Tag Archives: Security

Security & Defense Solutions presented for the first time at Eurosatory 2022 by Freemindtronic an Andorran company. We design and manufacture HSM security NFC devices.

image_pdfimage_print

End-to-End Messaging Encryption Regulation – A European Issue

Balance scale showing the balance between privacy and law enforcement in EU regulation of end-to-end encrypted messaging.

The Controversy of End-to-End Messaging Encryption in the European Union

In a world where online privacy is increasingly threatened, the European Union finds itself at the center of a controversy: Reducing the negative effects of end-to-end encryption of messaging services. This technology, which ensures that only the sender and recipient can read the content of messages, is now being questioned by some EU member states.

2024 Cyberculture Legal information

ePrivacy Regulation: Transforming Messaging Privacy in 2025

2024 Cyberculture

Electronic Warfare in Military Intelligence

2024 Articles Cyberculture Legal information

ANSSI Cryptography Authorization: Complete Declaration Guide

2024 Articles Cyberculture

EAN Code Andorra: Why It Shares Spain’s 84 Code

Stay informed with our posts dedicated to Cyberculture to track its evolution through our regularly updated topics.

Discover our new Cyberculture article about a End-to-End Messaging Encryption European Regulation. Authored by Jacques Gascuel, a pioneer in Contactless, Serverless, Databaseless, Loginless and wireless security solutions. Stay informed and safe by subscribing to our regular updates.

Regulation of Secure Communication in the EU

The European Union is considering measures to regulate secure messaging practices. This technology ensures that only the sender and recipient can read the messages. However, some EU member states are questioning its impact on law enforcement capabilities

Control of Secure Messaging and Fragmentation

If the EU adopts these proposals, it could fragment the digital landscape. Tech companies might need to choose between complying with EU regulations or limiting their encrypted messaging services to users outside the EU. This could negatively affect European users by reducing their access to secure communication tools.

Why the EU Considers End-to-End Messaging Encryption Control

Law enforcement agencies across 32 European states, including the 27 EU member states, are expressing concerns over the deployment of end-to-end encryption by instant messaging apps. Their fear is that this could hinder the detection of illegal activities, as companies are unable to monitor the content of encrypted messages. This concern is one of the key reasons why the EU is considering implementing control over end-to-end message encryption.

Exploring the Details of the Proposed Regulation on Encrypted Messaging

EU Commissioner for Home Affairs, Ylva Johansson, has put forward a proposal that could significantly impact the tech industry. This proposal actively seeks to mandate tech companies to conduct thorough scans of their platforms, extending even to users’ private messages, in an effort to detect any illicit content.

However, this proposal has not been without controversy. It has sown seeds of confusion and concern among cryptographers and privacy advocates alike, primarily due to the potential implications it could have on secure messaging. The balance between ensuring security and preserving privacy remains a complex and ongoing debate in the face of this proposed regulation.

Background of the EU Proposal on Secure Messaging

A significant amount of support can be found among member states for proposals to scan private messages for illegal content, particularly child pornography, as shown in a European Council document. Spain has shown strong support for the ban on end-to-end messaging encryption.

Misunderstanding the Scan Form

Out of the 20 EU countries represented in the document, the majority have declared themselves in favor of some form of scanning encrypted messages. This proposal has caused confusion among cryptographers and privacy advocates due to its potential impact on secure communication protocols.

The Risks of Ending End-to-End Messaging Encryption

Privacy advocates and cryptography experts warn against the inherent risks of weakening encryption. They emphasize that backdoors could be exploited by malicious actors, thus increasing user vulnerability to cyberattacks.

Position of the European Court of Human Rights (ECHR) on Secure Messaging

The European Court of Human Rights (ECHR) has taken a stance on end-to-end messaging encryption. In a ruling dated February 13, the ECHR declared that creating backdoors in end-to-end encrypted messaging services like Telegram and Signal would violate fundamental human rights such as freedom of expression and privacy. This ruling highlights the importance of end-to-end messaging encryption as a tool for protecting privacy and freedom of expression within the context of human rights in Europe.

Messaging Apps’ Stance on End-to-End Encryption Regulation

As the European Union considers implementing control over end-to-end message encryption, several messaging apps have voiced their concerns and positions. Here are the views of major players in the field:

Signal’s Position on End-to-End Messaging Encryption Regulation

Signal, a secure messaging app known for its commitment to privacy, has taken a strong stance against the proposed regulation. Meredith Whittaker, president of Signal, has described the European legislative proposal as “surveillance wine in security bottles.” In the face of this legislative proposal, Signal has even threatened to cease its activities in Europe. Despite this, Whittaker affirmed that the company would stay in Europe to support the right to privacy of European citizens.

WhatsApp’s Concerns on End-to-End Messaging Encryption Regulation

WhatsApp, another major player in the messaging app field, has also expressed concerns about the proposed regulation. Helen Charles, a public affairs representative for WhatsApp, expressed “concerns regarding the implementation” of such a solution at a seminar. She stated, “We believe that any request to analyze content in an encrypted messaging service could harm fundamental rights.” Charles advocates for the use of other techniques, such as user reporting and monitoring internet traffic, to detect suspicious behavior.

Twitter’s Consideration of End-to-End Messaging Encryption

In 2022, Elon Musk discussed the possibility of integrating end-to-end encryption into Twitter’s messaging. He stated, “I should not be able to access anyone’s private messages, even if someone put a gun to my head” and “Twitter’s private messages should be end-to-end encrypted like Signal, so that no one can spy on or hack your messages.”

Mailfence’s Emphasis on End-to-End Encryption

Mailfence, a secure email service, has declared that end-to-end encryption plays a crucial role in setting up secure messaging. They believe it’s extremely important to protect online privacy.

Meta’s Deployment of End-to-End Encryption

Meta (formerly Facebook) recently deployed end-to-end encryption by default for Messenger conversations. This means that only the sender and recipient can access the content of the messages, with Meta being unable to view them.

Other Messaging Apps’ Views on End-to-End Encryption

Other messaging apps have also expressed their views on end-to-end encryption:

Europol’s View

The heads of European police, including Europol, have expressed their need for legal access to private messages. They have emphasized that tech companies should be able to analyze these messages to protect users. Europol’s director, Catherine De Bolle, even stated, “Our homes are becoming more dangerous than our streets as crime spreads online. To ensure the safety of our society and our citizens, we need this digital environment to be secure. Tech companies have a social responsibility to develop a safer environment where law enforcement and justice can do their job. If the police lose the ability to collect evidence, our society will not be able to prevent people from becoming victims of criminal acts”.

Slack’s View

Slack, a business communication platform, has emphasized the importance of end-to-end encryption in preserving the confidentiality of communications and ensuring business security.

Google’s View

Google Messages uses end-to-end encryption to prevent unauthorized interception of messages. Encryption ensures that only legitimate recipients can access the exchanged messages, preventing malicious third parties from intercepting or reading conversations.

Legislative Amendments on End-to-End Messaging Encryption

Several proposed amendments related to end-to-end messaging encryption include:

Encryption, especially end-to-end, is becoming an essential tool for securing the confidentiality of all users’ communications, including those of children. Any restrictions or infringements on end-to-end encryption can potentially be exploited by malicious third parties. No provision of this regulation should be construed as prohibiting, weakening, or compromising end-to-end encryption. Information society service providers should not face any barriers in offering their services using the highest encryption standards, as this encryption is crucial for trust and security in digital services.

The regulation permits service providers to select the technologies they employ to comply with detection orders. It should not be interpreted as either encouraging or discouraging the use of a specific technology, as long as the technologies and accompanying measures adhere to the requirements of this regulation. This includes the use of end-to-end encryption technology, a vital tool for ensuring the security and confidentiality of users’ communications, including those of children.

When implementing the detection order, providers should employ all available safeguards to ensure that the technologies they use cannot be exploited by them, their employees, or third parties for purposes other than compliance with this regulation. This helps to avoid compromising the security and confidentiality of users’ communications while ensuring the effective detection of child sexual abuse material and balancing all fundamental rights involved. In this context, providers should establish effective internal procedures and safeguards to prevent general surveillance. Detection orders should not apply to end-to-end encryption.

Advantages and Disadvantages of End-to-End Messaging Encryption

Advantages:

  • Privacy: End-to-end messaging encryption protects users’ privacy by ensuring that only the participants in the conversation can read the messages.
  • Security: Even if data is intercepted, it remains unintelligible to unauthorized parties.

Disadvantages:

  • Limitation of Detection of Illegal Activities: Law enforcement agencies fear that end-to-end messaging encryption hinders their ability to fight the most heinous crimes, as it prevents companies from regulating illegal activities on their platforms.

Technical Implications of Backdoors in End-to-End Messaging Encryption

The introduction of backdoors in encryption systems presents significant technical implications. A backdoor is a covert mechanism deliberately introduced into a computer system that allows bypassing standard authentication processes. It can reside in the core of a software’s source code, at the firmware level of a device, or be rooted in communication protocols. Backdoors can be exploited by malicious actors, increasing user vulnerability to cyberattacks. Detecting backdoors requires constant technological vigilance and rigorous system analysis.

Implications of New Cryptographic Technologies for Content Moderation

Innovation in cryptography is paving the way for new methods that allow effective content moderation while preserving end-to-end messaging encryption. Recent research is delving into advanced cryptographic technologies that empower platforms to detect and moderate problematic content without compromising communication privacy. These technologies, often rooted in artificial intelligence and natural language processing, have the capability to analyze metadata and behavior patterns to identify illicit content. For instance, the EU’s Digital Services Act (DSA) is aiming to make platform recommendation algorithms transparent and regulate online content moderation more effectively.

This could encompass systems that assess the context and frequency of messages to detect abuses without decrypting the content itself. Moreover, solutions like AI-based content moderation offer substantial advantages for managing online reputation, delivering faster and more consistent responses than manual moderation. These systems can be trained to recognize specific patterns of hate speech or terrorist content, enabling swift intervention while respecting user privacy. The integration of these innovations into messaging platforms could potentially resolve the dilemma between public safety and privacy protection. It provides authorities with the necessary tools to combat crime without infringing on individuals’ fundamental rights to communication privacy.

Potential Impact of This Technology on End-to-End Messaging Encryption of Messaging Services

Adopting these new cryptographic technologies represents a major advance in how we view online security and privacy. They offer considerable potential for improving content moderation while preserving end-to-end messaging encryption, ensuring a safer internet while protecting human rights in the digital age. These innovations could play a key role in implementing European regulations on end-to-end messaging encryption, balancing security needs with respect for privacy.

Messaging Services Affected by European Legislation

Among the popular messaging applications that use end-to-end messaging encryption available in Europe are:

  • Signal: A secure messaging application that uses end-to-end encryption. It ensures that only the sender and recipient can access message content, even when data is in transit on the network.
  • WhatsApp: Adopted end-to-end encryption in 2016. It ensures that messages are encrypted at the sender’s device and only decrypted at the recipient’s device.
  • Messenger: Meta (formerly Facebook) plans to generalize end-to-end encryption on Messenger by 2024.
  • Telegram: Uses end-to-end encryption for specific features, such as Secret Chats, ensuring message privacy between the sender and recipient.
  • iMessage: Apple’s messaging service uses end-to-end encryption for messages sent between Apple devices.
  • Viber: Another messaging app that uses end-to-end encryption to secure messages between users.
  • Threema: A secure messaging app that employs end-to-end encryption for all communications, providing high privacy standards.
  • Wire: Offers end-to-end encryption for messages, calls, and shared files, focusing on both personal and business communication.
  • Wickr: Provides end-to-end encryption for messaging and is known for its strong security features.
  • Dust: Emphasizes user privacy with end-to-end encryption and self-destructing messages.
  • ChatSecure: An open-source messaging app offering end-to-end encryption over XMPP with OTR encryption.
  • Element (formerly Riot): A secure messaging app built on the Matrix protocol, providing end-to-end encryption for all communications.
  • Keybase: Combines secure messaging with file sharing and team communication, all protected by end-to-end encryption.

Balancing Security and Privacy

The debate over end-to-end messaging encryption highlights the difficulty of finding a balance between security and privacy in the digital age. On the one hand, law enforcement agencies need effective tools to fight crime and terrorism. On the other hand, citizens have the fundamental right to privacy and the protection of their communications.

Alternatives to Weakened End-to-End Messaging Encryption?

It is crucial to explore alternatives that address law enforcement’s public safety concerns without compromising users’ privacy. Possible solutions include developing better digital investigation techniques, improving international cooperation between law enforcement agencies, and raising public awareness about online dangers.

Navigating Encryption: Security and Regulatory Impediments

Limitations and Challenges of Advanced Cryptographic Technologies

Hardware security modules (HSMs), such as PGP, actively enhance messaging and file encryption security. Similarly, Near Field Communication (NFC) hardware security modules, like DataShielder, significantly bolster protection. Yet, we must confront the significant limitations that regulations introduce; these aim to curtail the protection of both private and corporate data. By encrypting data before transmission, these solutions robustly defend against interception and unauthorized access, whether legal or otherwise. Additionally, this technology stands resilient to AI-driven content moderation filters. In particular, this pertains to messages and files that systems like DataShielder encrypt externally; subsequently, these services are employed for communication.

