold Medal 2021)
Proof of Possession Validation through physical object (NFC key, HSM, card) ensuring real presence. NIST SP 800-63B
Segmented Key Key divided into volatile fragments, recomposed on demand without persistence. EviCypher / PassCypher
Quantum-resilient (Structural) Resilience achieved through absence of exploitable data post-execution. Freemindtronic Doctrine
Air-gapped System physically isolated from networks, preventing remote interception. NIST Cybersecurity Framework
Sovereign Zero Trust Extension of the Zero Trust model integrating disconnection and volatility as proof mechanisms. Freemindtronic Andorra 🇦🇩
Embedded Cryptology Encryption and signature operations executed directly on hardware (NFC, HSM, SoC). Freemindtronic Patent FR 1656118
Ephemerality (Volatility) Automatic destruction of secrets after use; security through erasure. Freemindtronic Andorra 🇦🇩 / RAM-only Doctrine

⮞ Summary — Unified Terminology

This glossary defines the foundational terminology of the sovereign passwordless doctrine,
distinguishing federated passwordless models from cryptologically autonomous architectures based on possession, volatility, and non-persistence.

Frequently Asked Questions — Sovereign Passwordless Authentication

What is sovereign passwordless authentication?

Core principle

Sovereign passwordless authentication operates entirely offline — no server, no cloud.
Verification relies on proof of possession (NFC/HSM) and RAM-only cryptology with zero persistence.

Why it matters

Trust is local, independent of any identity federation, enhancing digital sovereignty and reducing attack surfaces.

Key takeaway

Hardware validation, volatile memory execution, and zero data retention.

Important distinction

FIDO2/WebAuthn requires server registration and a federated browser.
The sovereign model performs the entire challenge in RAM, with no storage or sync.

Result

Quantum-resilient by design: after execution, nothing remains to decrypt.

Takeaway

Fewer intermediaries, more autonomy and control.

Definition

RAM-only means all cryptographic operations occur entirely in volatile memory.

Security impact

When the session ends, everything is destroyed — zero persistence, zero trace, zero reuse.

Key insight

Drastically reduces post-execution and exfiltration risks.

Principle

The user proves they physically possess a device (NFC key, HSM, or card). No memorised secret is required.

Advantage

Local hardware validation and network independence enable true sovereign passwordless authentication.

Essential idea

“What you have” replaces both passwords and federated identities.

Official framework

The NIST triad (know / have / are) is respected. ISO/IEC 29115 defines this as AAL3 (possession + inherence via hardware token).

The sovereign extension

Freemindtronic enhances this through zero persistence and RAM-only execution.

Key takeaway

Principle-level compliance, implementation-level independence.

Clear distinction

Passwordless = no entry of passwords.
Password-free = no storage of passwords.

Sovereign enhancement

Combines both: no entry, no persistence, local proof of possession.

Memorable point

Fewer dependencies, greater operational integrity.

Initial steps

  1. Audit cloud/OAuth dependencies.
  2. Deploy PassCypher NFC/HSM modules.
  3. Activate proof of possession for critical access.
  4. Remove synchronisation mechanisms.
  5. Validate GDPR/NIS2/DORA compliance.

Outcome

Gradual transition, continuous service, strengthened sovereignty.

Key concept

Ephemeral-first method: derive → use → destroy (RAM-only).

Core concept

Security is not only algorithmic — it’s based on the absence of exploitable material.

Mechanism

Key segmentation + volatility = no lasting secret after execution.

What to remember

Resilience through design, not brute cryptographic strength.

Main domains

Defense, Healthcare, Finance, Energy, and critical infrastructures.

Why

Need for offline operation, zero persistence, and proof of possession for compliance and exposure reduction.

Reference

See: PassCypher — Intersec 2026 finalist.

Yes

The PassCypher ecosystem (NFC HSM & HSM PGP) delivers RAM-only sovereign passwordless authentication — universal, offline, cloud-free, server-free, and federation-free.

Immediate benefits

Operational sovereignty, reduced attack surface, long-term compliance.

Key message

A practical, deployable path toward sovereign passwordless authentication.

Further Reading — Deepening Sovereignty in Passwordless Authentication

To explore the strategic scope of the sovereign passwordless model in greater depth, it is essential to understand how RAM-only cryptographic architectures are reshaping cybersecurity in a lasting way.
Through its innovations, Freemindtronic Andorra 🇦🇩 illustrates a coherent continuum: invention → doctrine → recognition.

🔹 Freemindtronic Internal Resources

🔹 Complementary Institutional References

🔹 Doctrinal Perspectives

The sovereign passwordless model does more than strengthen security — it defines a universal, neutral, and interoperable trust framework.
It prefigures the emergence of a European doctrine of sovereign authentication, structured around embedded cryptology, proof of possession, and controlled volatility.

⮞ Summary — Going Further

  • Explore the convergence between RAM-only and Zero Trust models.
  • Analyse cryptologic sovereignty in contrast to federated identity frameworks.
  • Follow the ongoing ISO/NIST standardisation of the sovereign passwordless model.
  • Assess quantum and AI impacts on decentralised authentication.

Manifesto Quote on Passwordless Authentication

“Passwordless does not mean the absence of a password — it means the presence of sovereignty:
the sovereignty of the user over their identity, of cryptology over the network, and of volatile memory over persistence.”
— Jacques Gascuel, Freemindtronic Andorra 🇦🇩

🔝 Back to top

Authentification sans mot de passe souveraine : sens, modèles et définitions officielles

Affiche claire illustrant l’authentification sans mot de passe passwordless souveraine par Freemindtronic Andorre

Authentification sans mot de passe souveraine s’impose comme une doctrine essentielle de la cybersécurité moderne. Loin de se limiter au modèle FIDO, cette approche vise à restaurer la maîtrise complète de l’identité numérique, en éliminant la dépendance au cloud, aux serveurs ou aux fédérations d’identité.Conçue pour fonctionner hors ligne, elle repose sur la preuve de possession, l’exécution en mémoire volatile (RAM-only) et le chiffrement segmenté AES-256-CBC / PGP, garantissant une authentification universelle sans persistance. Cette architecture, issue des travaux de Freemindtronic Andorre, redéfinit la notion de passwordless selon une perspective souveraine et scientifique, conforme aux cadres du NIST SP 800-63B, de Microsoft et de l’ISO/IEC 29115. Ce billet explore ses fondements, ses différences doctrinales avec les modèles fédérés et son rôle dans la construction d’une cybersécurité véritablement souveraine.

Résumé express — Les bases du modèle authentification sans mot de passe souverain

Lecture rapide (≈ 4 min) : Le terme passwordless, souvent associé au standard FIDO, désigne en réalité une famille de modèles d’authentification dont seuls certains garantissent la souveraineté. Le modèle souverain hors-ligne, porté par Freemindtronic Andorre, élimine toute dépendance réseau ou cloud et repose sur la preuve de possession et la mémoire volatile.
Cette approche incarne une rupture doctrinale : elle redéfinit l’identité numérique à travers une cryptologie RAM-only, un chiffrement AES-256-CBC et une segmentation PGP sans persistance.
En supprimant toute centralisation, le modèle garantit une authentification universelle, hors ligne et quantiquement résistante — conforme aux cadres NIST, Microsoft et ISO/IEC.

⚙ Un modèle souverain en action

Les architectures souveraines s’opposent fondamentalement aux modèles FIDO et OAuth. Là où ces derniers reposent sur des serveurs d’enregistrement et des fédérateurs d’identité, les solutions PassCypher HSM et PassCypher NFC HSM fonctionnent en air-gap total.
Elles exécutent toutes les opérations critiques — génération, signature, vérification et destruction des clés — en mémoire volatile.
Cette authentification sans mot de passe hors-ligne démontre que la souveraineté cryptologique peut être atteinte sans dépendre d’aucune infrastructure tierce.

🌍 Portée universelle

Ce modèle passwordless souverain s’applique à tous les environnements : systèmes industriels, militaires, de santé ou de défense. Il préfigure une doctrine numérique neutre, indépendante et interopérable, capable d’assurer la protection des identités numériques au-delà des standards FIDO ou WebAuthn.

Paramètres de lecture

Temps de lecture résumé express : ≈ 4 minutes
Temps de lecture résumé avancé : ≈ 6 minutes
Temps de lecture chronique complète : ≈ 35 minutes
Date de publication : 2025-11-04
Dernière mise à jour : 2025-11-04
Niveau de complexité : Expert — Cryptologie & Souveraineté
Densité technique : ≈ 78 %
Langues disponibles : FR · EN
Spécificité : Analyse doctrinale — Modèles passwordless, souveraineté numérique
Ordre de lecture : Résumé → Définitions → Doctrine → Architecture → Impacts
Accessibilité : Optimisé pour lecteurs d’écran — ancres & balises structurées
Type éditorial : Chronique Cyberculture — Doctrine et Souveraineté
Niveau d’enjeu : 8.3 / 10 — portée normative et stratégique
À propos de l’auteur : Jacques Gascuel, inventeur et fondateur de Freemindtronic Andorre, expert en architectures HSM, souveraineté cryptographique et sécurité hors-ligne.