Ineffectiveness of AI-Based Moderation Filters

Content moderation systems relying on artificial intelligence face a major obstacle: they cannot decrypt and analyze content protected by advanced encryption methods. As a result, despite advances in AI and natural language processing, these filters become inoperative when confronted with messages or files encrypted via HSM PGP or NFC HSM.

Consequences for Security and Privacy

This limitation raises important questions about platforms’ ability to detect and prevent the spread of illicit content while respecting user privacy. It highlights the technical challenge of developing solutions that strike a balance between privacy protection and public safety requirements.

Towards a Balanced Solution

It is imperative to continue researching and developing new cryptographic technologies that enable effective moderation without compromising privacy. The goal is to find innovative methods that respect fundamental rights while providing authorities with the tools needed to fight criminal activities.

HSM PGP and NFC HSM: Alternatives to End-to-End Messaging Encryption

In addition to end-to-end encrypted messaging services, there are alternative solutions like Hardware Security Modules (HSM PGP) and Near Field Communication Hardware Security Modules (NFC HSM) that offer potentially higher levels of security. These devices are designed to protect cryptographic keys and perform sensitive cryptographic operations, ensuring data security throughout its lifecycle.

DataShielder NFC HSM and DataShielder HSM PGP are examples of products that use these technologies to encrypt communications and data anonymously. These tools allow encryption of not only messages but also all types of data, providing a versaced solution that uses Freemindtronic’s EviEngine technology to provide secure and flexible encryption, meeting the diverse needs of professionals and businesses. This solution is designed to operate without a server or database, enhancing security by keeping all data under the user’s control and reducing potential vulnerabilities.

Impact of HSM PGP and NFC HSM on End-to-End Messaging Encryption

HSM PGP and NFC HSM integration adds a vital layer to cybersecurity. They provide a robust solution for information security.

Specifically, DataShielder HSM PGP offers advanced protection. As the EU considers encryption regulation, DataShielder technologies emerge as key alternatives. They ensure confidentiality and security amidst digital complexity. These technologies advocate for encryption as a human rights safeguard. Simultaneously, they address national security issues.

Conclusion

The European legislator faces complexity in harmonizing regulation with Member States. They aim to finalize it by next year. Clearly, preserving end-to-end encryption requires exploring alternatives. This includes better cooperation between law enforcement and advanced investigative techniques.

HSM PGP and NFC HSM transform messaging into secure communication. They do so without servers or identification. Thus, they provide strong protection for organizational communication and data. These measures balance privacy needs with public safety requirements. They offer a comprehensive digital security approach in a complex environment.

Sources

Apple M chip vulnerability: A Breach in Data Security

Illustration of an Apple MacBook with a highlighted M-series chip vulnerability, surrounded by symbols of data security breach and a global impact background.

Apple M-Chip Vulnerability: Critical Risk

Learn about the critical Apple M-chip flaw, a micro-architectural vulnerability that threatens data security. This article reveals the attack process exploiting data prefetching and encryption key extraction, highlighting the major security impact. Essential reading to understand and anticipate the risks linked to this alarming discovery.

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

Apple M chip vulnerability: uncover the critical security breach highlighted by MIT (CSAIL). Stay updated with our latest insights.

Apple M chip vulnerability and how to Safeguard Against Threats, by Jacques Gascuel, the innovator behind advanced sensitive data security and safety systems, provides invaluable knowledge on how data encryption and decryption can prevent email compromise and other threats.

Apple M chip vulnerability: uncovering a breach in data security

Researchers at the Massachusetts Institute of Technology’s (MIT) Computer Science and Artificial Intelligence Laboratory (CSAIL) have unveiled a critical hardware flaw within Apple’s M-series chips, dubbed the “Apple M chip vulnerability,” marking a significant breach in data security. This vulnerability, referred to as ‘GoFetch,’ highlights a concerning issue in the chips’ microarchitecture, potentially compromising the integrity of sensitive information stored on millions of devices. Unlike previous security flaws, this unpatchable vulnerability allows for the unauthorized extraction of cryptographic keys through a secondary channel during the execution of cryptographic protocols, posing a serious threat to data security across a broad spectrum of devices. The discovery underscores the vulnerability’s profound implications, as it affects not only the security of Apple devices but also the broader ecosystem relying on these cryptographic protocols.

Exploiting the Apple M Chip Vulnerability Without Elevated Privileges

A notable aspect of this vulnerability is its exploitation without the need for elevated privileges. Academic researchers have devised an application capable of retrieving cryptographic keys from other applications running the affected algorithms. This exploitation leverages the Data Memory-Dependent Prefetcher (DMP) within the chips, which can mistakenly interpret data as memory addresses, thereby enabling attackers to reconstruct secret keys.

The Risk to Users’ Sensitive Data

The implications of this vulnerability are far-reaching, affecting all common cryptographic algorithms, including those designed to be quantum-resistant. Researchers have demonstrated the successful extraction of RSA, DHKE, Kyber, and Dilithium keys, with extraction times varying from 49 minutes to 15 hours, depending on the algorithm. This vulnerability endangers the integrity of encrypted data, including sensitive personal and financial information.

The Mechanics Behind the Attack

The vulnerability arises from the architectural design of Apple’s M1, M2, and M3 chips, which, similar to Intel’s latest Raptor Lake processors, utilize caches to enhance performance. These caches can inadvertently mix up data with memory addresses, leading to potential data leakage. A well-designed cryptographic code should operate uniformly in time to prevent such vulnerabilities.

La Vulnérabilité des Puces M d’Apple: A Risk to Cryptocurrency Wallets

The discovery of this vulnerability also casts a shadow over the security of cryptocurrency wallets. Given the flaw’s capacity for cryptographic key extraction through side-channel attacks, users of cold wallets or hardware wallets connected to computers with vulnerable chips for transactions may face heightened risks. These vulnerabilities underscore the importance of assessing the security measures of cold wallets and hardware wallets against such exploits.

Impact on Cold Wallets and Hardware Wallets

Private key extraction poses a serious threat, especially when devices are connected to vulnerable computers for transactions. This vulnerability could compromise the very foundation of cryptocurrency security, affecting both local and remote attack scenarios.

Security Recommendations

Manufacturers of cold and hardware wallets must promptly assess and address their vulnerability to ensure user security. Users are advised to adhere to best security practices, such as regular updates and minimizing the connection of cold wallets to computers. An effective alternative is the utilization of Cold Wallet NFC HSM technology, such as Freemindtronic’s EviVault NFC HSM or EviSeed NFC HSM, embedded in Keepser and SeedNFC HSM products, offering robust protection against such vulnerabilities.

Apple M Chip Vulnerability: Unveiling the Unpatchable Flaw

This flaw, inherent to the microarchitecture of the chips, allows the extraction of cryptographic keys via a secondary channel during the execution of the cryptographic protocol.
This discovery of an “irreparable flaw” in Apple’s M-series chips could seriously compromise data security by allowing unauthorized extraction of encryption keys. This vulnerability constitutes a significant security flaw, posing a substantial risk to user data across various devices.

The Micro Architectural Rift and its Implications: Unveiling the Apple M Chip Vulnerability

Critical Flaw Discovered in Apple’s M-Chips

Moreover, the recent discovery of the ‘Apple M chip vulnerability’ in Apple’s M-series chips has raised major IT security concerns. This vulnerability, inherent in the silicon design, enables extraction of cryptographic keys through a side channel during the execution of standard cryptographic protocols. Furthermore, manufacturers cannot rectify this flaw with a simple software or firmware update, as it is embedded in the physical structure of processors.

Implications for Previous Generations

Additionally, the implications of the ‘Apple M chip vulnerability’ are particularly severe for earlier generations of the M-series, such as M1 and M2. Furthermore, addressing this flaw would necessitate integrating defenses into third-party cryptographic software, potentially resulting in noticeable performance degradation when performing cryptographic operations.

Hardware optimizations: a double-edged sword

Moreover, modern processors, including Apple’s M-series and Intel’s 13th Gen Raptor Lake microarchitecture, utilize hardware optimizations such as memory-dependent prefetching (DMP). Additionally, these optimizations, while enhancing performance, introduce security risks.

New DMP Research

Moreover, recent research breakthroughs have unveiled unexpected behavior of DMPs in Apple silicon. Additionally, DMPs sometimes confuse memory contents, such as cryptographic keys, with pointer values, resulting in data “dereference” and thus violating the principle of constant-time programming.

Additionally, we can conclude that the micro-architectural flaw and the unforeseen behaviors of hardware optimizations emphasize the need for increased vigilance in designing cryptographic chips and protocols. Therefore, addressing these vulnerabilities necessitates ongoing collaboration between security researchers and hardware designers to ensure the protection of sensitive data.

Everything you need to know about Apple’s M chip “GoFetch” flaw

Origin of the fault

The flaw, dubbed “GoFetch,” was discovered by researchers at the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Massachusetts Institute of Technology (MIT). It affects Apple’s M1, M2 and M3 chips and allows for the extraction of encryption keys, compromising data security1.

Level of hazardousness

The vulnerability is considered severe because it cannot be fixed by a simple software patch. Furthermore, it is due to a specific hardware optimization in the architecture of the chips, making it difficult to correct without significantly impacting the performance of the devices.

Apple’s response and actions taken

Moreover, to date, Apple has not yet officially communicated about this flaw. Security experts recommend the use of software solutions to mitigate risk, although this may reduce the performance of affected devices.

Source of the vulnerability report

The detailed report on this vulnerability has been published by CSAIL. For an in-depth understanding of the flaw and its implications, it is advisable to consult the full research paper provided by the researchers.

Understanding the ‘Apple M chip vulnerability’ and its ‘GoFetch’ flaw

Vulnerability Description

  • Data Memory-Dependent Prefetcher (DMP): Moreover, this function in Apple’s M chips is designed to improve performance by predicting and loading data that the CPU might need next. However, it has a vulnerability that can be exploited through a side-channel attack.
  • Side-Channel Attack: Additionally, the flaw allows attackers to observe the effects of the DMP’s operation, such as timing information, to infer sensitive data.
  • Encryption Key Extraction: Furthermore, by exploiting the DMP’s behavior, attackers can extract encryption keys that are used to secure data on the device. This includes keys from widely-used cryptographic protocols like OpenSSL Diffie-Hellman, Go RSA, CRYSTALS Kyber, and Dilithium.

Level of Hazardousness

Additionally, the “GoFetch” flaw is considered very dangerous because it is a hardware-level vulnerability. It cannot be fixed with a software update without potentially reducing chip performance.

The diagram illustrating the level of hazardousness of the micro-architectural flaw in the Apple M-Chip, specifically the “GoFetch” flaw, has been successfully created. Moreover, this visual representation captures the flaw’s inception at the Data Prefetching (DMP) function, its exploitation through the attack process, the subsequent extraction of encryption keys, and the final security impact, including compromised data privacy and security breaches.

Diagram showcasing the GoFetch vulnerability in Apple M-Chip, from data prefetching to security impact.
This diagram delineates the exploitation process of the GoFetch flaw in the Apple M-Chip, highlighting its hazardous impact on data security.
  1. Data Prefetching (DMP): Furthermore, a diagram component shows the DMP function, which is the initial target for the attack.
  2. Attack Process: Additionally, a flow demonstrates how the attacker exploits the DMP to initiate a side-channel attack.
  3. Encryption Key Extraction: Moreover, a depiction of the attacker successfully retrieving the encryption keys through the side-channel.
  4. Security Impact: Additionally, the final part of the diagram should show the potential risks, such as compromised data privacy and security breaches.

Impact and Timeline of Apple M1, M2, and M3 Chips: Assessing the ‘Apple M chip vulnerability’ Impact and Progression

The ‘Apple M chip vulnerability’ affects all Macs running Apple silicon, including M1, M2, and recent M3 chips. This includes a wide range of Mac and MacBook computers, which are now susceptible to side-channel attacks exploiting this vulnerability.

Apple computer affected by this flaw

The ‘Apple M chip vulnerability’ impacts a wide range of Apple hardware, starting with the launch of the first Mac system-on-chip, the M1, in November 2020. This hardware includes the M1, M1 Pro, M1 Max, M1 Ultra, M2, M2 Pro, M2 Max, M2 Ultra, M3, M3 Pro, and M3 Max chips.

Date Model Description
Nov 2020 M1 Introducing the M1 to MacBook Air, MacBook Pro, and Mac mini 13″
Apr 2021 M1 Launch of the iMac with M1 chip
Oct 2021 M1 Pro and M1 Max M1 Pro and M1 Max arrive in 14-inch and 16-inch MacBook Pros
March 2022 M1 Ultra M1 Ultra launches with Mac Studio
June 2022 M2 Next generation with the M2 chip
Jan. 2023 M2 Pro and M2 Max M2 Pro and M2 Max launch in 14-inch and 16-inch MacBook Pros, and Mac mini
June 2023 M2 Ultra M2 Ultra launches on Mac Studio and Mac Pro
Oct 2023 M3 M3 series with the M3, M3 Pro and M3 Max

To establish the extent of the problem of Apple’s M chip vulnerability and its consequences on a global scale, we sought to establish the most accurate statistics published on the internet to try to assess as accurately as possible the number of devices affected and the geographical scope of the impact.