Note éditoriale — Ce billet sera enrichi au fil de la normalisation internationale des modèles passwordless souverains et des travaux ISO/NIST relatifs à l’authentification hors-ligne. Ce contenu est rédigé conformément à la Déclaration de transparence de l’IA établie par Freemindtronic Andorre FM-AI-2025-11-SMD5

Localisation souveraine (offline)

Les produits PassCypher HSM et PassCypher NFC HSM sont disponibles en 14 langues embarquées sans connexion Internet. Cette conception garantit la confidentialité linguistique et la neutralité technique en environnement air-gap.

2026 Awards Cyberculture Digital Security Distinction Excellence EviOTP NFC HSM Technology EviPass EviPass NFC HSM technology EviPass Technology finalists PassCypher PassCypher

Quantum-Resistant Passwordless Manager — PassCypher finalist, Intersec Awards 2026 (FIDO-free, RAM-only)

2025 Cyberculture Digital Security

Authentification multifacteur : anatomie, OTP, risques

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2025 Cyberculture

NGOs Legal UN Recognition

2025 Cyberculture Legal information

French IT Liability Case: A Landmark in IT Accountability

2024 Articles Cyberculture Legal information

ANSSI Cryptography Authorization: Complete Declaration Guide

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Cyberculture DataShielder

Google Workspace Data Security: Legal Insights

Awards Cyberculture EviCypher Technology International Inventions Geneva NFC HSM technology

Geneva International Exhibition of Inventions 2021

2024 Articles Cyberculture legal Legal information News

End-to-End Messaging Encryption Regulation – A European Issue

Articles Contactless passwordless Cyberculture EviOTP NFC HSM Technology EviPass NFC HSM technology multi-factor authentication Passwordless MFA

How to choose the best multi-factor authentication method for your online security

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Articles Cyberculture EviPass Password

Human Limitations in Strong Passwords Creation

2023 Articles Cyberculture EviCypher NFC HSM News Technologies

Telegram and the Information War in Ukraine

Articles Cyberculture EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology

Communication Vulnerabilities 2023: Avoiding Cyber Threats

Articles Cyberculture NFC HSM technology Technical News

RSA Encryption: How the Marvin Attack Exposes a 25-Year-Old Flaw

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2023 Articles Cyberculture EviCore HSM OpenPGP Technology EviCore NFC HSM Browser Extension EviCore NFC HSM Technology Legal information Licences Freemindtronic

Unitary patent system: why some EU countries are not on board

2024 Crypto Currency Cryptocurrency Cyberculture Legal information

EU Sanctions Cryptocurrency Regulation: A Comprehensive Overview

2023 Articles Cyberculture Eco-friendly Electronics GreenTech Technologies

The first wood transistor for green electronics

2018 Articles Cyberculture Legal information News

Why does the Freemindtronic hardware wallet comply with the law?

2023 Articles Cyberculture Technologies

NRE Cost Optimization for Electronics: A Comprehensive Guide
Les billets affichés ci-dessus ↑ appartiennent à la même rubrique éditoriale Cyberculture — Doctrine et Souveraineté. Ils prolongent l’analyse des enjeux liés à la cryptologie RAM-only, à la souveraineté numérique et à la transition vers l’authentification sans mot de passe. Chaque article explore les fondements doctrinaux, techniques et normatifs qui définissent la cybersécurité souveraine selon le modèle Freemindtronic Andorre.

Résumé avancé — Doctrine et portée stratégique du modèle passwordless souverain

Le modèle passwordless souverain ne se définit pas comme une simple évolution technologique, mais comme une rupture doctrinale dans la manière d’envisager l’authentification numérique. Là où les standards dominants (FIDO2, WebAuthn, OAuth) s’appuient sur des serveurs, des fédérations d’identité et des infrastructures cloud, le modèle souverain prône la déconnexion maîtrisée, l’exécution en mémoire volatile et la preuve de possession sans persistance. Cette approche inverse le paradigme de confiance : elle transfère la légitimité de l’authentification du réseau vers l’utilisateur lui-même.

↪ Une triple distinction doctrinale

Trois grandes familles coexistent aujourd’hui dans l’écosystème passwordless :

  • Cloud passwordless (ex. : Microsoft, Google) — Dépendant d’un compte serveur, pratique mais non souverain ;
  • Fédéré passwordless (OAuth / OpenID Connect) — Centralisé autour d’un tiers d’identité, exposé à la corrélation de données ;
  • Souverain hors-ligne (PassCypher, HSM NFC) — Exécution locale, preuve matérielle, absence totale de persistance.

↪ Fondement stratégique

En supprimant la dépendance aux infrastructures distantes, le passwordless souverain renforce la résilience quantique structurelle et assure la neutralité géopolitique des systèmes critiques. Il s’intègre naturellement dans les cadres réglementaires comme le RGPD, la NIS2 ou le DORA, qui exigent une maîtrise complète des données d’identité et des secrets cryptographiques.

⮞ Résumé — Doctrine et portée

  • Le modèle passwordless souverain élimine le mot de passe et toute dépendance externe.
  • Il repose sur la preuve de possession, la cryptologie embarquée et la mémoire éphémère.
  • Il garantit la conformité réglementaire et la résilience souveraine face aux menaces quantiques.

↪ Implications géopolitiques et industrielles

Ce modèle confère un avantage stratégique majeur aux acteurs capables d’opérer hors des dépendances cloud. Pour les secteurs critiques — défense, énergie, santé, finance —, il offre une autonomie cryptologique inédite et réduit les surfaces d’exposition aux cyber-menaces transnationales.
Freemindtronic Andorre illustre cette transition par une approche européenne, neutre et universelle, articulée autour d’un écosystème entièrement hors-ligne et interopérable avec les architectures existantes.

✓ Souveraineté appliquée

L’approche RAM-only et la segmentation des clés (PGP + AES-256-CBC) constituent la base d’une authentification sans mot de passe réellement souveraine.
Chaque session agit comme un espace cryptographique temporaire, détruit après usage.
Ce principe de volatilité absolue prévient la ré-identification, l’interception et la compromission post-exécution.

Ce Résumé avancé trace donc la frontière entre l’authentification sans mot de passe dépendante et la souveraineté numérique réelle.
La section suivante détaillera les fondements cryptographiques de cette doctrine, illustrés par les technologies PassCypher HSM et PassCypher NFC HSM.

[/ux_text]

Fondements cryptographiques du passwordless souverain

Le modèle passwordless souverain repose sur des fondements cryptographiques précis, conçus pour fonctionner sans dépendance réseau ni persistance de données. Il combine des principes issus de la cryptologie classique (PKI, AES) et des architectures RAM-only modernes pour garantir une authentification sans mot de passe réellement indépendante. Ces trois piliers techniques assurent la cohérence d’un système résilient quantique sans recourir aux algorithmes post-quantiques (PQC).

🔹 Infrastructure à clé publique (PKI)

La PKI (Public Key Infrastructure) reste le socle de la confiance numérique. Elle permet d’établir un lien cryptographique entre une identité et une clé publique. Dans le contexte souverain, cette clé publique n’est jamais persistée sur un serveur : elle est dérivée temporairement lors d’un challenge-response local, validé par l’utilisateur via un jeton physique. Cette dérivation éphémère empêche toute forme de réplication, d’usurpation ou d’interception à distance.

🔹 Biométrie locale

La biométrie locale — empreinte, visage, rétine ou voix — renforce la preuve de possession sans transmettre d’image ni de modèle biométrique. Le capteur agit comme un déclencheur local : il valide la présence de l’utilisateur mais ne stocke aucune donnée persistante. Cette approche respecte les exigences de RGPD et de NIS2 en matière de vie privée et de sécurité des traitements locaux.

🔹 Cryptologie embarquée et architecture segmentée (RAM-only)

Le cœur du modèle passwordless souverain repose sur la cryptologie embarquée et la segmentation PGP exécutées en mémoire volatile. Dans les technologies comme PassCypher, chaque clé est divisée en fragments indépendants, chargés uniquement en RAM au moment de l’exécution. Ces fragments sont chiffrés selon un schéma hybride PGP + AES-256-CBC, garantissant un cloisonnement total des identités et des secrets.

Cette segmentation dynamique empêche toute forme de persistance : une fois la session terminée, toutes les données sont détruites instantanément. L’appareil ne conserve aucune trace exploitable, ce qui confère à ce modèle une résilience structurelle aux attaques quantiques : il n’existe tout simplement rien à décrypter après exécution.

⮞ Résumé — Fondements techniques

  • Les clés publiques sont dérivées et validées localement, sans enregistrement serveur.
  • La biométrie est traitée hors ligne, sans stockage de modèles persistants.
  • La cryptologie embarquée RAM-only assure la volatilité et la non-traçabilité des secrets.
  • Cette approche rend le système résilient quantique par conception — non par algorithme, mais par absence de matière exploitable.

↪ Conformité et indépendance

Ces principes garantissent une conformité native avec les réglementations internationales et une indépendance totale vis-à-vis des standards propriétaires. Là où les architectures FIDO reposent sur la persistance et la synchronisation, le modèle souverain favorise l’effacement comme norme de sécurité. Cette logique préfigure un nouveau paradigme : celui de la zéro persistance comme gage de confiance.

La section suivante présentera le cas PassCypher, première implémentation souveraine concrète de ces fondements cryptographiques, reconnue à l’international pour sa conformité RAM-only et sa résilience structurelle.

PassCypher — Le modèle souverain d’authentification sans mot de passe

PassCypher, développé par Freemindtronic Andorre, incarne la première implémentation concrète du modèle passwordless souverain.
Cette technologie, finaliste officiel des Intersec Awards 2026 à Dubaï, représente une avancée doctrinale majeure dans la cybersécurité mondiale.
Elle démontre qu’une authentification universelle, hors-ligne, RAM-only peut offrir une résilience structurelle aux menaces quantiques.

Le jury international de l’Intersec a qualifié cette technologie de :

« Sécurité hors-ligne sans mot de passe résistante aux attaques quantiques. »

Cette distinction ne récompense pas seulement un produit, mais une philosophie d’ingénierie souveraine : un modèle où la confiance est localisée, les secrets sont volatils, et la validation ne dépend d’aucun serveur externe. Chaque session s’exécute en mémoire vive (RAM-only), chaque clé est fragmentée et chiffrée, et chaque identité repose sur une preuve de possession physique.

↪ Architecture et fonctionnement RAM-only

Dans PassCypher, les clés PGP sont segmentées en fragments indépendants, chiffrés par un algorithme hybride AES-256-CBC + PGP, et chargés temporairement en mémoire lors de l’exécution.
Une fois la session terminée, les fragments sont effacés, supprimant toute trace exploitable.
Aucune donnée n’est écrite, synchronisée ou exportée — ce qui rend le système inviolable par conception et résilient quantique par absence de persistance.

↪ Intégration dans les environnements critiques

Compatible avec les architectures Zero Trust et air-gapped, PassCypher fonctionne sans serveur, sans extension et sans identité fédérée.
Il répond aux exigences des secteurs critiques — défense, santé, finance, énergie — en garantissant la conformité RGPD, NIS2 et DORA sans externalisation des données d’identité.
Cette authentification souveraine offre une indépendance totale vis-à-vis des écosystèmes cloud et des puissances numériques étrangères.

⮞ Résumé — Doctrine PassCypher

  • RAM-only : toutes les opérations s’exécutent en mémoire volatile, sans stockage.
  • Preuve de possession : validation locale par clé physique NFC ou HSM.
  • Zéro persistance : effacement automatique après usage.
  • résilient quantique : résilience structurelle sans post-quantique (PQC).
  • Interopérabilité universelle : fonctionne sur tous systèmes, sans dépendance cloud.

↪ Doctrine souveraine appliquée

PassCypher matérialise une philosophie de sécurité par effacement.
En supprimant la notion même de mot de passe, il remplace le secret stocké par la preuve de possession éphémère.
Ce basculement redéfinit la souveraineté numérique : la confiance ne dépend plus d’un serveur, mais d’un usage local, vérifiable et non persistant.

Impact stratégique

La reconnaissance de PassCypher aux Intersec Awards 2026 place Freemindtronic Andorre au cœur de la transition mondiale vers une authentification souveraine.
Ce modèle, neutre et interopérable, ouvre la voie à un standard international fondé sur la déconnexion maîtrisée, la cryptologie embarquée et la résilience structurelle face aux menaces quantiques.

Dans la section suivante, nous dresserons un glossaire souverain enrichi afin de normaliser la terminologie technique du modèle passwordless : de la preuve de possession à la résistance quantique structurelle.

Faiblesses des systèmes FIDO / passkeys — limites et vecteurs d’attaque

Les protocoles FIDO / passkeys incarnent un progrès notable pour réduire l’usage des mots de passe. Cependant, et c’est important de le dire, ils n’éliminent pas toutes les vulnérabilités. Ainsi, plusieurs vecteurs opérationnels et tactiques persistent — interception WebAuthn, persistance OAuth, clickjacking via extensions — qui remettent en cause la souveraineté et la non-traçabilité. Par conséquent, il convient d’exposer les faiblesses connues et d’indiquer, en regard, des approches souveraines plus résilientes.

⮞ Faiblesses observées — Signaux faibles dans les systèmes FIDO / WebAuthn

Vulnérabilités des systèmes fédérés — Atténuations souveraines

Ce tableau présente les principales failles observées dans les systèmes d’authentification fédérés (OAuth, WebAuthn, extensions) et les stratégies d’atténuation proposées par les modèles souverains RAM-only.

Vulnérabilité Impact Scénario d’exploitation Atténuation souveraine
Persistance OAuth / 2FA Session hijacking, exposition prolongée Jetons stockés côté cloud / client réutilisés par un assaillant Éviter la persistance — usage d’authentifiants éphémères RAM-only et preuve de possession locale
Interception WebAuthn Détournement d’authentification, usurpation Man-in-the-browser / hijacking du flux d’enregistrement ou d’auth Supprimer la dépendance WebAuthn pour les contextes souverains — défi cryptographique local en RAM
Clickjacking via extensions Exfiltration d’actions utilisateur, faux prompts Extension compromise simule l’UI d’authentification Neutraliser les extensions — validation matérielle locale (NFC/HSM) et absence d’UI web sensible
Métadonnées & traçabilité Correlabilité des identités, privacy leak Fédération d’identité produit logs et métadonnées exploitables Zéro-fuite : pas de registre serveur, pas de synchronisation, clés fragmentées en mémoire

⮞ Résumé — Pourquoi les modèles souverains atténuent ces failles

Les architectures RAM-only suppriment les vecteurs d’exploitation liés à la persistance, à la fédération d’identité et à l’interface web. Elles privilégient la preuve de possession locale, la cryptologie embarquée et l’exécution en mémoire volatile pour garantir une résilience structurelle.

⮞ Résumé — Pourquoi FIDO ne suffit pas pour la souveraineté

  • FIDO améliore la sécurité UX, mais conserve souvent une dépendance infrastructurelle (serveurs, synchronisation).
  • Les attaques axées sur la chaîne d’intégration (extensions, flux OAuth, WebAuthn) montrent que la surface reste significative.
  • En conséquence, la souveraineté exige des principes complémentaires : RAM-only, preuve matérielle, zéro persistance et cryptologie locale.

✓ Contremesures souveraines recommandées

  • Favoriser des authentifiants physiques et non exportables (NFC / HSM) validés localement.
  • Privilégier des schémas éphemeral-first : dérivation → usage → destruction en RAM.
  • Éviter toute synchronisation ou stockage cloud des clés et métadonnées.
  • Restreindre et auditer strictement les extensions et composants clients ; préférer l’UX matérielle pour la validation.
  • Documenter et monitorer les weak signals (ex. Tycoon 2FA, DEF CON findings) pour adapter les politiques de sécurité.

En somme, même si FIDO et les passkeys demeurent utiles, ils ne suffisent pas pour garantir la souveraineté numérique. Pour les contextes critiques, l’alternative souveraine — basée sur la preuve de possession locale et la volatilité — réduit la surface d’attaque et supprime les chemins d’exfiltration associés aux services cloud et aux flux fédérés.
La section suivante propose un glossaire souverain enrichi pour unifier la terminologie technique et opérationnelle de cette doctrine.

FIDO vs TOTP / HOTP — Deux philosophies de l’authentification

Le débat entre FIDO et les systèmes TOTP/HOTP illustre deux visions radicalement différentes de la confiance numérique. D’un côté, FIDO prône un modèle fédéré et cloud-centric, fondé sur des clés publiques liées à des serveurs d’identité. De l’autre, les protocoles TOTP et HOTP, bien que plus anciens, incarnent une approche décentralisée et locale, plus proche du paradigme souverain.

Comparatif doctrinal — FIDO2 vs TOTP vs RAM-only

Ce tableau présente les différences fondamentales entre les standards d’authentification FIDO2/WebAuthn, TOTP/HOTP et l’approche souveraine RAM-only. Il met en lumière les implications techniques, cryptologiques et stratégiques de chaque modèle.

🔹 Définitions rapides

  • FIDO2 / WebAuthn — Standard d’authentification moderne basé sur des clés publiques/privées, géré par un navigateur ou un authentificateur matériel, nécessitant un serveur d’enregistrement.
  • TOTP / HOTP — Protocoles d’authentification par mot de passe à usage unique (OTP), fondés sur un secret partagé local et un calcul synchronisé (temps ou compteur).