The Magnitude of the ‘Apple M chip vulnerability’: Global Consequences and Statistics

The “GoFetch” vulnerability in Apple’s M chips has a potential impact on millions of devices around the world. Since the introduction of the M1 chip in November 2020, Apple has sold tens of millions of Mac computers with the M1, M2, and M3 chips, with a presence in more than 100 countries. This security flaw therefore represents a significant threat to data privacy and security on a global scale.

Potential Consequences:

  • Privacy breach: Because encryption keys can be extracted, sensitive user data is at risk.
  • Business impact: Organizations that rely on Apple devices for their operations could face costly data breaches.
  • Economic repercussions: Confidence in the safety of Apple products could be shaken, potentially affecting future sales.

It is crucial that users are aware of this vulnerability and take steps to secure their devices, pending an official response from Apple and potential solutions to mitigate the risks associated with this critical security breach.

Statistics

In terms of sales, Apple’s A and M chips have seen impressive growth, with a 54% increase in revenue, reaching $2 billion in the first quarter. This positive trend reflects the widespread geographic impact and growing adoption of Apple Silicon technologies.

Based on available data, here is an estimate of the number of Apple computers with the M1, M2, and M3 chips sold, broken down by geographic region:

Statistics Table Detailed Statistics

Based on available data, here is an estimate of the number of Apple computers with the M1, M2, and M3 chips sold, broken down by geographic region:

Region Estimated sales
Americas 2 millions
Europe 1.5 million
Greater China 1 million
Japan 500 000
Middle East 300 000
Africa 200 000
Asia-Pacific 300 000
Latin America 100 000
Eastern Europe 100 000

Estimated total: 6 million units sold.

These estimates underscore the importance of the “GoFetch” vulnerability and the need for Apple to effectively respond to this security flaw on a global scale.

These estimates are based on market shares and sales trends in these regions. They give an idea of the distribution of sales of Macs with the M1, M2, and M3 chips outside of major markets.

These figures are based on overall sales and may vary depending on the sources and methods of calculation. Still, they give an idea of the scale of Apple’s M-chip distribution around the world and highlight the importance of the “GoFetch” vulnerability on a global scale. It’s important to note that these numbers are estimates, and exact sales data by country isn’t always published by Apple or third-party sources.

What are the Safeguards?

The IT security expert community emphasizes the importance of developing software solutions to mitigate risk, even if it could lead to a significant decrease in the performance of affected devices. Solutions like DataShielder Defense NFC HSM, developed by Freemindtronic, offer hardware or hybrid countermeasures to secure encryption keys

DataShielder NFC HSM

DataShielder Defense NFC HSM, developed by Freemindtronic, offers advanced security measures to protect encryption keys against vulnerabilities such as “GoFetch.” Utilizing AES-256 and RSA-4096 encryption through an NFC HSM and/or hybrid hardware and software HSM PGP for data encryption as well as wifi, Lan, Bluetooth, and NFC communication protocols, DataShielder enables externalized encryption for Apple computers, ensuring the confidentiality and integrity of sensitive data. This solution is particularly beneficial for businesses and organizations handling highly sensitive information, providing them with robust cybersecurity and security against potential cyber threats.

DataShielder HSM PGP

DataShielder HSM PGP provides a secure hybrid HSM PGP platform solution for generating, storing, and managing PGP keys, offering end-to-end encryption for email communications via a web browser. By integrating mechanisms for creating secure containers on multiple hardware supports that can be physically externalized from the computer, DataShielder HSM PGP enhances the confidentiality and authenticity of email exchanges by encrypting emails, thus mitigating the risk of interception or tampering by malicious actors. This solution is ideal for all types of businesses, financial institutions, and companies requiring stringent data protection measures without the risk of relying on their computers’ security vulnerabilities.

DataShielder Defense

DataShielder Defense provides comprehensive protection against hardware vulnerabilities and cyber threats by combining hardware and software hybrid encryption compatible with all types of storage media, including NFC HSM. It incorporates the management of various standard symmetric and asymmetric encryption keys, including freely selectable Open PGP encryption algorithms by the user. By protecting sensitive data at the hardware level, without servers, without databases, and in total anonymity, DataShielder Defense ensures a very high level of security considered post-quantum, offering a wide range of applications, including data storage, communication, and processing. This solution is particularly advantageous for governmental entities and organizations dealing with classified information. It serves as a counter-espionage tool suitable for organizations looking to strengthen their cybersecurity posture and mitigate risks associated with very complex emerging threats.

In summary, DataShielder solutions provide effective countermeasures against hardware vulnerabilities like “GoFetch,” offering organizations reliable protection for their sensitive data and critical assets. Through continuous innovation and collaboration with industry partners, DataShielder remains at the forefront of data security, empowering organizations to defend against evolving cyber threats and protect their digital infrastructure.

Let’s summarize

The recent discovery of a vulnerability in Apple M chips, dubbed “GoFetch,” by MIT researchers raises major concerns about data security on devices equipped with these chips. This flaw potentially exposes millions of Mac computers worldwide to side-channel attacks, compromising the privacy of stored information.

In conclusion on the vulnerability of Apple M series chips: Addressing the critical Apple M chip vulnerability

The vulnerability discovered in Apple’s M-series chips, known as “GoFetch,” by researchers at MIT underscores the significant challenges facing hardware manufacturers in terms of security. Effective safeguards, both in software and hardware, are crucial to mitigate risks and uphold the security of sensitive user data. Collaboration among manufacturers, security researchers, and government entities is essential to develop robust solutions and ensure protection against emerging threats.

In conclusion, the prompt identification and resolution of hardware vulnerabilities like “GoFetch” are imperative for maintaining user confidence and safeguarding the integrity of IT systems. Continuous evaluation and implementation of technological advancements and security best practices are necessary to provide adequate protection against potential threats.

Encrypted messaging: ECHR says no to states that want to spy on them

ECHR landmark ruling in favor of encrypted messaging, featuring EviCypher NFC HSM technology by Freemindtronic.

Protecting encrypted messaging: the ECHR decision

Encrypted messaging is vital for digital privacy and free speech, but complex to protect. The historic ECHR decision of February 13, 2024 supports strong encryption against government surveillance. We discuss the importance of this decision. You will discover EviCypher NFC HSM encryption technology from Freemindtronic, guardian of this decision but for all messaging services in the world.

2024 Cyberculture Legal information

ePrivacy Regulation: Transforming Messaging Privacy in 2025

2024 Cyberculture

Electronic Warfare in Military Intelligence

2024 Articles Cyberculture Legal information

ANSSI Cryptography Authorization: Complete Declaration Guide

2024 Articles Cyberculture

EAN Code Andorra: Why It Shares Spain’s 84 Code

Stay informed in our posts dedicated to Cyberculture to follow its evolution thanks to our regularly updated topics

Learn more through this Cyberculture section on your data encryption rights to protect your personal and professional data written by Jacques Gascuel, creator of data security solutions. Stay informed and secure with our regular news.

Encrypted messaging: ECHR says no to states that want to spy on them

The historic judgment of the European Court of Human Rights (ECHR) elevates encrypted messaging to the rank of guardian of privacy and freedom of expression. But this also poses security and public order problems. On February 13, 2024, she spoke out in favor of strong encryption, against state interference.

The ECHR has rejected Russian authorities’ request to Telegram, a messaging application, to provide private keys for encrypting its users’ communications, or to install backdoors that would allow authorities to access them. The Court considered that this request violated the rights to privacy and correspondence, as well as freedom of expression, of Telegram users.

The context of the case

The case background Six journalists and human rights activists challenged the request of the Russian authorities to Telegram before the ECHR. They claimed that this request violated their fundamental rights. They relied on Articles 8 and 10 of the European Convention on Human Rights. These articles protect the right to privacy and correspondence, and the right to freedom of expression.

The reasoning of the Court

The Court’s reasoning The Court acknowledged that the request of the Russian authorities had a legitimate aim of national security and crime prevention. However, it found that the interference with the rights of the applicants was not proportionate to the aim pursued. It emphasised that encryption plays a vital role in ensuring the confidentiality of communications and the protection of personal data. It held that the request of the Russian authorities was too general and vague. It did not offer enough safeguards against abuse. It could deter people from using encrypted messaging services.

The Court also noted that encryption helps citizens and businesses to defend themselves against the misuse of information technologies, such as hacking, identity theft, data breach, fraud and undue disclosure of confidential information. It stated that this should be duly taken into account when assessing the measures that could weaken encryption.

The Court further observed that, in order to be useful to the authorities, the information must be decrypted at some point. It suggested that the authorities should use other means to obtain the necessary information, such as undercover operations, metadata analysis and international cooperation.

The consequences of the decision

The decision’s implications The decision of the Court is final and binding for Russia. It has to implement it within a reasonable time. It also has a broader impact. It sets out principles applicable to all member states of the Council of Europe, which comprises 47 countries. It sends a strong signal in favour of the respect of fundamental rights on the internet. It aligns with the position of several international organisations, such as the UN, the EU or the OSCE. They have stressed the importance of encryption for the protection of human rights online.

The official link of the ECHR decision is: AFFAIRE PODCHASOV c. RUSSIE and AFFAIRE PODCHASOV c. RUSSIE and AFFAIRE PODCHASOV c. RUSSIE. You can access it by clicking on the title or copying the address in your browser.

The position of other countries in the world

Encryption of communications is not a consensual topic. Countries have different, even opposite, positions on the issue. Here are some examples:

  • The Netherlands have argued for the right to strong encryption. They considered it a human right that must be safeguarded, in the country’s own interest.
  • The United States have repeatedly asked technology companies to provide them with access to encrypted data. They invoked the need to fight terrorism. These requests have been challenged by companies, such as Apple. They refused to create backdoors in their encryption systems.
  • China adopted a cybersecurity law in 2016. It requires companies to cooperate with authorities to provide encryption keys or means to bypass encryption. This law has been denounced by human rights defenders. They fear that it will be used to strengthen the surveillance and censorship of the Chinese regime.
  • The European Union adopted a directive on the protection of personal data in 2016. It recognizes encryption as a technical measure suitable for ensuring the security of data. The EU also supported the development of end-to-end encryption. It funded projects such as the free software Signal, which allows to encrypt calls and messages.

These examples show the divergences and convergences between different countries on the subject of encryption. They also reveal the political, economic and social issues that are at stake.

The world’s reactions to the ECHR decision on Encrypted Messaging

The ECHR decision on Encrypted Messaging has sparked different reactions in the world. Some countries praised the judgment, which boosts the protection of human rights on the internet. Other countries slammed the position of the Court, which undermines, according to them, the judicial cooperation and the national security.

The supporters of the ECHR decision

The Netherlands are among the countries that supported the ECHR decision. They argued for the right to strong encryption, considering it a human right that must be safeguarded, in the country’s own interest. The European Union also backed the Court, reminding that encryption is a technical measure suitable to ensure the security of data, in accordance with the directive on the protection of personal data adopted in 2016. The EU also stressed that it funds the development of end-to-end encryption, through projects such as the free software Signal, which allows to encrypt calls and messages.

The opponents of the ECHR decision

The United States are among the countries that opposed the ECHR decision. They have repeatedly asked technology companies to provide them with access to encrypted data, invoking the need to fight terrorism. These requests have been challenged by companies, such as Apple, which have refused to create backdoors in their encryption systems. China also expressed its disagreement with the Court, stating that encryption of communications fosters the dissemination of illegal or dangerous content, such as terrorist propaganda, child pornography or hate speech. China recalled that it has adopted in 2016 a cybersecurity law, which requires companies to cooperate with authorities to provide encryption keys or means to bypass encryption.

The non-signatories of the European

Convention on Human Rights Some countries have not reacted to the ECHR decision, because they are not signatories of the European Convention on Human Rights. This is the case for example of Russia, which ceased to be a member of the Council of Europe on March 16, 2022, after the invasion of Ukraine decided by the Kremlin. The country no longer participates in the activities of the ECHR. This is also the case of many countries in Africa, Asia or Latin America, which are not part of the Council of Europe and which have not ratified the Convention.

The signatory countries of the European Convention on Human Rights

The European Convention on Human Rights is an international treaty adopted by the Council of Europe in 1950, which aims to protect human rights and fundamental freedoms in the states parties. It entered into force in 1953, after being ratified by ten countries: Belgium, Denmark, France, Ireland, Italy, Luxembourg, the Netherlands, Norway, Sweden and the United Kingdom .

Since then, the Convention has been ratified by 36 other countries, bringing the total number of states parties to 46. They are: Albania, Germany, Andorra, Armenia, Austria, Azerbaijan, Bosnia and Herzegovina, Bulgaria, Cyprus, Croatia, Estonia, Finland, Georgia, Greece, Hungary, Iceland, Latvia, Liechtenstein, Lithuania, Malta, Moldova, Monaco, Montenegro, North Macedonia, Poland, Portugal, Romania, Russia, San Marino, Serbia, Slovakia, Slovenia, Spain, Czech Republic, Turkey and Ukraine.