🔹 Principales différences doctrinales

Critère FIDO2 / WebAuthn TOTP / HOTP Approche souveraine (RAM-only)
Architecture Serveur + fédération d’identité (navigateur, cloud) Local + synchronisation horloge/compteur Hors ligne, sans synchronisation, sans serveur
Secret Clé publique/privée enregistrée sur serveur Secret partagé entre client et serveur Secret éphémère généré et détruit en RAM
Interopérabilité Limitée aux plateformes compatibles FIDO Universelle (RFC 6238 / RFC 4226) Universelle (matériel + protocole cryptologique indépendant)
Résilience réseau Dépend du service d’enregistrement Fonctionne sans cloud Conçu pour environnements air-gapped
Souveraineté Faible — dépendance aux grands écosystèmes Moyenne — contrôle partiel du secret Totale — autonomie locale, zéro persistance
Quantum-resistance Dépend des algorithmes utilisés (non structurelle) Nulle — secret réutilisable Structurelle — rien à déchiffrer post-exécution

🔹 Lecture stratégique

De fait, FIDO vise la convenance UX et la standardisation mondiale, mais introduit des dépendances structurelles au cloud et à la fédération d’identité.
Les protocoles OTP (TOTP/HOTP), bien que datés, ont l’avantage de fonctionner hors ligne et de ne rien imposer côté navigateur.
Le modèle souverain, quant à lui, combine la simplicité de l’OTP avec la robustesse cryptologique de la segmentation RAM-only : il supprime le secret partagé, le remplace par un défi éphémère et garantit ainsi une preuve de possession purement locale.

⮞ Résumé — Doctrine comparée

  • FIDO : architecture centralisée, dépendance cloud, UX simplifiée mais souveraineté limitée.
  • TOTP/HOTP : décentralisé, compatible, mais vulnérable si secret partagé exposé.
  • Souverain RAM-only : combine le meilleur des deux mondes — preuve de possession, absence de persistance, zéro dépendance.

🔹 Perspective

Ainsi, dans la logique de souveraineté numérique, le modèle RAM-only se positionne comme un successeur conceptuel du TOTP : il conserve la simplicité d’un calcul local, tout en éliminant le secret partagé et la persistance des clés.
Il s’agit d’une évolution doctrinale vers un modèle d’authentification fondé sur la possession et la volatilité — piliers d’une cybersécurité réellement autonome.

SSH vs FIDO — Deux paradigmes du passwordless

L’histoire du passwordless ne commence pas avec FIDO : elle s’enracine dans les authentifications par clé SSH, utilisées depuis plus de deux décennies dans les infrastructures critiques.
Ainsi, comparer SSH et FIDO/WebAuthn permet de comprendre deux visions opposées de la souveraineté numérique :
l’une ouverte et décentralisée, l’autre standardisée et centralisée.

🔹 SSH — L’ancêtre du passwordless souverain

Le protocole SSH (Secure Shell) repose sur une paire de clés asymétriques (publique / privée).
L’utilisateur détient sa clé privée localement et la preuve d’identité s’effectue par un défi cryptographique.
Aucun mot de passe n’est échangé ni stocké — le modèle est donc, par nature, passwordless.
Plus encore, SSH fonctionne totalement hors ligne pour l’établissement initial des clés et n’impose aucune dépendance à un serveur d’identité tiers.

🔹 FIDO — Le passwordless fédéré

À l’inverse, FIDO2/WebAuthn introduit un cadre d’authentification normé où la clé publique est enregistrée auprès d’un serveur d’authentification.
Le processus reste cryptographiquement sûr, mais dépend d’une infrastructure centralisée (navigateur, cloud, fédération).
De ce fait, FIDO simplifie l’expérience utilisateur tout en transférant la confiance vers des tiers (Google, Microsoft, Apple, etc.), ce qui limite la souveraineté.

🔹 Comparatif doctrinal

Critère SSH (clé publique/privée) FIDO2 / WebAuthn Modèle souverain RAM-only
Architecture Client/serveur direct, clé locale Serveur fédéré via navigateur Hors-ligne, sans dépendance
Secret utilisateur Clé privée locale non exportée Stockée dans un authentificateur FIDO (YubiKey, TPM, etc.) Fragmentée, éphémère en RAM
Interopérabilité Universelle (OpenSSH, RFC 4251) Limitée (API WebAuthn, navigateur requis) Universelle, matérielle (NFC/HSM)
Dépendance cloud Aucune Souvent obligatoire (fédération, synchro) Aucune
Résilience Forte, hors-ligne Moyenne, dépend du fournisseur Structurelle — aucune donnée persistante
Souveraineté Élevée — modèle open-source Faible — dépendance à des acteurs privés Totale — preuve de possession locale
Quantum-resistance Algorithmes RSA/ECC vulnérables au long terme Algorithmes RSA/ECC vulnérables — dépend du fournisseur Structurelle — aucune donnée à déchiffrer

🔹 Analyse doctrinale

Ainsi, SSH et FIDO incarnent deux doctrines du passwordless :

  • SSH : souveraineté technique, indépendance, simplicité — mais sans UX standardisée.
  • FIDO : ergonomie universelle, standardisation, mais dépendance aux infrastructures globales.

Le modèle RAM-only introduit par PassCypher fusionne ces deux visions :
il conserve la preuve locale de SSH, tout en ajoutant la volatilité éphémère qui élimine la persistance des secrets, y compris dans le matériel.

⮞ Résumé — SSH vs FIDO

  • SSH est historiquement le premier modèle passwordless souverain — local, ouvert et auto-hébergé.
  • FIDO introduit une normalisation cloud du passwordless, utile mais non autonome.
  • Le modèle RAM-only représente la synthèse doctrinale : preuve de possession locale + absence de persistance = souveraineté complète.

🔹 Perspective

De ce fait, le futur du passwordless ne se limite pas à l’authentification sans mot de passe :
il s’oriente vers la neutralité des architectures — un modèle où le secret n’est ni stocké, ni transmis, ni même réutilisable.
Le SSH du XXIᵉ siècle pourrait bien être le PassCypher RAM-only : une cryptologie de possession, éphémère et universelle.

FIDO vs OAuth / OpenID — Le paradoxe de la fédération d’identité

L’authentification FIDO2/WebAuthn et les protocoles OAuth/OpenID Connect partagent une même philosophie : déléguer la gestion de l’identité à un tiers de confiance. Ce modèle, bien que pratique, introduit une dépendance forte au cloud identity. En opposition, le modèle souverain RAM-only place la confiance directement dans la possession physique et la cryptologie locale, supprimant tout intermédiaire d’identité.

Critère FIDO2 / WebAuthn OAuth / OpenID Connect RAM-only souverain
Gestion d’identité Serveur d’enregistrement local Fédération via Identity Provider Aucune fédération — identité locale
Persistance Clé publique stockée sur serveur Jetons persistants (Bearer tokens) Aucune — dérivation et effacement RAM
Interopérabilité Native via navigateur Universelle via API REST Universelle via cryptologie locale
Risques Traçabilité des identités Réutilisation de tokens Aucun stockage, aucune corrélation
Souveraineté Limitée (serveur tiers) Faible (fédération cloud) Totale — hors ligne, RAM-only

⮞ Résumé — FIDO vs OAuth

  • Les deux modèles conservent une dépendance serveur et une traçabilité des identités.
  • Le modèle souverain supprime la fédération d’identité et la persistance.
  • Il établit une confiance locale, sans intermédiaire, garantissant la souveraineté totale.

TPM vs HSM — Le dilemme matériel de la confiance

La souveraineté matérielle repose sur le lieu où réside la clé. Le TPM (Trusted Platform Module) est intégré à la carte mère et dépend du constructeur, tandis que le HSM (Hardware Security Module) est un composant externe, portable et isolé. Le modèle RAM-only souverain va plus loin en supprimant même la persistance du HSM : les clés ne résident que temporairement en mémoire vive.

Critère TPM HSM RAM-only souverain
Localisation Fixé à la carte mère Module externe (USB/NFC) Volatile, en mémoire uniquement
Fournisseur Dépendant du constructeur (Intel, AMD…) Indépendant, souvent certifié FIPS Totalement indépendant — souverain
Persistance Stockage interne durable Stockage interne chiffré Aucune — effacement après session
Mobilité Non portable Portable Universelle (clé NFC / mobile / HSM portable)
Souveraineté Faible Moyenne Totale

⮞ Résumé — TPM vs HSM

  • Le TPM dépend du constructeur et de l’OS.
  • Le HSM offre plus d’indépendance mais conserve la persistance.
  • Le modèle RAM-only garantit une souveraineté matérielle totale.

FIDO vs RAM-only — Cloud-free n’est pas offline

Beaucoup confondent cloud-free et offline. Un système FIDO peut fonctionner sans cloud, mais reste dépendant d’un serveur d’enregistrement et d’un navigateur. Le modèle RAM-only, quant à lui, exécute et détruit la clé directement en mémoire volatile : aucune donnée n’est stockée, synchronisée ni récupérable.

Critère FIDO2/WebAuthn RAM-only souverain
Dépendance serveur Oui — enregistrement et synchronisation Non — fonctionnement 100 % local
Persistance Clé publique persistée Aucune — destruction après usage
Interopérabilité Limité à WebAuthn Universelle — tout protocole cryptographique
Résilience quantique Non structurelle Structurelle — rien à déchiffrer
Souveraineté Faible Totale

⮞ Résumé — FIDO vs RAM-only

  • FIDO reste dépendant du navigateur et du serveur.
  • RAM-only supprime toute trace et toute dépendance.
  • C’est le seul modèle véritablement “offline” et souverain.