All these countries recognize the jurisdiction of the European Court of Human Rights (ECHR), which is in charge of ensuring the respect of the Convention. The ECHR can be seized by any person, group of persons or non-governmental organization who claims to be a victim of a violation of the Convention by one of the states parties. The ECHR can also be seized by a state party who alleges that another state party has violated the Convention. The ECHR delivers judgments that are final and binding for the states parties.

An innovative and sovereign alternative: the EviCypher NFC HSM technology

Facing the challenges of encryption of communications, some users may look for an alternative more innovative and sovereign than the traditional messaging applications. This is the case of the EviCypher NFC HSM technology, developed by the Andorran company Freemindtronic. This technology makes it possible to generate, store, manage and use AES-256 encryption keys to encrypt all communication systems, such as WhatsApp, sms, mms, rcs, Telegram, webmail, email client, private messaging like Linkedin, Skype, X and even via postal mail with encrypted QR code messages, etc.

EviCypher NFC HSM: A Secure and Innovative Solution for Encrypted Messaging

Firstly, it guarantees the confidentiality and integrity of data, even if the messaging services are compromised for any reason, including by a court order. Indeed, it is physically impossible for Freemindtronic, the manufacturer of the DataShielder products, to provide encryption keys generated randomly by the user. These keys are stored encrypted in AES-256 via segmented keys in the HSM and NFC HSM. Only the user holds the decryption keys, which he can erase at any time.

Secondly, it preserves the anonymity and sovereignty of users, because it works without server and without database. It does not require internet connection, nor user account, nor phone number, nor email address. It leaves no trace of its use, nor of its user. It does not depend on the policies or regulations of the countries or companies that provide the communication services.

Thirdly, it offers an extreme portability and availability of encryption keys, thanks to the NFC technology. The user can carry his encryption keys on a physical support, such as a card, a bracelet, a key ring, etc. He can use them with any device compatible with NFC, such as a smartphone, a tablet, a computer, etc. He can also share them with other trusted users, in a simple and secure way.

Lastly, it is compatible with the EviCore NFC HSM or EviCore HSM technology, which allows to secure the access to equipment and applications. The user can thus use the same physical support to encrypt his communications and to authenticate on his different digital services.

The EviCypher NFC HSM technology guarantees the confidentiality and integrity of data, even if the messaging services are compromised for any reason, including by a court order. Indeed, it is physically impossible for Freemindtronic, the manufacturer of the DataShielder products, to provide encryption keys generated randomly by the user. These keys are stored encrypted in AES-256 via segmented keys in the HSM and NFC HSM. Only the user holds the decryption keys, which he can erase at any time.

Transforming Encrypted Messaging with EviCypher NFC HSM

The European Court of Human Rights (ECHR) decisively highlights encrypted messaging’s vital role in protecting privacy and freedom of speech. EviCypher NFC HSM, aligning perfectly with these principles, emerges as a pioneering solution. It confronts the challenges of state surveillance and privacy breaches head-on, providing unmatched defense for private communications. EviCypher NFC HSM goes beyond the ECHR’s conventional security and privacy requirements. It crafts an inviolable communication platform that honors users’ privacy rights profoundly. With its innovative approach, EviCypher NFC HSM introduces new data protection standards, forging a robust barrier against government intrusion.

Global Reach and User Empowerment

EviCypher NFC HSM’s technology has a broad global impact, seamlessly addressing the varied encryption landscapes worldwide. It provides a consistent answer to privacy and security issues, disregarding geographic limits. This global applicability makes EviCypher NFC HSM an indispensable tool for users worldwide, solidifying its position as a guardian of global privacy.

Despite potential skepticism about new technologies, the user-friendly and accessible nature of EviCypher NFC HSM aims to dispel such doubts. It promotes wider adoption among those seeking to enhance their communication security. Its compatibility with diverse devices and straightforward operation simplify encryption, facilitating an effortless shift towards secure communication practices.

EviCypher NFC HSM: A Beacon of User Autonomy

EviCypher NFC HSM technology deeply commits to empowering users. It allows individuals to generate, store, and manage their encryption keys independently, giving them direct control. This autonomy not only improves data security but also demonstrates a strong commitment to protecting users’ fundamental rights. It resonates with the values emphasized across the discussion, providing an effective way to strengthen online privacy and security. EviCypher NFC HSM marks a significant leap forward in the movement towards a more secure and private digital landscape.

This technologie HSM stands out as a state-of-the-art, self-sufficient solution, perfectly in line with the ECHR’s decisions and the worldwide need for secure encrypted communication. It leads the charge in advancing user autonomy and security, signaling a crucial evolution in encrypted messaging towards unparalleled integrity.

Incorporating EviCypher’s distinctive features—its operation without servers or databases, interoperability, and backward compatibility with all current communication systems, such as email, SMS, MMS, RCS, and social media messaging, even extending to physical mail via encrypted QR codes—highlights its adaptability and innovative spirit. EviCypher’s resistance to zero-day vulnerabilities, due to encrypting communications upfront, further underscores its exceptional security. Operating anonymously and offline, it provides instant usability without requiring user identification or account creation, ensuring seamless compatibility across phone, computer, and communication systems.

Summary at encrypted messaging

Encrypted Messaging is crucial for the digital society. It protects internet users’ privacy and freedom of expression. But it also challenges security and public order. The European Court of Human Rights (ECHR) supported strong encryption on February 13, 2024. It defended the right to encryption, against states that want to access it. Several international organizations agree with this position. They emphasize the importance of encryption for human rights online. However, the ECHR decision sparked diverse reactions worldwide. Different countries have different views on encryption.

Our conclusion on Encrypted Messaging

EviCypher NFC HSM technology is an innovative and sovereign alternative for Encrypted Messaging. Users can generate, store, manage and use AES-256 encryption keys. They can encrypt all communication systems, such as WhatsApp, sms, mms, rcs, Telegram, webmail, email client, etc. EviCypher NFC HSM technology ensures data confidentiality and integrity. It works even if messaging services are compromised. It preserves users’ anonymity and sovereignty. It does not need server or database. It offers extreme portability and availability of encryption keys, thanks to NFC technology. It is compatible with EviCore NFC HSM or EviCore HSM technology. They secure access to equipment and applications.

DataShielder products provide EviCypher NFC HSM technology. They are contactless encryption devices, guardians of keys and secrets. Freemindtronic, an Andorran company specialized in NFC security, designs and manufactures them.

How the attack against Microsoft Exchange on December 13, 2023 exposed thousands of email accounts

Digital shield by Freemindtronic repelling cyberattack against Microsoft Exchange

How to protect yourself from the attack against Microsoft Exchange?

The attack against Microsoft Exchange was a serious security breach in 2023. Thousands of organizations worldwide were hacked by cybercriminals who exploited vulnerabilities in Microsoft’s email servers. How did this happen? What were the consequences? How did Microsoft react? And most importantly, how can you protect your data and communications? Read our comprehensive analysis and discover Freemindtronic’s technology solutions.

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

Cyberattack against Microsoft: discover the potential dangers of stalkerware spyware, one of the attack vectors used by hackers. Stay informed by browsing our constantly updated topics.

Cyberattack against Microsoft: How to Protect Yourself from Stalkerware, a book by Jacques Gascuel, the innovator behind advanced sensitive data security and safety systems, provides invaluable knowledge on how data encryption and decryption can prevent email compromise and other threats.

How the attack against Microsoft Exchange on December 13, 2023 exposed thousands of email accounts

On December 13, 2023, Microsoft was the target of a sophisticated attack by a hacker group called Lapsus$. This attack exploited another vulnerability in Microsoft Exchange, known as CVE-2023-23415, which allowed the attackers to execute remote code on the email servers using the ICMP protocol. The attackers were able to access the email accounts of more than 10,000 Microsoft employees, some of whom were working on sensitive projects such as the development of GTA VI or the launch of Windows 12. The attackers also published part of the stolen data on a website called DarkBeam, where they sold more than 750 million fraudulent Microsoft accounts. Microsoft reacted quickly by releasing a security patch on December 15, 2023, and collaborating with the authorities to arrest the perpetrators of the attack. One of the members of the Lapsus$ group, an Albanian hacker named Kurtaj, was arrested on December 20, 2023, thanks to the cooperation between the American and European intelligence services1234.

What were the objectives and consequences of the attack?

The attack against Microsoft Exchange affected more than 20,000 email servers worldwide, belonging to businesses, institutions and organizations from different sectors. These servers were vulnerable because they used outdated versions of the software, which no longer received security updates. The attack exploited a critical vulnerability known as ProxyLogon (CVE-2023-23415), allowing the attackers to execute remote code on the servers and access the email accounts. Despite the efforts to solve the problem, many vulnerable servers remained active, exposing the email accounts of about 30,000 high-level employees, including executives and engineers. The attackers were able to steal confidential information, such as internal projects, development plans, trade secrets or source codes.

What were the objectives of the attack?

The attack was attributed to Lapsus$, a hacker group linked to Russia. According to Microsoft, the group’s main objective was to gain access to sensitive information from various targets, such as government agencies, think tanks, NGOs, law firms, medical institutions, etc. The group also aimed to compromise the security and reputation of Microsoft, one of the leading technology companies in the world. The attack was part of a larger campaign that also involved the SolarWinds hack, which affected thousands of organizations in 2020.

What were the impacts of the attack?

The attack had serious impacts on the victims, both in terms of data loss and reputation damage. The data stolen by the attackers included personal and professional information, such as names, addresses, phone numbers, email addresses, passwords, bank details, credit card numbers, health records, etc. The attackers also leaked some of the data on the DarkBeam website, where they offered to sell the data to the highest bidder. This exposed the victims to potential identity theft, fraud, blackmail, extortion, or other cybercrimes. The attack also damaged the reputation of Microsoft and its customers, who were seen as vulnerable and unreliable by their partners, clients, and users. The attack also raised questions about the security and privacy of email communication, which is widely used in the digital world.

What were the consequences of the attack?

The attack had several consequences for Microsoft and its customers, who had to take urgent measures to mitigate the damage and prevent further attacks. Microsoft had to release a security patch for the vulnerability, and urge its customers to update their software as soon as possible. Microsoft also had to investigate the origin and extent of the attack, and cooperate with the authorities to identify and arrest the attackers. Microsoft also had to provide support and assistance to its customers, who had to deal with the aftermath of the attack. The customers had to check their email accounts for any signs of compromise, and change their passwords and security settings. They also had to notify their contacts, partners, and clients about the breach, and reassure them about the security of their data. They also had to monitor their online activities and accounts for any suspicious or fraudulent transactions. The attack also forced Microsoft and its customers to review and improve their security policies and practices, and adopt new solutions and technologies to protect their data and communication.

How did the attack succeed despite Microsoft’s defenses?

The attack was sophisticated and stealthy, using several techniques to bypass Microsoft’s defenses. First, the attackers exploited a zero-day vulnerability, which means that it was unknown to Microsoft and the public until it was discovered and reported. Second, the attackers used a proxy tool to disguise their origin and avoid detection. Third, the attackers used web shells to maintain persistent access to the servers and execute commands remotely. Fourth, the attackers used encryption and obfuscation to hide their malicious code and data. Fifth, the attackers targeted specific servers and accounts, rather than launching a massive attack that would have raised more suspicion.

What are the communication vulnerabilities exploited by the attack?

The attack exploited several communication vulnerabilities, such as:

  • Targeted phishing: The attackers sent fake emails to the victims, pretending to be from legitimate sources, such as Microsoft, their bank, or their employer. The emails contained malicious links or attachments, that led the victims to compromised websites or downloaded malware on their devices. The attackers then used the malware to access the email servers and accounts.
  • SolarWinds exploitation: The attackers also used the SolarWinds hack, which was a massive cyberattack that compromised the software company SolarWinds and its customers, including Microsoft. The attackers inserted a backdoor in the SolarWinds software, which allowed them to access the networks and systems of the customers who installed the software. The attackers then used the backdoor to access the email servers and accounts.
  • Brute force attack: The attackers also used a brute force attack, which is a trial-and-error method to guess the passwords or encryption keys of the email accounts. The attackers used automated tools to generate and test a large number of possible combinations, until they found the right one. The attackers then used the passwords or keys to access the email accounts.
  • SQL injection: The attackers also used a SQL injection, which is a technique to insert malicious SQL commands into a web application that interacts with a database. The attackers used the SQL commands to manipulate the database, and access or modify the data stored in it. The attackers then used the data to access the email accounts.

Why did the detection and defense systems of Microsoft Exchange not work?

The detection and defense systems of Microsoft Exchange did not work because the attackers used advanced techniques to evade them. For example, the attackers used a proxy tool to hide their IP address and location, and avoid being traced or blocked by firewalls or antivirus software. The attackers also used web shells to create a backdoor on the servers, and execute commands remotely, without being noticed by the system administrators or the security software. The attackers also used encryption and obfuscation to conceal their malicious code and data, and prevent them from being analyzed or detected by the security software. The attackers also used zero-day vulnerability, which was not known or patched by Microsoft, and therefore not protected by the security software.

How did Microsoft react to the attack?

Microsoft reacted to the attack by taking several actions, such as:

The main actions of Microsoft

  • Releasing a security patch: Microsoft released a security patch for the vulnerability exploited by the attack, and urged its customers to update their software as soon as possible. The patch fixed the vulnerability and prevented further attacks.
  • Investigating the attack: Microsoft investigated the origin and extent of the attack, and collected evidence and information about the attackers and their methods. Microsoft also cooperated with the authorities and other organizations to identify and arrest the attackers.
  • Providing support and assistance: Microsoft provided support and assistance to its customers, who were affected by the attack. Microsoft offered guidance and tools to help the customers check their email accounts for any signs of compromise, and change their passwords and security settings. Microsoft also offered free credit monitoring and identity theft protection services to the customers, who had their personal and financial data stolen by the attackers.

Microsoft also released patches for the vulnerabilities exploited by the attack

Microsoft also released patches for the other vulnerabilities exploited by the attack, such as the SolarWinds vulnerability, the brute force vulnerability, and the SQL injection vulnerability. Microsoft also improved its detection and defense systems, and added new features and functions to its software, to enhance the security and privacy of email communication.

What are the lessons to be learned from the attack?

The attack was a wake-up call for Microsoft and its customers, who had to learn from their mistakes and improve their security practices. Some of the lessons to be learned from the attack are:

Email security

Email is one of the most widely used communication tools in the digital world, but also one of the most vulnerable to cyberattacks. Therefore, it is essential to ensure the security and privacy of email communication, by applying some best practices, such as:

  • Using strong and unique passwords for each email account, and changing them regularly.
  • Using multi-factor authentication (MFA) to verify the identity of the email users, and prevent unauthorized access.
  • Using encryption to protect the content and attachments of the email messages, and prevent them from being read or modified by third parties.
  • Using digital signatures to verify the authenticity and integrity of the email messages, and prevent them from being spoofed or tampered with.
  • Using spam filters and antivirus software to block and remove malicious emails, and avoid clicking on suspicious links or attachments.
  • Using secure email providers and platforms, that comply with the latest security standards and regulations, and offer features such as end-to-end encryption, zero-knowledge encryption, or self-destructing messages.

Multi-factor authentication

Multi-factor authentication (MFA) is a security method that requires the user to provide two or more pieces of evidence to prove their identity, before accessing a system or a service. The pieces of evidence can be something the user knows (such as a password or a PIN), something the user has (such as a smartphone or a token), or something the user is (such as a fingerprint or a face scan). MFA can prevent unauthorized access to email accounts, even if the password is compromised, by adding an extra layer of security. Therefore, it is recommended to enable MFA for all email accounts, and use reliable and secure methods, such as biometric authentication, one-time passwords, or push notifications.

Principle of least privilege

The principle of least privilege (POLP) is a security concept that states that each user or system should have the minimum level of access or permissions required to perform their tasks, and nothing more. POLP can reduce the risk of data breaches, by limiting the exposure and impact of a potential attack. Therefore, it is advisable to apply POLP to email accounts, and assign different roles and privileges to different users, depending on their needs and responsibilities. For example, only authorized users should have access to sensitive or confidential information, and only administrators should have access to system settings or configuration.

Software update

Software update is a process that involves installing the latest versions or patches of the software, to fix bugs, improve performance, or add new features. Software update is crucial for email security, as it can prevent the exploitation of vulnerabilities that could allow attackers to access or compromise the email servers or accounts. Therefore, it is important to update the software regularly, and install the security patches as soon as they are available. It is also important to update the software of the devices that are used to access the email accounts, such as computers or smartphones, and use the latest versions of the browsers or the applications.

System monitoring

System monitoring is a process that involves observing and analyzing the activity and performance of the system, to detect and resolve any issues or anomalies. System monitoring is vital for email security, as it can help to identify and stop any potential attacks, before they cause any damage or disruption. Therefore, it is essential to monitor the email servers and accounts, and use tools and techniques, such as logs, alerts, reports, or audits, to collect and analyze the data. It is also essential to monitor the email traffic and behavior, and use tools and techniques, such as firewalls, intrusion detection systems, or anomaly detection systems, to filter and block any malicious or suspicious activity.

User awareness

User awareness is a state of knowledge and understanding of the users, regarding the security risks and threats that they may face, and the best practices and policies that they should follow, to protect themselves and the system. User awareness is key for email security, as it can prevent many human errors or mistakes, that could compromise the email accounts or expose the data. Therefore, it is important to educate and train the email users, and provide them with the necessary information and guidance, to help them recognize and avoid any phishing, malware, or social engineering attacks, that could target their email accounts.

What are the best practices to strengthen information security?

Information security is the practice of protecting the confidentiality, integrity, and availability of the information, from unauthorized or malicious access, use, modification, or destruction. Information security is essential for email communication, as it can ensure the protection and privacy of the data and messages that are exchanged. Some of the best practices to strengthen information security are:

  • Adopt the Zero Trust model: The Zero Trust model is a security approach that assumes that no user or system can be trusted by default, and that each request or transaction must be verified and authorized, before granting access or permission. The Zero Trust model can enhance information security, by reducing the attack surface and preventing the lateral movement of the attackers, within the system.
  • Use advanced protection solutions: Advanced protection solutions are security solutions that use artificial intelligence, machine learning, or other technologies, to detect and respond to the most sophisticated and complex cyberattacks, that could target the email accounts or data. Some of these solutions are endpoint detection and response (EDR), identity and access management (IAM), or data encryption solutions.
  • Hire cybersecurity experts: Cybersecurity experts are professionals who have the skills and knowledge to design, implement, and maintain the security of the system and the information, and to prevent, detect, and respond to any cyberattacks, that could affect the email accounts or data. Cybersecurity experts can help to strengthen information security, by providing advice, guidance, and support, to the email users and administrators.

How can Freemindtronic technology help to fight against this type of attack?

Freemindtronic offers innovative and effective technology solutions such as EviCypher NFC HSM and EviPass NFC HSM and EviOTP NFC HSM and other PGP HSMs. They can help businesses to fight against this type of attack based on Zero Day and other threats. Their technology is embedded in products such as DataShielder NFC HSM and DataShielder HSM PGP and DataShielder Defense or PassCypher NFC HSM or PassCypher HSM PGP. These products provide security and communication features for data, email and password management and offline OTP secret keys.

  • DataShielder NFC HSM is a portable device that allows to encrypt and decrypt data and communication on a computer or on an Android NFC smartphone. It uses a contactless hardware security module (HSM) that generates and stores encryption keys securely and segmented. It protects the keys that encrypt contactless communication. This has the effect of effectively fighting against all types of communication vulnerabilities, since the messages and attachments will remain encrypted even if they are corrupted. This function regardless of where the attack comes from, internal or external to the company. It is a counter-espionage solution. It also offers other features, such as password management, 2FA – OTP (TOTP and HOTP) secret keys. In addition, DataShielder works offline, without server and without database. It has a configurable multi-authentication system, strong authentication and secure key sharing.
  • DataShielder HSM PGP is an application that transforms all types of physical storage media (USB key, S, SSD, KeyChain / KeyStore) connected or not connected into HSM. It has the same features as its NFC HSM version. However, it also uses standard AES-256 and RSA 4096 algorithms, as well as OpenPGP algorithms. It uses its HSMs to manage and store PGP keys securely. In the same way, it protects email against phishing and other email threats. It also offers other features, such as digital signature, identity verification or secure key sharing.
  • DataShielder Defense is a dual-use platform for civilian and military use that offers many functions including all those previously mentioned. It also works in real time without server, without database from any type of HSM including NFC. It also has functions to add trust criteria to fight against identity theft. It protects data and communication against cyberattacks and data breaches.

In summary

To safeguard against the Microsoft Exchange attack, prioritize security updates and patches. Embrace Freemindtronic’s innovative solutions for enhanced protection. Stay vigilant against phishing and employ robust authentication methods. Opt for encryption to shield communications. Engage cybersecurity experts for advanced defense strategies. By adopting these measures, you can fortify your defenses against cyber threats and ensure your data’s safety.

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

SSH handshake with Terrapin attack and EviKey NFC HSM

Terrapin Attack: How to Protect Your SSH Security

The Terrapin attack is a serious vulnerability in the SSH protocol that can be used to downgrade the security of your SSH connections. This can allow attackers to gain access to your sensitive data. In this article, we will explain what the Terrapin attack is, how it works, and how you can protect yourself from it.

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

Terrapin attack: CVE-2023-48795 SSH security vulnerability articles for in-depth threat reviews and solutions. Stay informed by clicking on our scrolling topics.

Shield Your SSH Security from the Sneaky Terrapin Attack written by Jacques Gascuel, inventor of sensitive data safety and security systems. Are you safeguarding your SSH connections? Stay vigilant against the Terrapin attack, a stealthy vulnerability that can compromise your SSH security and expose your sensitive data.

Protect Yourself from the Terrapin Attack: Shield Your SSH Security with Proven Strategies

SSH is a widely used protocol for secure communication over the internet. It allows you to remotely access and control servers, transfer files, and encrypt data. However, SSH is not immune to attacks, and a recent vulnerability OpenSSH before 9.6 (CVE-2023-48795) has exposed a serious flaw in the protocol itself. This flaw, dubbed the Terrapin attack, can downgrade the security of SSH connections by truncating cryptographic information. In this article, we will explain what the Terrapin attack is, how it works, and how you can protect yourself from it.

Why you should care about the Terrapin attack

The Terrapin attack is not just a theoretical threat. It is a real and dangerous attack that can compromise the security of your SSH connections and expose your sensitive data. The consequences of a successful Terrapin attack can be severe, such as:

  • Data breaches: The attacker can access your confidential information, such as passwords, keys, files, or commands, and use them for malicious purposes.
  • Financial losses: The attacker can cause damage to your systems, services, or assets, and demand ransom or extort money from you.
  • Reputation damage: The attacker can leak your data to the public or to your competitors, and harm your credibility or trustworthiness.

Therefore, it is important to be aware of the Terrapin attack and take the necessary measures to prevent it. In the following sections, we will show you how the Terrapin attack works, how to protect yourself from it, and how to use PassCypher HSM PGP and EviKey NFC HSM to enhance the security of your SSH keys.

A prefix truncation attack on the SSH protocol

The Terrapin attack is a prefix truncation attack that targets the SSH protocol. It exploits a deficiency in the protocol specification, namely not resetting sequence numbers and not authenticating certain parts of the handshake transcript. By carefully adjusting the sequence numbers during the handshake, an attacker can remove an arbitrary amount of messages sent by the client or server at the beginning of the secure channel without the client or server noticing it.

This manipulation allows the attacker to perform several malicious actions, such as:

  • Downgrade the connection’s security by forcing it to use less secure client authentication algorithms
  • Bypass the keystroke timing obfuscation feature in OpenSSH, which may allow the attacker to brute-force SSH passwords by inspecting the network packets
  • Exploit vulnerabilities in SSH implementations, such as AsyncSSH, which may allow the attacker to sign a victim’s client into another account without the victim noticing

To pull off a Terrapin attack, the attacker must already be able to intercept and modify the data sent from the client or server to the remote peer. This makes the attack more feasible to be performed on the local network.

Unveiling the SSH Handshake: Exposing the Terrapin Attack’s Weakness

The SSH Handshake Process

The SSH handshake is a crucial process that establishes a secure channel between a client and server. It consists of the following steps:

  1. TCP connection establishment: The client initiates a TCP connection to the server.
  2. Protocol version exchange: The client and server exchange their protocol versions and agree on a common one. Then, the algorithm negotiation takes place.
  3. Algorithm negotiation: The client and server exchange lists of supported algorithms for key exchange, encryption, MAC, and compression. Then, they select the first matching algorithm.
  4. Key exchange: The client and server use the agreed-upon key exchange algorithm to generate a shared secret key. They also exchange and verify each other’s public keys. Then, the service request is sent.
  5. Service request: The client requests a service from the server, such as ssh-userauth or ssh-connection. Then, the client authenticates itself to the server using a supported method, such as password, public key, or keyboard-interactive.
  6. User authentication: The client authenticates itself to the server using a supported method, such as password, public key, or keyboard-interactive. Then, the channel request is sent.
  7. Channel request: The client requests a channel from the server, such as a shell, a command, or a subsystem. Thus, encrypted communication is enabled.

The Terrapin Attack

The Terrapin attack exploits a vulnerability in the SSH handshake by manipulating the sequence numbers and removing specific messages without compromising the secure channel integrity. This stealthy attack is difficult to detect because it doesn’t alter the overall structure or cryptographic integrity of the handshake.

For example, the attacker can eliminate the service request message sent by the client, which contains the list of supported client authentication methods. This forces the server to resort to the default method, typically password-based authentication. The attacker can then employ keystroke timing analysis to crack the password.