Password Manager Cloud vs Offline HSM — Le vrai enjeu du secret

Les gestionnaires de mots de passe cloud promettent simplicité et synchronisation, mais ils centralisent les secrets et exposent les utilisateurs à des risques de compromission. L’approche Offline HSM / RAM-only garantit que les données d’identité ne quittent jamais le support matériel.

Critère Password Manager Cloud Offline HSM / RAM-only
Stockage Cloud chiffré, persistant RAM volatile, aucune persistance
Contrôle des données Serveur tiers Utilisateur seul
Interopérabilité Applications propriétaires Universelle (clé, NFC, HSM)
Surface d’attaque Élevée (cloud, API, navigateur) Quasi nulle — air-gap total
Souveraineté Faible Totale

⮞ Résumé — Password Manager Cloud vs Offline HSM

  • Le cloud centralise les secrets et crée des dépendances.
  • Le modèle HSM/RAM-only redonne le contrôle à l’utilisateur.
  • Résultat : souveraineté, sécurité, conformité RGPD/NIS2.

FIDO vs Zero Trust — Authentification et souveraineté

Le paradigme Zero Trust (NIST SP 800-207) impose la vérification permanente, mais ne définit pas la méthode d’authentification. FIDO s’y intègre en partie, mais le modèle souverain RAM-only en incarne l’application ultime : ne jamais faire confiance, ne rien stocker.

Principe Zero Trust Implémentation FIDO Implémentation RAM-only souveraine
Verify explicitly Serveur valide la clé FIDO Validation locale par preuve de possession
Assume breach Session persistante Session éphémère, RAM-only
Least privilege Basé sur rôles cloud Clés segmentées par usage (micro-HSM)
Continuous validation Basée sur sessions serveur Preuve dynamique locale, sans persistance
Protect data everywhere Chiffrement côté cloud Chiffrement local AES-256-CBC + PGP

⮞ Résumé — FIDO vs Zero Trust

  • FIDO applique partiellement les principes Zero Trust.
  • Le modèle souverain les concrétise intégralement, sans dépendance cloud.
  • Résultat : un Zero Trust cryptologique, souverain et RAM-only.

FIDO n’est pas un système hors-ligne : distinction scientifique entre “hardware authenticator” et HSM souverain

Le terme “hardware” dans la doctrine FIDO/WebAuthn est souvent interprété à tort comme synonyme d’autonomie cryptographique.
En réalité, une clé FIDO2 exécute des opérations cryptographiques locales, mais dépend d’un environnement logiciel et serveur (navigateur, OS, fournisseur d’identité) pour initier et valider le processus d’authentification.
Sans ce chaînage logiciel, la clé est inerte : aucune authentification, signature ou vérification n’est possible.
Elle ne constitue donc pas un système “air-gap”, mais une solution “offline-assisted”.

Schéma doctrinal du modèle FIDO

  • Serveur distant (Relying Party) : génère et valide le challenge cryptographique.
  • Client (navigateur ou OS) : transporte le challenge via l’API WebAuthn.
  • Authentificateur matériel (clé FIDO) : signe le challenge avec sa clé privée non exportable.

Ainsi, même si la clé FIDO est physique, elle dépend d’un protocole client–serveur.
Cette architecture exclut toute souveraineté cryptographique réelle, contrairement aux modules NFC HSM souverains EviCore utilisés par PassCypher.

Comparatif doctrinal élargi — Les cinq modèles d’authentification sans mot de passe

Pour comprendre la portée du modèle souverain, il est nécessaire de le replacer dans le spectre complet des architectures passwordless. Cinq doctrines dominent actuellement le marché mondial : FIDO2/WebAuthn, OAuth fédéré, hybride cloud, air-gapped industriel et souverain RAM-only. Le tableau suivant présente leurs différences structurelles.

Modèle Persistance Dépendance Résilience Souveraineté
FIDO2 / WebAuthn Clé publique stockée serveur Serveur fédéré / navigateur Moyenne (susceptible à WebAuthn) Faible (cloud dépendant)
OAuth fédéré Jetons persistants Tiers d’identité Variable (selon fournisseur) Limitée
Hybride cloud Partielle (cache local) API cloud / IAM Moyenne Moyenne
Air-gapped industriel Aucune Isolé / manuel Haute Forte
Souverain RAM-only (Freemindtronic) Aucune (zéro persistance) 0 dépendance serveur Structurelle — résilient quantique Totale — preuve de possession locale

⮞ Résumé — Position du modèle souverain

Le modèle RAM-only souverain est le seul à éliminer toute persistance, dépendance serveur ou fédération d’identité. Il ne repose que sur la preuve de possession physique et la cryptologie embarquée, garantissant une souveraineté complète et une résistance structurelle aux menaces quantiques.

FIDO vs PKI / Smartcard — Héritage normatif et souveraineté cryptographique

Avant FIDO, la PKI (Public Key Infrastructure) et les cartes à puce (Smartcards) constituaient déjà la colonne vertébrale de l’authentification forte. Ces modèles, encadrés par des normes telles que ISO/IEC 29115 et NIST SP 800-63B, reposaient sur la preuve de possession et la gestion hiérarchique des clés publiques.
Le standard FIDO2/WebAuthn a cherché à moderniser cet héritage en supprimant le mot de passe, mais au prix d’une dépendance accrue au navigateur et aux serveurs d’identité.
Le modèle RAM-only souverain, lui, reprend la rigueur cryptologique de la PKI tout en supprimant la persistance et la hiérarchie : les clés sont dérivées, utilisées puis effacées, sans infrastructure externe.

Critère PKI / Smartcard FIDO2 / WebAuthn RAM-only souverain
Principe fondamental Preuve de possession via certificat X.509 Challenge-response via navigateur Preuve matérielle hors ligne, sans hiérarchie
Architecture Hiérarchique (CA / RA) Client-serveur / navigateur Autonome, purement locale
Persistance Clé persistée sur carte Clé publique stockée côté serveur Aucune — clé éphémère en mémoire volatile
Interopérabilité Normes ISO 7816, PKCS#11 WebAuthn / API propriétaires Universelle (PGP, AES, NFC, HSM)
Conformité normative ISO 29115, NIST SP 800-63B Partielle (WebAuthn, W3C) Structurelle, conforme aux cadres ISO/NIST sans dépendance
Souveraineté Élevée (si carte nationale) Faible (tiers FIDO, cloud) Totale (locale, sans hiérarchie, RAM-only)

↪ Héritage et dépassement doctrinal

Le modèle RAM-only souverain ne s’oppose pas à la PKI : il en conserve la logique de preuve de possession tout en supprimant ses dépendances hiérarchiques et son stockage persistant.
Là où FIDO réinvente la PKI à travers le navigateur, le modèle souverain la transcende : il internalise la cryptologie, remplace la hiérarchie par la preuve locale et supprime tout secret stocké durablement.

⮞ Résumé — FIDO vs PKI / Smartcard

  • La PKI garantit la confiance par la hiérarchie, FIDO par le navigateur, le modèle souverain par la possession directe.
  • Le RAM-only hérite de la rigueur cryptographique ISO/NIST, mais sans serveur, ni CA, ni persistance.
  • Résultat : une authentification post-PKI, universelle, souveraine et intrinsèquement résistante aux menaces quantiques.

FIDO/WebAuthn vs identifiant + mot de passe + TOTP — Sécurité, souveraineté et résilience

Pour clarifier le débat, comparons l’authentification FIDO/WebAuthn avec le schéma classique identifiant + mot de passe + TOTP, en y ajoutant la référence RAM-only souverain.
Ce comparatif évalue la résistance au phishing, la surface d’attaque, la dépendance au cloud et la rapidité d’exécution — des paramètres essentiels pour les environnements à haute criticité (défense, santé, finance, énergie).