Alternatively, the attacker can target the algorithm negotiation message sent by the server, which lists the supported server authentication algorithms. By removing this message, the attacker forces the client to use the default algorithm, usually ssh-rsa. This opens the door for the attacker to forge a fake public key for the server and deceive the client into accepting it.

To illustrate the process of a Terrapin attack, we have created the following diagram:

Hackers exploit OAuth2 flaw to bypass 2FA on google accounts google account security flaw
Hackers exploit OAuth2 flaw to bypass 2FA on google accounts google account security flaw

As you can see, the diagram shows the steps from the interception of the communication by the attacker to the injection of malicious packets. It also highlights the stealthiness and the difficulty of detection of the attack.

Summery

The Terrapin attack is a serious threat to SSH security. By understanding how it works, you can take steps to protect yourself from it. Here are some tips:

  1. Make sure your SSH server is up to date with the latest security patches.
  2. Use strong passwords or public key authentication.
  3. Enable SSH key fingerprint verification.

How to protect yourself from the Terrapin attack: Best practices and tools

The Terrapin attack is a serious threat to SSH security, and it affects many SSH client and server implementations, such as OpenSSH, PuTTY, FileZilla, and more. Here are some steps you can take to protect yourself from it:

  • Update your SSH client and server to the latest versions. Many vendors have released patches that fix the vulnerability or introduce a strict key exchange option that prevents the attack. You can check if your SSH software is vulnerable by using the Terrapin vulnerability scanner.
  • Use strong passwords and public key authentication. Avoid using weak or default passwords that can be easily guessed by the attacker. Use public key authentication instead of password authentication, and make sure your public keys are verified and trusted.
  • Use secure encryption modes. Avoid using vulnerable encryption modes, such as ChaCha20-Poly1305 or AES-CBC with default MACs. Use encryption modes that use authenticated encryption with associated data (AEAD), such as AES-GCM or Chacha20-Poly1305@openssh.com.
  • Use a VPN or a firewall. If possible, use a VPN or a firewall to encrypt and protect your SSH traffic from being intercepted and modified by the attacker. This will also prevent the attacker from performing other types of attacks, such as DNS spoofing or TCP hijacking.
  • Implement a strict security policy on your local networks. Limit the access to your SSH servers to authorized users and devices, and monitor the network activity for any anomalies or intrusions.

How to use PassCypher HSM PGP and EviKey NFC HSM to protect your SSH keys: A secure and convenient solution

A good way to enhance the security of your SSH keys is to use PassCypher HSM PGP and EviKey NFC HSM. These are products from PassCypher), a company specialized in data security. They offer a secure and convenient solution for generating and storing your SSH keys.

PassCypher HSM PGP is a system that embeds a SSH key generator, allowing you to choose the type of algorithm – RSA (2048, 3072, 4096) or ECDSA (256,384, 521), and ED25519. The private key is generated and stored in a secure location, making it inaccessible to attackers.

EviKey NFC HSM is a contactless USB drive that integrates with PassCypher HSM PGP. It provides an additional layer of security and convenience for users who can easily unlock their private SSH key with their smartphone.

To show how PassCypher HSM PGP and EviKey NFC HSM can protect your SSH keys from the Terrapin attack, we have created the following diagram:

SSH handshake process with Terrapin attack illustration
This image illustrates the Terrapin attack, a stealthy attack that exploits a vulnerability in the SSH handshake. The attacker can manipulate the sequence numbers and remove specific messages without compromising the secure channel integrity. This can lead to a variety of security risks, including password cracking and man-in-the-middle attacks.

As you can see, the diagram shows how this solution effectively protects your SSH keys from the Terrapin attack. It also shows the benefits of using a contactless USB drive, such as:

  • Enhanced security: The private key is physically externalized and protected with a contactless authentication mechanism.
  • Convenience: Easy unlocking with a smartphone.
  • Ease of use: No additional software required.
  • Industrial-grade security: Equivalent to SL4 according to the standard IEC 62443-3-3.

Safeguarding Your SSH Keys with a Contactless USB Drive: A Comprehensive Guide

If you’re seeking a comprehensive guide to securely store your SSH keys using a contactless USB drive, look no further than this detailed resource: [Link to the article ([https://freemindtronic.com/how-to-create-an-ssh-key-and-use-a-nfc-hsm-usb-drive-to-store-it-securely/])]

This guide meticulously walks you through the process of:

  1. Generating an SSH key pair leveraging PassCypher HSM PGP
  2. Protecting the private SSH key within the EviKey NFC HSM USB drive
  3. Unlocking the private SSH key employing your smartphone
  4. Establishing a secure connection to an SSH server using the EviKey NFC HSM USB drive

Alongside step-by-step instructions, the guide also includes illustrative screenshots. By adhering to these guidelines, you’ll effectively safeguard and conveniently manage your SSH keys using a contactless USB drive.

Statistics on the Terrapin attack: Facts and figures

Statistics on the Terrapin attack: Facts and figures

The Terrapin attack is a serious cybersecurity threat that affects SSH connections. We have collected some statistics from various sources to show you the scale and impact of this attack. Here are some key facts and figures:

  • The Shadowserver Foundation reports that nearly 11 million SSH servers exposed on the internet are vulnerable to the Terrapin attack. This is about 52% of all IPv4 and IPv6 addresses scanned by their monitoring system.
  • The most affected countries are the United States (3.3 million), China (1.3 million), Germany (1 million), Russia (704,000), Singapore (392,000), Japan (383,000), and France (379,000).
  • The Terrapin attack affects many SSH client and server implementations, such as OpenSSH, PuTTY, FileZilla, Dropbear, libssh, and more. You can see the complete list of known affected implementations here).
  • You can prevent the Terrapin attack by updating your SSH software to the latest version, using secure encryption modes, and enabling strict key exchange. You can also use the Terrapin vulnerability scanner, available on GitHub, to check your SSH client or server for vulnerability.
  • A team of researchers from the Horst Görtz Institute for IT Security at Ruhr University Bochum in Germany discovered and disclosed the Terrapin attack. They published a detailed paper and a website with the technical details and the implications of the attack. Conclusion: How to stay safe from the Terrapin attack

The Terrapin attack is a serious threat to SSH security. It lets hackers break into SSH servers by exploiting a vulnerability in the protocol. To protect yourself effectively, you need to do the following:

  • Update your SSH software to the latest version
  • Use two-factor authentication
  • Store your SSH keys securely
  • Use PassCypher HSM PGP and EviKey NFC HSM

Conclusion: How to stay safe from the Terrapin attack

The Terrapin attack is a serious threat to SSH security. It allows hackers to break into SSH servers by exploiting a vulnerability in the protocol. To protect yourself effectively, you need to update your SSH software, use two-factor authentication, store your SSH keys securely, and use PassCypher HSM PGP and EviKey NFC HSM. If you found this article useful, please feel free to share it with your contacts or leave us a comment.

Telegram and the Information War in Ukraine

Telegram and the information war in Ukraine
Telegram and the Information War in Ukraine written by Jacques Gascuel, inventor of sensitive data safety and security systems, for Freemindtronic. This article may be updated on this subject.

How Telegram Shapes the Information War in Ukraine

In this article, we explore how Telegram and Ukraine’s information warfare are intertwined. We look at how the messaging app is influencing the Russia-Ukraine conflict, and how it can be used for good or evil. We also discuss the benefits and risks of using Telegram, as well as how security and freedom of expression can be enhanced with EviCypher NFC HSM technology.

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

How Telegram Influences the Conflict between Russia and Ukraine

Telegram and the information war in Ukraine are closely related. Telegram is a messaging app that offers users a secure and confidential way to communicate, thanks to its end-to-end encryption system. It has a large user base around the world, especially in Eastern Europe, where it plays a vital role in the information war between Russia and Ukraine.

Telegram’s Usage in Ukraine: Updated Statistics

Popularity and Download Trends

According to the report of the research company SimilarWeb, Telegram is the second most downloaded messaging app in Ukraine, after Viber, with 3.8 million downloads in 2021. It is also the fourth most used app in terms of time spent, with an average of 16 minutes per day. Telegram has about 10 million active users in Ukraine, which is almost a quarter of the country’s population.

Telegram’s Role in Ukrainian Media Landscape

Telegram is particularly appreciated by Ukrainians for its channel functionality, which allows to broadcast messages to a large audience. Some of these channels have become influential but controversial sources of information, as their owners and sources are often unknown. Among the most popular channels in Ukraine, we can mention:

  • @Zelenskyi, the official channel of President Volodymyr Zelensky, which has more than 2 million subscribers. It publishes announcements, speeches, interviews and videos of the head of state. It was created in 2019, during Zelensky’s election campaign, who was then an actor and a comedian.
  • @NashyGroshi, the channel of the journalistic project “Our Money”, which has more than 1.5 million subscribers. It publishes investigations, reports and analyses on corruption, abuse of power, political scandals and judicial cases in Ukraine. It was created in 2008, by journalist Denys Bihus, who received several awards for his work.
  • @Resident, the channel of blogger and activist Anatoliy Shariy, which has more than 1.3 million subscribers. It publishes comments, criticisms and sarcasms on the political and social news in Ukraine. He is known for his pro-Russian, anti-European and anti-government positions. He is currently in exile in Spain, where he is wanted by the Ukrainian justice for high treason and incitement to hatred.

These channels illustrate the diversity and complexity of the Ukrainian media landscape, which is marked by the conflict with Russia, the democratic transition, the fight against corruption and the polarization of society. They are also a reflection of the issues and challenges related to the use of Telegram, which can be both a tool of communication, information and manipulation.

Oleksiy Danilov’s Stance on Telegram’s Usage in Ukraine

Concerns Over National Security

Oleksiy Danilov is the secretary of the National Security and Defense Council of Ukraine, the body responsible for coordinating and controlling the activities of the executive bodies in the fields of national security and defense. He is also the head of cybersecurity of the country, and in this capacity, he expressed his reservations about the use of Telegram by Ukrainians. In February 2022, he stated that some anonymous and manipulative Telegram channels represented a threat to national security, and that they should be de-anonymized and regulated. He particularly targeted the channel @Resident, which broadcasts pro-Russian and anti-Ukrainian comments, and which is suspected of being linked to the Russian intelligence services. He also criticized the channel @Zelenskyi, which according to him, is not controlled by the Ukrainian president, but by advisers who seek to influence his policy.

Debating Telegram’s Influence in Ukraine

These statements provoked mixed reactions in Ukraine. Some supported Danilov’s position, believing that it was necessary to fight against misinformation and propaganda that undermine the sovereignty and democracy of the country. Others denounced an attempt at censorship and an attack on freedom of expression, recalling that Telegram was one of the few spaces where Ukrainians could access independent and diverse information.

How Telegram Influences the Information War in Ukraine

The Benefits and Risks of End-to-End Encryption

Telegram is a messaging app that lets you send messages, photos, videos, documents, and make voice and video calls. Its privacy policy is based on data encryption and non-cooperation with authorities. You can also create groups and channels that can reach thousands or millions of users.

End-to-end encryption is a technology that makes sure only the people in a conversation can read the messages, not even the service provider. Telegram has this option, but it is not on by default. You have to choose it for each chat, by switching to the “secret chat” mode. However, Telegram’s encryption is not based on standard protocols, and security experts have found some flaws.

Anonymous Channels and Their Impact on the Ukrainian Conflict

The channels are spaces where an administrator can send messages to a large audience. They can be public or private, and they can have millions of followers. Some channels are influential but controversial sources of information, as their owners and sources are often unknown. The channels can spread misinformation, propaganda, fake news, or violence.

Telegram and Russian propaganda have a strong connection, as many pro-Russian channels use the app to influence the public opinion in Ukraine and other countries. Telegram and the Ukrainian resistance also use the app to communicate and organize their actions against the Russian aggression.

Bots, Payment Services and Unique Usernames: A Double-Edged Sword

Bots are programs that interact with users. They offer services, information, or entertainment. Anyone can create them. They can be part of chats or channels. Bots can be helpful or harmful. They can collect personal data, send spam, or spread viruses.

Payment Services: Handy or Dishonest?

You can also use payment services via Telegram. These features use third-party platforms, such as Stripe or Apple Pay. They need bank or credit card information. Payment services can be handy or dishonest. They can steal sensitive data, scam users, or fund illegal activities.

Unique Usernames: Fun or Troublesome?

Another feature of Telegram is the unique usernames. They let users contact each other easily, without sharing their phone number. Users can create and change them at any time. Unique usernames can be fun or troublesome. They can enable harassment, identity theft, or account sale.

These features of Telegram raise issues of cybersecurity, privacy, end-to-end encryption, and application security. They can be used by bad actors, who want to harm Ukraine or its people. They can also be regulated by the authorities, who want to control the information or access the data of the users.

Telegram and the Information War in Ukraine: A Challenge

One of the main challenges of Telegram and the information war in Ukraine is to balance the freedom of expression and the protection of national security. Telegram and the Ukrainian conflict are closely intertwined. The app is used by both sides to communicate, inform, and influence. Telegram and Russian propaganda have a strong connection. Many pro-Russian channels use the app to sway the public opinion in Ukraine and other countries. Telegram and the Ukrainian resistance also use the app to coordinate and organize their actions against the Russian aggression. Telegram and cybersecurity in Ukraine are also crucial. The app can be a source of threats or a tool of defense.

Telegram VS Other Messaging Apps: A Comparative Analysis

WhatsApp: Popular but Questionable Confidentiality

WhatsApp is the most popular messaging app in the world, with more than 2 billion users. It offers end-to-end encryption by default for all conversations, which guarantees the protection of data. However, it belongs to Facebook, which has a dubious reputation in terms of respect for privacy, and which has raised fears about the sharing of data with other applications of the group. WhatsApp is also subject to the requests of the authorities, who can demand access to the metadata, such as the phone number, the IP address or the location of the users.

Signal: High Security but Limited User Base

Signal is a messaging app that claims to be the most secure and confidential on the market. It also offers end-to-end encryption by default for all conversations, and it does not collect any personal data. It is developed by a non-profit organization, which does not depend on advertising or investors. It is recommended by personalities such as Edward Snowden or Elon Musk. Signal is however less popular than WhatsApp or Telegram, with about 50 million users. It also offers fewer features, such as file sharing, information channels, bots or payment services.

Telegram: Innovative but Security Concerns

Telegram is between these two apps, offering more features than Signal, but less security than WhatsApp. Telegram allows users to choose the level of encryption and privacy they want, by opting for the “secret chat” mode or the “normal chat” mode. Telegram also allows users to enjoy innovative services, such as channels, bots, payments or unique usernames. However, Telegram also presents risks, such as fakes news, inappropriate content, privacy breaches or cyberattacks. Telegram is therefore an app that offers advantages and disadvantages, and that requires vigilance and discernment from users.

Telegram’s Global Perception and Regulation

Russia: Origin and Opposition

Russia is the country of origin of Telegram, but also its main adversary. The Kremlin tried to block the app in 2018, invoking reasons of national security and fight against terrorism. It demanded that Telegram provide it with the encryption keys to access the messages of the users, which Pavel Durov refused. It then ordered the telecom operators to block access to Telegram, but this measure proved ineffective, as Telegram used cloud servers to bypass the blocking. Many Russian users also use VPNs or proxies to access the app. In 2020, the Kremlin finally lifted the ban on Telegram, acknowledging its failure and stating that the app had cooperated with the authorities to remove extremist content. However, some observers suspect that Telegram made concessions to the Kremlin to lift the blocking, such as collaborating with the Russian services or censoring some channels.

France: Striving for Digital Regulation

France is a country that wants to be at the forefront of the regulation of digital platforms, especially in terms of fighting online hate. It adopted in 2020 a law that obliges the platforms to remove illegal content, such as incitement to violence, discrimination or terrorism, within 24 hours, under penalty of financial sanctions. This law also applies to messaging apps, such as Telegram, which must set up reporting and moderation mechanisms for content. France recognizes the right of users to privacy and end-to-end encryption, but it also asks the service providers to cooperate with the law enforcement to access the encrypted data when needed. France is also a country where Telegram is used by radical groups, such as jihadists or yellow vests, who take advantage of the app to organize, mobilize or defend themselves.

Ukraine: Balancing Utility and Risks

Ukraine is a country that has an ambivalent attitude towards Telegram, recognizing its usefulness, but also its dangers. On the one hand, Telegram is a source of information and a tool of resistance for many Ukrainians, who face the threat of Russian aggression and the challenges of democratic transition. On the other hand, Telegram is also a vector of misinformation and propaganda, which can undermine the sovereignty and stability of the country. Ukraine does not have a specific law to regulate Telegram, but it has some legal provisions to protect national security and public order, which can be used to restrict or block the app if necessary. Ukraine also cooperates with international organizations, such as the EU or NATO, to counter the cyber threats and the hybrid warfare that target the country.

EviCypher NFC HSM: Enhancing Telegram’s Security

The Role of Contactless Encryption Technology

One of the main challenges of using Telegram is to ensure the security and confidentiality of the data exchanged, especially in a context of information war. To meet this challenge, a possible solution consists of using EviCypher NFC HSM technology, which is a contactless encryption technology developed by Freemindtronic, an Andorran company specializing in the design of counter-espionage solutions implementing in particular contactless security with NFC technology. EviCypher NFC HSM uses two types of encryption algorithms for data:

  • Symmetric encryption in AES-256 for data such as texts (messages), thanks to its sub-technology EviCrypt. It uses a unique key, which is randomly generated and segmented into several parts. This key is used to encrypt and decrypt messages with the AES 256-bit algorithm.
  • Asymmetric encryption in RSA-4096 for symmetric encryption keys. It uses a pair of keys, which is generated and used from the NFC HSM device and which is based on the RSA 4096-bit algorithm. This pair of keys is used to share the symmetric key of at least 256 bits between the NFC HSM devices remotely, by encrypting the symmetric key with the public key of the recipient and decrypting the symmetric key with the private key of the recipient. The symmetric key is then stored and re-encrypted in the NFC HSM device of the recipient, with the trust criteria imposed by the sender if he has encapsulated them in the shared encryption key.

Practical Applications of EviCypher NFC HSM

EviCypher NFC HSM is a technology that uses hardware security modules (HSM) to store and use encrypted secrets. It allows contactless encryption with the NFC communication protocol. You can integrate the NFC HSM into various media, such as a card, a sticker, or a key ring. Then, you can pair it with an NFC phone, tablet, or computer. This way, you can encrypt everything before using any messaging service, including Telegram. EviCypher NFC HSM also has anti-cloning, anti-replay, and counterfeit detection mechanisms. It is part of the DataShielder product range, which offers serverless and databaseless encryption solutions.

Telegram and the Ukrainian conflict

EviCypher NFC HSM is compatible with Telegram, a messaging app that influences the information war between Russia and Ukraine. It offers more security and confidentiality than Telegram’s end-to-end encryption, which is not based on recognized standards. It also gives you more flexibility and control than Telegram’s secret chat mode, as you can choose the trust criteria for the encryption keys. Moreover, it is more convenient and simple than Telegram’s normal chat mode, as you can encrypt and decrypt messages with a simple gesture.

Telegram and cybersecurity in Ukraine

EviCypher NFC HSM is a useful technology with Telegram, as it enhances the security and confidentiality of the data exchanged, especially in a context of information war. It is also a universal technology, as you can use it with any other messaging app, such as WhatsApp, Signal, Messenger, etc. It is also an innovative technology, as it uses the NFC communication protocol to perform contactless encryption, without requiring any connection or installation.

Concluding Insights on Telegram’s Role in Ukraine

In this article, we have seen how Telegram plays a vital role in the information war between Russia and Ukraine, and what issues and challenges there are in using this messaging app. We have also seen how the technology EviCypher NFC HSM can be a useful solution to enhance the security and confidentiality of the data exchanged with Telegram. We hope that this article has been informative and interesting for you, and that it has helped you to better understand the situation of Telegram in Ukraine and in other countries. Thank you for reading.

Overview of Cited Sources

Here are the sources of the article, which are valid, reliable, relevant and if possible official links that allow to justify and verify the statements made in this article:

  • [Liga.net]: the news site that published the interview of Oleksiy Danilov on November 2, 2023, in which he expresses his concerns about Telegram.
  • [NV.ua]: the news site that reported the statement of Oleksiy Danilov, who alerted the nation to the critical vulnerabilities of Telegram, on November 2, 2023.
  • [RT – Pravda]: the Ukrainian news site that related the remarks of Oleksiy Danilov, who answered the questions of journalists during a press conference on November 3, 2023.
  • [Number of Telegram Users in 2023? 55 Telegram Stats (backlinko.com)]: an article that gives figures on the use of Telegram in the world and in Ukraine.
  • [NV.ua -NSDC]: the official website of the National Security and Defense Council of Ukraine, which published the press release of Oleksiy Danilov, who clarified his recent comments on Telegram, on November 15, 2023
  • [Ukrainians turn to encrypted messengers, offline maps and Twitter amid Russian invasion]: an article that describes how Ukrainians use Telegram and other digital tools to protect themselves and get informed in the face of the Russian aggression.
  • [Pravda – France 24]: the French news site that contains a video of the interview of Oleksiy Danilov with the journalist Gulliver Cragg, dated January 23, 2023.
  • [NFC HSM Technology – Freemindtronic]: an article that explains the NFC HSM technologies and how they work.
  • [EviCypher NFC HSM technology – Freemindtronic]: a page that contains articles and videos on the NFC HSM technologies.
  • [FAQ for the Technically Inclined – Telegram APIs]: a page that provides technical information about the Telegram APIs and the MTProto protocol.

New EU Data Protection Regulation 2023/2854: What you need to know

New EU Data Protection Regulation 2023/2854: What you need to know
Learn more about the new European Data Protection Regulation (2023/2854) written by Jacques Gascuel, inventor of sensitive data safety and security systems, for Freemindtronic. This article may be updated on this subject.

EU 2023/2854 Data Protection Rules: what you need to know

The EU has adopted a new regulation to protect personal data published in OJ L, 2023/2854 on 22.12.2023. How does this impact you and your business? Learn more in this article and discover why Freemindtronic innovations are already compliant.

2023 Articles Cardokey Eco-friendly EviSwap NFC NDEF Technology GreenTech

NFC Business Cards with Cardokey free for life: How to Connect without Revealing

2023 Articles Cyberculture EviCore HSM OpenPGP Technology EviCore NFC HSM Browser Extension EviCore NFC HSM Technology Legal information Licences Freemindtronic

Unitary patent system: why some EU countries are not on board

Andorran law

Llei 26/2014 del 30 d’octubre de patents

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

What you need to know about the new EU data protection regulation (2023/2854)

Personal data is a valuable asset in the digital age, but also a vulnerable asset. This is why the European Union has adopted a new regulation to protect the personal data of individuals in the EU. Data

Protection Regulation (EU) 2023/2854 supplements and updates the General Data Protection Regulation (GDPR), which has been in force since 2018. The new regulation introduces additional procedural rules for the application of the GDPR, particularly in cross-border cases. It also creates the European Data Protection Authority (EDPA), a new independent body that ensures the consistent application of EU data protection rules across the EU. The new regulation will come into force on November 26, 2024. In this article, we will explain the main provisions of the new regulation, its advantages and disadvantages, its international scope and its reactions and controversies.

We will also show you how some products and technologies from Freemindtronic, an Andorran company specialized in security and cybersecurity of computer and information systems, already comply with the new regulation, since they offer innovative and ecological solutions to protect the personal data without using servers, databases, online accounts or identifiers.

The main provisions of the EU data protection law

Several measures to ensure the security, confidentiality and integrity of personal data are introduced by the EU data protection law. These measures are:

  • Declaration of the activity and the processing practices. The controllers and the managers of the entities that process personal data must declare them to the national data protection authorities (NDPA) and to EDPA. The EDPA is a new independent body. It oversees the consistent application of the EU data protection rules across the EU. It also cooperates with the NDPA and the other EU institutions. The goal is to ensure the protection of personal data.
  • Implementation of technical and organizational measures. The controllers and the managers of the entities that process personal data must implement them to prevent the risks of damage or loss of data. For example, these measures include the encryption of data, the pseudonymization of data, the limitation of data access, the regular testing of data security, the notification of data breaches, and the appointment of a data protection officer.
  • Reinforcement of the rights of the persons concerned. They have reinforced rights, such as the right of access, the right of opposition, the right of erasure, the right to data portability and the right to restriction of processing. These rights allow the persons to obtain information about the processing of their data, to object to certain types of processing, to request the deletion of their data, to transfer their data to another entity, and to limit the processing of their data in certain cases.
  • Provision of administrative sanctions. The regulation provides them. They can reach up to 20 million euros or 4% of the annual global turnover, depending on the severity of the infringement. The NDPA or the EDPA, depending on the case, impose these sanctions. The national courts or the Court of Justice of the European Union can hear the appeals.

The advantages and disadvantages of the EU data protection reform

The EU data protection reform has pros and cons for different actors involved.

The benefits for the persons whose data are processed

The regulation offers a better protection of their rights and interests. They can control more the use of their data and benefit from a high level of security. Moreover, they have an easy and fast access to the information related to the processing of their data, as well as to the remedies in case of dispute. For instance, a person can request a copy of their data from an online platform. If they find any inaccurate or outdated data, they can ask for a correction or an update. They can also withdraw their consent to the processing of their data at any time, or ask for the deletion of their data if they no longer want to use the platform.

The drawbacks for the controllers and the managers of the entities that process personal data

The regulation imposes additional obligations and stricter constraints on them. They must comply with harmonized rules within the EU, while taking into account the national and regional specificities. Furthermore, they face more severe sanctions in case of non-compliance with the regulation. For example, an entity that processes personal data of persons located in the EU must declare its activity and its processing practices to the NDPA and the EDPA.

It must also obtain the prior consent of the persons for the processing of their data, unless there is a legal basis for the processing. The entity must process the data in a lawful, fair and transparent manner, and collect them for specific, explicit and legitimate purposes. It must also respect the principles of data minimization, data accuracy, data storage limitation, data integrity and data confidentiality.