🔹 Définitions rapides

  • FIDO/WebAuthn : authentification à clé publique (client/serveur), dépendante du navigateur et de l’enrôlement serveur.
  • ID + MDP + TOTP : modèle traditionnel avec mot de passe statique et code OTP temporel — simple, mais exposé aux attaques MITM et phishing.
  • RAM-only souverain (PassCypher HSM PGP) : preuve de possession locale, cryptologie éphémère exécutée en mémoire volatile, sans serveur, ni cloud, ni persistance.
Critère FIDO2 / WebAuthn ID + MDP + TOTP RAM-only souverain (PassCypher HSM PGP)
Résistance au phishing ✅ Liaison origine/site (phishing-resistant) ⚠️ OTP phishable (MITM, proxy, fatigue MFA) ✅ Validation locale hors navigateur
Surface d’attaque Navigateur, extensions, serveur d’enrôlement Bruteforce/credential stuffing + interception OTP Air-gap total, défi cryptographique local en RAM
Dépendance cloud / fédération ⚠️ Serveur d’enrôlement obligatoire 🛠️ Variable selon IAM ❌ Aucune — fonctionnement 100 % hors-ligne
Secret persistant Clé publique stockée côté serveur Mot de passe + secret OTP partagés ✅ Éphémère en RAM, zéro persistance
UX / Friction Bonne — si intégration native navigateur Plus lente — saisie manuelle du MDP et du code TOTP Ultra fluide — 2 à 3 clics pour identifiant & MDP (2 étapes), +1 clic pour TOTP.
Authentification complète en moins de (≈ < 4 s), sans saisie, sans transfert réseau.
Souveraineté / Neutralité ⚠️ Dépend du navigateur et des serveurs FIDO 🛠️ Moyenne (auto-hébergeable mais persistant) ✅ Totale — indépendante, déconnectée, locale
Compliance et traçabilité Journaux serveur WebAuthn / métadonnées Logs d’accès et OTP réutilisables Conformité RGPD/NIS2 — aucune donnée stockée ni transmise
Résilience quantique Conditionnée aux algorithmes utilisés Faible — secrets réutilisables ✅ Structurelle — rien à déchiffrer après usage
Coût opérationnel Clés FIDO + intégration IAM Faible mais forte maintenance utilisateurs HSM NFC local — coût initial, zéro maintenance serveur

🔹 Analyse opérationnelle

La saisie manuelle d’un identifiant, d’un mot de passe et d’un code TOTP prend en moyenne 12 à 20 secondes, avec un risque d’erreur humaine élevé.
À l’inverse, PassCypher HSM PGP automatise ces étapes grâce à la cryptologie embarquée et à la preuve de possession locale :
2 à 3 clics suffisent pour saisir identifiant et mot de passe (en deux étapes), puis un 3e clic pour injecter le code TOTP, soit une authentification complète en moins de 4 secondes — sans frappe clavier, ni exposition réseau.

⮞ Résumé — Avantage du modèle souverain

  • FIDO supprime le mot de passe mais dépend du navigateur et du serveur d’identité.
  • TOTP ajoute une sécurité temporelle, mais reste vulnérable à l’interception et à la fatigue MFA.
  • PassCypher HSM PGP combine la rapidité, la souveraineté et la sécurité structurelle : air-gap, zéro persistance, preuve matérielle.

✓ Recommandations souveraines

  • Remplacer l’entrée manuelle MDP/TOTP par un module RAM-only HSM pour authentification automatisée.
  • Adopter une logique ephemeral-first : dérivation, exécution, destruction immédiate en mémoire volatile.
  • Supprimer la dépendance aux navigateurs et extensions — valider localement les identités en air-gap.
  • Évaluer le gain de performance et de réduction d’erreur humaine dans les architectures critiques.

FIDO hardware avec biométrie (empreinte) vs NFC HSM PassCypher — comparaison technique

Certaines clés FIDO intègrent désormais un capteur biométrique match-on-device pour réduire le risque d’utilisation par un tiers. Cette amélioration reste toutefois limitée : elle ne supprime pas la dépendance logicielle (WebAuthn, OS, firmware) ni la persistance des clés privées dans le Secure Element. À l’inverse, les NFC HSM PassCypher combinent possession matérielle, multiples facteurs d’authentification configurables et architecture RAM-only segmentée, garantissant une indépendance totale vis-à-vis des infrastructures serveur.

Points factuels et vérifiables

  • Match-on-device : Les empreintes sont vérifiées localement dans l’élément sécurisé. Le template biométrique n’est pas exporté, mais reste dépendant du firmware propriétaire.
  • Fallback PIN : En cas d’échec biométrique, un code PIN ou une phrase de secours est requis pour l’usage du périphérique.
  • Liveness / anti-spoofing : Le niveau de résistance à la reproduction d’empreintes varie selon les fabricants. Les algorithmes d’évaluation de “liveness” ne sont pas normalisés ni toujours publiés.
  • Persistance des crédentiels : Les clés privées FIDO sont stockées de façon permanente dans un secure element. Elles subsistent après usage.
  • Contrainte d’interface : L’usage FIDO repose sur WebAuthn et requiert une interaction serveur pour la vérification, limitant l’usage en mode 100% air-gap.

Tableau comparatif

Critère Clés FIDO biométriques NFC HSM PassCypher
Stockage du secret Persistant dans un secure element. ⚠️ Chiffrement segmenté AES-256-CBC, clés volatiles effacées après usage.
Biométrie Match-on-device ; template local ; fallback PIN. Le liveness est spécifique au fabricant et non normalisé ; demander les scores ou méthodologies. 🛠️ Gérée via smartphone NFC, combinable avec d’autres facteurs contextuels (ex. géozone).
Capacité de stockage Quelques credentials selon firmware (10–100 max selon modèles). Jusqu’à 100 labels secrets « Si 50 TOTP sont utilisés, il reste 50 couples ID/MDP (100 labels au total). ».
Air-gap Non — nécessite souvent un navigateur, un OS et un service WebAuthn. Oui — architecture 100% offline, aucune dépendance réseau.
Politiques MFA Fixées par constructeur : biométrie + PIN. Entièrement personnalisables : jusqu’à 15 facteurs et 9 critères de confiance par secret.
Résilience post-compromise Risque résiduel si la clé physique et le PIN sont compromis. Aucune donnée persistante après usage (RAM-only).
Transparence cryptographique Firmware et algorithmes propriétaires. Algorithmes documentés et audités (EviCore / PassCypher).
UX / Friction utilisateur Interaction WebAuthn + navigateur ; dépendance OS ; fallback PIN requis. 🆗 TOTP : saisie manuelle du code PIN affiché sur l’app Android NFC, comme tout gestionnaire OTP.

✅ ID+MDP : auto-remplissage sécurisé sans contact via appairage entre téléphone NFC et navigateur (Chromium). Un clic sur le champ → requête chiffrée → passage carte NFC → champ rempli automatiquement.

Conclusion factuelle

Les clés FIDO biométriques améliorent l’ergonomie et la sécurité d’usage, mais elles ne changent pas la nature persistante du modèle.

Les NFC HSM PassCypher, par leur fonctionnement RAM-only, leur segmentation cryptographique et leur indépendance serveur, apportent une réponse souveraine, auditable et contextuelle au besoin d’authentification forte sans confiance externe.

Comparatif du niveau de friction — UX matérielle

La fluidité d’usage est un critère stratégique dans l’adoption d’un système d’authentification. Ce tableau compare les principaux dispositifs matériels selon leur niveau de friction, leur dépendance logicielle et leur capacité à fonctionner en mode déconnecté.

Système hardware Friction utilisateur Détails d’usage
Clé FIDO sans biométrie ⚠️ Élevée Nécessite navigateur + serveur WebAuthn + bouton physique. Aucun contrôle local.
Clé FIDO avec biométrie 🟡 Moyenne Biométrie locale + fallback PIN. Dépend du firmware et du navigateur.
TPM intégré (PC) ⚠️ Élevée Invisible pour l’utilisateur mais dépendant du système, non portable, non air-gap.
HSM USB classique 🟡 Moyenne Requiert insertion, logiciel tiers, parfois mot de passe. Peu de personnalisation.
Smartcard / carte à puce ⚠️ Élevée Requiert lecteur physique, PIN, logiciel. Friction forte hors environnement dédié.
NFC HSM PassCypher ✅ Faible à nulle Sans contact, auto-remplissage ID+MDP, PIN TOTP manuel (comme tous OTP).

Lecture stratégique

  • TOTP : la saisie manuelle du code PIN est universelle (Google Authenticator, YubiKey, etc.). PassCypher ne fait pas exception, mais l’affichage est souverain (offline, RAM-only).
  • ID+MDP : PassCypher est le seul système à proposer un auto-login sans contact, sécurisé par appairage cryptographique entre smartphone NFC et navigateur Chromium.
  • Air-gap : tous les autres systèmes dépendent d’un OS, d’un navigateur ou d’un serveur. PassCypher est le seul à fonctionner en mode 100% offline, y compris pour l’auto-remplissage.

⮞ En resumé

PassCypher NFC HSM est au plus bas niveau de friction possible pour un système souverain, sécurisé et multifactoriel. Ainsi autre système hardware ne combine :

  • RAM-only
  • Auto-login sans contact
  • 15 facteurs configurables
  • Zéro dépendance serveur
  • UX fluide sur Android et PC

Authentification multifactorielle souveraine — Le modèle PassCypher NFC HSM

Au-delà du simple comparatif matériel, le modèle PassCypher NFC HSM basé sur la technologie EviCore NFC HSM représente une doctrine d’authentification multifactorielle souveraine, fondée sur la cryptologie segmentée et la mémoire volatile.
Chaque secret est une entité autonome, protégée par plusieurs couches de chiffrement AES-256-CBC encapsulées, dont la dérivation dépend de critères contextuels, physiques et logiques.
Ainsi, même en cas de compromission d’un facteur, le secret reste indéchiffrable sans la reconstitution complète de la clé segmentée.

Architecture à 15 facteurs modulaires

Chaque module NFC HSM PassCypher peut combiner jusqu’à 15 facteurs d’authentification, dont 9 critères de confiance dynamiques paramétrables par secret.
Cette granularité dépasse les standards FIDO, TPM et PKI, car elle confère à l’utilisateur un contrôle souverain et vérifiable de sa propre politique d’accès.

Facteur Description Usage
1️⃣ Clé d’appairage NFC Authentification du terminal Android via clé d’association unique. Accès initial au HSM.
2️⃣ Clé anti-contrefaçon Clé matérielle ECC BLS12-381 de 128 bits intégrée au silicium. Authenticité du HSM et intégrité des échanges.
3️⃣ Mot de passe administrateur Protection de la configuration et des politiques d’accès. Contrôle hiérarchique.
4️⃣ Mot de passe / empreinte utilisateur Facteur biométrique ou cognitif local sur le mobile NFC. Validation interactive utilisateur.
5–13️⃣ Facteurs contextuels Jusqu’à 9 critères par secret : géozone, BSSID, mot de passe secondaire, empreinte mobile, code-barres, ID du téléphone, QR-code, condition temporelle, tap NFC. Protection dynamique multi-contexte.
14️⃣ Chiffrement segmenté AES-256-CBC Encapsulation de chaque facteur dans une clé segmentée. Isolation cryptographique totale.
15️⃣ Effacement RAM-only Destruction immédiate des clés dérivées après utilisation. Suppression du vecteur d’attaque post-session.

Doctrine cryptographique — Clé segmentée et encapsulation

Le système repose sur un chiffrement par segments indépendants, où chaque label de confiance est encapsulé et dérivé de la clé principale.
Aucune clé de session n’existe hors mémoire volatile, garantissant une non-reproductibilité et une non-persistabilité des secrets.

Résultats cryptographiques

  • Encapsulation PGP AES-256-CBC de chaque segment.
  • Aucune donnée persistée hors mémoire volatile.
  • Authentification combinatoire multi-facteurs.
  • Protection native contre le clonage et la rétro-ingénierie.
  • Résistance post-quantique par conception segmentée.

Ce niveau de sophistication positionne PassCypher NFC HSM comme le premier modèle d’authentification réellement souverain, auditable et non persistant, capable d’opérer sans dépendance serveur ni infrastructure de confiance externe.
Il établit une nouvelle référence pour la sécurité post-quantique et la normalisation souveraine des systèmes passwordless.

Zero Trust, conformité et souveraineté sur l’authentification sans mot de passe

Le modèle passwordless souverain ne s’oppose pas au paradigme Zero Trust : il le prolonge. Conçu pour les environnements où la vérification, la segmentation et la non-persistance sont essentielles, il traduit les principes du NIST SP 800-207 dans une logique matérielle et déconnectée.

Principe Zero Trust (NIST) Implémentation souveraine
Verify explicitly Preuve de possession locale via clé physique
Assume breach Sessions éphémères RAM-only — destruction instantanée
Least privilege Clés segmentées par usage (micro-HSM)
Continuous evaluation Authentification dynamique sans session persistante
Protect data everywhere Chiffrement AES-256-CBC / PGP embarqué, hors cloud
Visibility and analytics Audit local sans journalisation persistante — traçabilité RAM-only

⮞ Résumé — Conformité institutionnelle

Le modèle souverain est intrinsèquement conforme aux exigences des cadres RGPD, NIS2, DORA et ISO/IEC 27001 : aucune donnée n’est exportée, conservée ou synchronisée. Il dépasse les critères Zero Trust en supprimant la persistance elle-même et en garantissant une traçabilité locale sans exposition réseau.

[/ux_text] [/col] [/row]

Chronologie du passwordless — De FIDO à la souveraineté cryptologique

  • 2009 : Création de la FIDO Alliance.
  • 2014 : Standardisation FIDO UAF/U2F.
  • 2015 : Lancement par Freemindtronic Andorre du premier NFC HSM PassCypher — authentification hors ligne, sans mot de passe, fondée sur la preuve de possession physique. Premier jalon d’un modèle souverain d’usage civil.
  • 2017 : Intégration du standard WebAuthn au W3C.
  • 2020 : Introduction des passkeys (Apple/Google) et premières dépendances cloud.
  • 2021 : La technologie EviCypher — système d’authentification à clé segmentée — reçoit la Médaille d’Or du Salon International des Inventions de Genève. Cette invention, fondée sur la fragmentation cryptographique et la mémoire volatile, deviendra la base technologique intégrée dans les écosystèmes PassCypher NFC HSM et PassCypher HSM PGP.
  • 2021 : Le PassCypher NFC HSM reçoit le prix Most Innovative Hardware Password Manager aux Global InfoSec Awards de la RSA Conference 2021. Cette reconnaissance internationale confirme la maturité du modèle civil hors ligne.
  • 2022 : Présentation à Eurosatory 2022 d’une version réservée aux usages régaliens et de défense du PassCypher HSM PGP — architecture RAM-only fondée sur la segmentation cryptographique EviCypher, offrant une résistance structurelle aux menaces quantiques.
  • 2023 : Identification publique de vulnérabilités WebAuthn, OAuth et passkeys, confirmant la nécessité d’un modèle souverain hors ligne.
  • 2026 : Sélection officielle de PassCypher comme finaliste des Intersec Awards à Dubaï, consacrant la version civile du modèle souverain RAM-only comme Meilleure Solution de Cybersécurité.

⮞ Résumé — L’évolution vers la souveraineté cryptologique

De 2015 à 2026, Freemindtronic Andorre a construit un continuum d’innovation souveraine : invention du NFC HSM PassCypher (civil), fondation technologique EviCypher (Médaille d’Or de Genève 2021), reconnaissance internationale (RSA 2021), déclinaison régalienne RAM-only (Eurosatory 2022) et consécration institutionnelle (Intersec 2026). Ce parcours établit la doctrine du passwordless souverain comme une norme technologique à double usage — civil et défense — fondée sur la preuve de possession et la cryptologie segmentée en mémoire volatile.

Interopérabilité et migration souveraine

Les organisations peuvent adopter progressivement le modèle souverain sans rupture. La migration s’effectue en trois étapes :
hybride (cohabitation FIDO + local), air-gapped (validation hors réseau), puis souveraine (RAM-only).
Des modules NFC et HSM intégrés permettent d’assurer la compatibilité ascendante tout en supprimant la dépendance aux clouds.

✓ Méthodologie de migration

  1. Identifier les dépendances cloud et fédérations OAuth.
  2. Introduire des modules locaux PassCypher (HSM/NFC).
  3. Activer la preuve de possession locale sur les accès critiques.
  4. Supprimer les synchronisations et persistances résiduelles.
  5. Valider la conformité RGPD/NIS2 par audit souverain.

Ce modèle assure la compatibilité ascendante, la continuité opérationnelle et une adoption progressive de la souveraineté cryptologique.

Weak Signals — Quantique et IA

La montée en puissance des ordinateurs quantiques et des IA génératives introduit des menaces inédites. Le modèle souverain s’en distingue par sa résilience intrinsèque : il ne repose pas sur la puissance de chiffrement, mais sur la disparition contrôlée du secret.

  • Quantum Threats : les architectures PKI persistantes deviennent vulnérables à la factorisation.
  • AI Attacks : la biométrie peut être contournée via deepfakes ou modèles synthétiques.
  • Résilience structurelle : le modèle souverain évite ces menaces par conception — rien n’existe à déchiffrer ni à reproduire.

⮞ Résumé — Doctrine post-quantique

La résistance ne vient pas d’un nouvel algorithme post-quantique, mais d’une philosophie : celle du secret éphémère. Ce principe pourrait inspirer les futures normes européennes et internationales d’authentification souveraine.

Définitions officielles et scientifiques du passwordless

La compréhension du mot passwordless exige de distinguer entre les définitions institutionnelles (NIST, ISO, Microsoft) et les fondements scientifiques de l’authentification.
Ces définitions démontrent que l’authentification sans mot de passe n’est pas un produit, mais une méthode : elle repose sur la preuve de possession, la preuve de connaissance et la preuve d’existence de l’utilisateur.

🔹 Définition NIST SP 800-63B

Selon le NIST SP 800-63B — Digital Identity Guidelines :

« L’authentification établit la confiance dans les identités des utilisateurs présentées électroniquement à un système d’information. Chaque facteur d’authentification repose sur quelque chose que l’abonné connaît, possède ou est. »

Autrement dit, l’authentification repose sur trois types de facteurs :

  • Ce que l’on sait (connaissance) : un secret, un code, une phrase clé.
  • Ce que l’on détient (possession) : un jeton, une carte, une clé matérielle.
  • Ce que l’on est (inhérence) : une caractéristique biométrique propre à l’utilisateur.

🔹 Définition ISO/IEC 29115 :2013

L’ISO/IEC 29115 définit le cadre d’assurance d’identité numérique (EAAF — Entity Authentication Assurance Framework).
Elle précise quatre niveaux d’assurance (IAL, AAL, FAL) selon la force et l’indépendance des facteurs utilisés.
Le niveau AAL3 correspond à une authentification multi-facteurs sans mot de passe, combinant possession et inhérence avec un jeton matériel sécurisé.
C’est à ce niveau que se situe le modèle PassCypher, conforme à la logique AAL3 sans persistance ni serveur.

🔹 Définition Microsoft — Passwordless Authentication

Dans la documentation Microsoft Entra Identity, la méthode passwordless est définie comme :

« L’authentification sans mot de passe remplace les mots de passe par des identifiants robustes à double facteur, résistants au phishing et aux attaques par rejeu. »

Cependant, ces solutions restent dépendantes de services cloud et d’identités fédérées, ce qui limite leur souveraineté.

🔹 Synthèse doctrinale

Les définitions convergent :
le passwordless ne signifie pas « sans secret », mais « sans mot de passe persistant ».
Dans un modèle souverain, la confiance est locale : la preuve repose sur la possession physique et la cryptologie éphémère, non sur un identifiant centralisé.

⮞ Résumé — Définitions officielles

  • Le NIST définit trois facteurs : savoir, avoir, être.
  • L’ISO 29115 formalise le niveau AAL3 comme référence de sécurité sans mot de passe.
  • Microsoft décrit un modèle phishing-resistant basé sur des clés fortes, mais encore fédéré.
  • Le modèle souverain Freemindtronic dépasse ces cadres en supprimant la persistance et la dépendance réseau.

Glossaire souverain enrichi

Ce glossaire présente les termes clés de l’authentification sans mot de passe souveraine, fondée sur la possession, la volatilité et l’indépendance cryptologique.

Terme Définition souveraine Origine / Référence
Passwordless Authentification sans saisie de mot de passe, fondée sur la possession et/ou l’inhérence, sans secret persistant. NIST SP 800-63B / ISO 29115
Authentification souveraine Sans dépendance cloud, serveur ou fédération ; vérifiée localement en mémoire volatile. Doctrine Freemindtronic
RAM-only Exécution cryptographique en mémoire vive uniquement ; aucune trace persistée. EviCypher (Médaille d’Or Genève 2021)
Preuve de possession Validation par objet physique (clé NFC, HSM, carte), garantissant la présence réelle. NIST SP 800-63B
Clé segmentée Clé divisée en fragments volatils, recomposés à la demande sans persistance. EviCypher / PassCypher
résilient quantique (structurel) Résilience par absence de matière exploitable après exécution. Doctrine Freemindtronic
Air-gapped Système physiquement isolé du réseau, empêchant toute interception distante. NIST Cybersecurity Framework
Zero Trust souverain Extension du modèle Zero Trust intégrant déconnexion et volatilité comme preuves. Freemindtronic Andorre
Cryptologie embarquée Chiffrement et signature exécutés sur support matériel (NFC, HSM, SoC). Brevet Freemindtronic FR 1656118
Éphémérité (Volatilité) Destruction automatique des secrets après usage ; sécurité par effacement. Freemindtronic Andorre / doctrine RAM-only

⮞ Résumé — Terminologie unifiée

Ce glossaire fixe les fondations terminologiques de la doctrine passwordless souveraine.
Il permet de distinguer les approches industrielles (passwordless fédéré) des modèles cryptologiquement autonomes, fondés sur la possession, la volatilité et la non-persistance.

Questions fréquentes — Authentification sans mot de passe souveraine

Qu’est-ce que le passwordless souverain ?

Ce point est essentiel !

Le passwordless souverain est une authentification sans mot de passe opérant hors ligne, sans serveur ni cloud. La vérification repose sur la preuve de possession (NFC/HSM) et la cryptologie RAM-only avec zéro persistance.

Pourquoi c’est important ?

La confiance est locale et ne dépend d’aucune fédération d’identité, ce qui renforce la souveraineté numérique et réduit la surface d’attaque.

Ce qu’il faut retenir.

Validation matérielle, exécution en mémoire volatile, aucune donnée durable.

C’est une question pertinente !

FIDO2/WebAuthn exige un enregistrement serveur et un navigateur fédérateur. Le modèle souverain effectue le défi entièrement en RAM, sans stockage ni synchronisation.

Par voie de conséquence

résilient quantique par conception : après usage, il n’existe rien à déchiffrer.

Donc ce que nous devons retenir.

Moins d’intermédiaires, plus d’indépendance et de maîtrise.

D’abord vérifier sa définition

RAM-only = toutes les opérations cryptographiques s’exécutent uniquement en mémoire vive.

Apprécier son impact sécurité

À la fin de la session, tout est détruit. Donc, zéro persistance, zéro trace, zéro réutilisation.

Que devons nous retenir ?

Réduction drastique des risques post-exécution et d’exfiltration.

Le principe

L’utilisateur prouve qu’il détient un élément physique (clé NFC, HSM, carte). Ainsi, aucun secret mémorisé n’est requis.

L’avantage

Validation matérielle locale et indépendance réseau pour une authentification sans mot de passe réellement souveraine.

Ce qu’il convient de retenir !

Le “ce que l’on a” remplace le mot de passe et la fédération.

Selon le Cadre officiel

La triade NIST (savoir / avoir / être) est respectée. L’ISO/IEC 29115 situe l’approche au niveau AAL3 (possession + inhérence via jeton matériel).

Le trou à combler est la valeur souveraineté

Le modèle Freemindtronic va plus loin grâce à la zéro persistance et à l’exécution en RAM.

Si vous deviez retenir l’essentiel ?

Conformité de principe, indépendance d’implémentation.

Excellent question important établir une veritable distinction !

Passwordless = sans saisie de mot de passe ; Password-free = sans stockage de mot de passe.

L’apport de notre modèle souverain

Il combine les deux : pas de saisie, pas de secret persistant, preuve de possession locale.

Retenez l’essentiel

Moins de dépendances, plus d’intégrité opérationnelle.

Par où commencer

  1. Auditer dépendances cloud/OAuth
  2. Déployer modules PassCypher NFC/HSM
  3. Activer la preuve de possession sur les accès critiques
  4. Supprimer la synchronisation
  5. Valider RGPD/NIS2/DORA.

Résultat obtenu

Transition progressive, continuité de service et souveraineté renforcée.

Mémoriser la méthode

Méthode ephemeral-first : dériver → utiliser → détruire (RAM-only).

Le concept de base !

La sécurité ne dépend pas seulement d’algorithmes ; elle dépend de l’absence de matière exploitable.

Quel est son mécanisme ?

Segmentation de clés + volatilité = après exécution, aucun secret durable n’existe.

Ce que vous avez besoin de retenir.

Résilience par conception, pas uniquement par force cryptographique.

En principe, tout le monde a besoin de securiser ses identifiant et mot de passe et notemment ses multi facteur d’authentification Domaines

Défense, santé, finance, énergie, infrastructures critiques.

Pourquoi

Besoins d’hors-ligne, de zéro persistance et de preuve de possession pour limiter l’exposition et garantir la conformité.

Référence

Voir : PassCypher finaliste Intersec 2026.

Oui

L’écosystème PassCypher (NFC HSM & HSM PGP) offre une authentification sans mot de passe RAM-only, universellement interopérable, sans cloud, sans serveur, sans fédération.

Bénéfices immédiat à moindre coût !

Souveraineté opérationnelle, réduction de la surface d’attaque, conformité durable.

À mémoriser

Une voie praticable et immédiatement déployable vers le passwordless souverain.

Pour aller plus loin — approfondir la souveraineté sur l’authentification sans mot de passe

Afin d’explorer plus en détail la portée stratégique du modèle passwordless souverain, il est essentiel de comprendre comment les architectures cryptographiques RAM-only transforment durablement la cybersécurité.
Ainsi, Freemindtronic Andorre illustre à travers ses innovations un continuum cohérent : invention, doctrine, reconnaissance.

🔹 Ressources internes Freemindtronic

🔹 Références institutionnelles complémentaires

🔹 Perspectives doctrinales

Ce modèle passwordless souverain ne se contente pas d’améliorer la sécurité : il établit un cadre de confiance universel, neutre et interopérable.
De ce fait, il préfigure l’émergence d’une doctrine européenne d’authentification souveraine, articulée autour de la cryptologie embarquée, de la preuve de possession et de la volatilité contrôlée.

⮞ Résumé — Pour aller plus loin

  • Explorer les liens entre RAM-only et Zero Trust.
  • Analyser la souveraineté cryptologique face aux modèles fédérés.
  • Suivre la normalisation ISO/NIST du passwordless souverain.
  • Évaluer les impacts quantiques et IA sur l’authentification décentralisée.

Citation manifeste sur authentification sans mot de passe

« Le passwordless ne signifie pas l’absence de mot de passe, mais la présence de souveraineté : celle de l’utilisateur sur son identité, de la cryptologie sur le réseau, et de la mémoire volatile sur la persistance. »
— Jacques Gascuel, Freemindtronic Andorre

🔝 Retour en haut