The international scope of the EU data protection rules

The EU data protection rules have an international scope, as they apply to any entity that processes personal data of persons located in the EU, whether it is established or not in the EU. The regulation therefore requires foreign entities to respect the same rules as European entities, under penalty of sanctions. It aims to ensure an equivalent level of protection for personal data transferred outside the EU.

For this purpose, the regulation establishes different mechanisms to ensure the adequacy of the data protection in the third countries or the international organizations that receive the data. These mechanisms include, for example, the adoption of adequacy decisions by the European Commission, the use of standard contractual clauses, the adherence to binding corporate rules, or the certification by approved schemes.

The reactions and controversies of the EU data protection regulation

The EU data protection regulation has provoked diverse reactions, ranging from approval to contestation.

Positive reactions

Some actors have welcomed the interest of the regulation to strengthen the trust and to foster the technological evolution in the field of data protection. They have highlighted the innovative and ambitious character of the regulation, which places the EU at the forefront of the protection of personal data. For example, the European Data Protection Supervisor (EDPS), the independent advisor of the EU institutions on data protection issues, has praised the regulation as a “historic achievement” and a “major step forward” for the protection of the fundamental rights of the individuals in the digital age.

Negative reactions

Some actors have criticized the obligation to inform the NDPA and the EDPA about the activity and the processing practices of personal data. They have considered that it could infringe their national sovereignty or that it could create a risk of illegal or fraudulent exercise by some foreign entities. They have also expressed their concern about the complexity and the heaviness of the regulation, which could hinder the competitiveness and the growth of the entities that process personal data. For example, some member states, such as France, Germany, Italy or Spain, have raised objections or reservations about certain aspects of the regulation.

These aspects include the role and the powers of the EDPA, the criteria and the procedures for the adequacy decisions, or the level and the distribution of the sanctions.

How Freemindtronic products and technologies protect personal data

Freemindtronic is an Andorran company that specializes in security and cybersecurity of computer systems and information systems. It designs and develops green technology products and services under white label, based on contactless technology (NFC). Some of its products are PassCypher, DataShielder, SeedNFC or Cardokey, which use embedded technologies such as EviCore NFC HSM, EviCore HSM OpenPGP or EviCore NFC HSM Browser Extension.

These products and technologies have several advantages for the protection of personal data, compared to traditional solutions based on servers, databases, online accounts or identifiers. Indeed, they work without server, without database, anonymously from end to end, without the need to create an account on the internet or to identify themselves to use the products. Therefore, they reduce the risks of loss or damage of data, respect the rights of the persons concerned, and comply with the harmonized rules in the EU. These products and technologies of Freemindtronic are already compliant with the European regulation on data protection, because they respect the principles of security, confidentiality and integrity of data, as well as the rights of the persons concerned. They offer an innovative and ecological alternative to traditional solutions, which may present risks or constraints for data protection.

Conclusion

The regulation (EU) 2023/2854 is an important text for the protection of personal data in the EU. It introduces measures to ensure the security, confidentiality and integrity of data, as well as to reinforce the rights of the persons concerned. It applies to any entity that processes personal data of persons located in the EU, whether it is established or not in the EU. It was adopted within the legislative process on the fundamental rights in the EU, but it also provoked reactions and controversies between some member states. It will enter into force on November 26, 2024.

LitterDrifter: A USB Worm for Cyberespionage

LitterDrifter A USB Worm for Cyberespionage
LitterDrifter by Jacques Gascuel: This article will be updated with any new information on the topic.

LitterDrifter: USB Worm Threat and Safeguarding

Explore the LitterDrifter USB worm threat and effective safeguards. Learn to protect against this cyber threat and enhance data security.

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

LitterDrifter: A USB Worm for Cyberespionage and Its Threats to Data Security

LitterDrifter is a computer worm that spreads through USB drives and is utilized by a Russian cyber espionage group known as Gamaredon. This group, active since at least 2013, primarily targets Ukraine but has also infected systems in other countries. LitterDrifter enables Gamaredon to gather sensitive information, execute remote commands, and download other malicious software. In this article, we will explore how this worm functions, methods to safeguard against it, and the motivations behind its creators.

Understanding Gamaredon

Gamaredon is a cyber espionage group suspected to have ties to Russia’s Federal Security Service (FSB). It conducts intelligence and sabotage operations against strategic targets in Ukraine, including government institutions, law enforcement, media, political organizations, and dissidents. Gamaredon plays a part in the hybrid warfare between Russia and Ukraine that emerged in 2014 following the annexation of Crimea and the armed conflict in Donbass.

Gamaredon employs a diverse range of cyberattack techniques, including phishing, disinformation, sabotage, and espionage. The group possesses several malicious tools such as Pterodo, Outlook Forms, VBA Macros, LNK Spreader, and, of course, LitterDrifter. Gamaredon is considered a group that learns from its experiences and adapts its tactics based on responses from its adversaries. It also serves as a training ground for Russia, observing the potential of cyber warfare in contemporary conflicts.

How LitterDrifter Works

LitterDrifter is a computer worm initially discovered in October 2021 by cybersecurity company Check Point Research. It is written in VBS and consists of two main modules: a propagation module and a communication module.

LitterDrifter’s Propagation

The propagation module is responsible for copying the worm to USB drives connected to the infected computer. It creates an autorun.inf file that allows the worm to launch automatically upon inserting an infected drive. Additionally, it generates an LNK file that serves as bait, featuring a random name to entice the user to click on it. The worm’s name is derived from the initial file name, “trash.dll,” which means “garbage” in English.

LitterDrifter’s Communication

The communication module establishes contact with the worm’s authors’ command and control (C2) server. It uses domains as markers for the actual IP addresses of the C2 servers. It can also connect to a C2 server extracted from a Telegram channel, a technique employed by Gamaredon since early 2021. The communication module allows the worm to collect information about the infected system, such as the computer name, username, IP address, operating system, process list, files on the hard drive, and USB drives. It can also execute remote commands, download and install other malicious software, and delete files or partitions.

How LitterDrifter Propagates

LitterDrifter is primarily intended to target Ukraine but has also been detected in other countries, including Latvia, Lithuania, Poland, Romania, Turkey, Germany, France, the United Kingdom, the United States, Canada, India, Japan, and Australia. The worm appears to spread opportunistically, taking advantage of USB exchanges and movements among individuals and organizations. Some of the victims may be secondary targets infected inadvertently, while others could be potential targets awaiting activation.

LitterDrifter Statistics

LitterDrifter is a rapidly spreading worm that affects a large number of systems. According to data from Check Point Research, the worm has been submitted to VirusTotal more than 1,000 times since October 2021, originating from 14 different countries. The majority of submissions come from Ukraine (58%), followed by the United States (12%) and Vietnam (7%). Other countries each represent less than 5% of submissions.

The worm also uses a large number of domains as markers for C2 servers. Check Point Research has identified over 200 different domains used by the worm, with most being free or expired domains. Some domains have been used by Gamaredon for a long time, while others are created or modified recently. The worm also uses Telegram channels to extract C2 server IP addresses, making their blocking or tracking more challenging.

The worm is capable of downloading and installing other malicious software on infected systems. Among the malicious software detected by Check Point Research are remote control tools, spyware, screen capture software, password stealers, file encryption software, and data destruction software. Some of these malicious software are specific to Gamaredon, while others are generic or open-source tools.

Uncontrolled Expansion and Real Consequences of LitterDrifter

LitterDrifter is a worm with uncontrolled expansion, meaning it spreads opportunistically by taking advantage of the movement and exchange of USB drives among individuals and organizations. It doesn’t have a specific target but can infect systems in various countries, without regard to the industry sector or security level. Consequently, it can affect critical systems, including infrastructure, public services, or government institutions.

The real consequences of LitterDrifter are manifold and severe. It can compromise the confidentiality, integrity, and availability of data. Moreover, it can serve as a gateway for more sophisticated attacks, such as deploying ransomware, spyware, or destructive software. Additionally, it can enable the worm’s authors to access sensitive information, including confidential documents, passwords, personal data, or industrial secrets.

LitterDrifter can have serious repercussions for victims, including damage to reputation, financial costs, data loss, disruption of operations, or legal liability. It can also impact national security, political stability, or the sovereignty of targeted countries. It is part of the context of a hybrid war waged by Russia against Ukraine, aiming to weaken and destabilize its neighbor through military, political, economic, media, and cyber means.

LitterDrifter’s Attack Methods

Understanding the attack methods employed by LitterDrifter is crucial in safeguarding your systems. This USB worm leverages various techniques to infiltrate systems and establish contact with its command and control (C2) servers. Below, we delve into the primary attack methods used by LitterDrifter:

Attack Method Description Example
Vulnerability Exploitation Exploiting known vulnerabilities in software and network protocols, such as SMB, RDP, FTP, HTTP, SSH, etc. It employs tools like Metasploit, Nmap, and Mimikatz to scan systems, execute malicious code, steal credentials, and propagate. Utilizing the EternalBlue vulnerability to infect Windows systems via the SMB protocol and install a backdoor.
Phishing Sending fraudulent emails containing malicious attachments or links that entice users to open or click. Attachments or links trigger the download and execution of LitterDrifter. Sending an email pretending to be an invoice from a supplier but containing a malicious Word file that exploits the CVE-2017-0199 vulnerability to execute LitterDrifter.
Identity Spoofing Impersonating legitimate services or applications through similar names, icons, or interfaces. This deceives users or administrators into granting privileges, access, or sensitive information. Using the name and icon of TeamViewer, a remote control software, to blend into the process list and establish a connection with C2 servers.
USB Propagation Copying itself to USB drives connected to infected computers, automatically running upon insertion. It also creates random-named LNK files as bait, encouraging users to click. When a user inserts an infected USB drive into their computer, the worm copies itself to the hard drive and executes. It also creates an LNK file named “Holiday Photos.lnk” pointing to the worm.
Domain Marker Usage Using domains as markers for actual C2 server IP addresses. It generates a random subdomain of a hardcoded domain (e.g., 4fj3k2h5.example.com from example.com) and resolves its IP address through a DNS query. It then uses this IP address for communication with the C2 server. Generating the subdomain 4fj3k2h5.example.com from the hardcoded domain example.com, resolving its IP address through a DNS query (e.g., 192.168.1.100), and using it to send data to the C2 server.

LitterDrifter’s Malicious Actions

LitterDrifter is a worm that can cause significant damage to infected systems. It not only collects sensitive information but can also execute remote commands, download and install other malicious software, and delete files or partitions. Here’s a table summarizing LitterDrifter’s main malicious actions:

Action Description Example
Information Collection The worm gathers information about the infected system, including computer name, username, IP address, OS, process list, files on the hard drive, and USB drives. The worm sends the collected information to the C2 server via an HTTP POST request.
Remote Command Execution The worm can receive remote commands from the C2 server, such as launching a process, creating a file, modifying the registry, opening a URL, etc. The worm can execute a command like cmd.exe /c del /f /s /q c:\*.* to erase all files on the C drive.
Download and Malware Installation The worm can download and install other malicious software on the infected system, such as remote control tools, spyware, screen capture software, password stealers, file encryption software, and data destruction software. The worm can download and install the Pterodo malware, allowing Gamaredon to take control of the infected system.
File or Partition Deletion The worm can delete files or partitions on the infected system, potentially leading to data loss, system corruption, or boot failure. The worm can erase the EFI partition, which contains system boot information.

Protecting Against LitterDrifter

Safeguarding your systems against LitterDrifter and similar threats is essential in today’s interconnected digital landscape. Here are some steps you can take to enhance your cybersecurity posture:

  1. Keep Software Updated: Regularly update your operating system, software, and antivirus programs to patch known vulnerabilities that malware like LitterDrifter exploits.
  2. Exercise Caution with Email Attachments and Links: Be cautious when opening email attachments or clicking on links, especially if the sender is unknown or the email seems suspicious. Verify the legitimacy of the sender before taking any action.
  3. Use Reliable Security Software: Install reputable security software that can detect and block malware. Ensure that it is regularly updated to recognize new threats effectively.
  4. Employ Network Segmentation: Implement network segmentation to isolate critical systems and data from potentially compromised parts of your network.
  5. Educate Employees: Train your employees to recognize phishing attempts and the importance of safe browsing and email practices.
  6. USB Drive Security: Disable autorun features on computers and use endpoint security solutions to scan USB drives for malware upon insertion.
  7. Network Monitoring: Implement network monitoring tools to detect unusual activities and unauthorized access promptly.
  8. Encryption and Authentication: Use encryption for sensitive data and multi-factor authentication to secure critical accounts.

Enhancing Data Security with HSM Technologies

In addition to the steps mentioned above, organizations can enhance data security by leveraging NFC HSM (Near Field Communication and Hardware Security Module). These specialized devices provide secure storage and processing of cryptographic keys, protecting sensitive data from unauthorized access.

HSMs offer several advantages, including tamper resistance, hardware-based encryption, and secure key management. By integrating HSMs into your cybersecurity strategy, you can further safeguard your organization against threats like LitterDrifter.

Leveraging NFC HSM Technologies Made in Andorra by Freemindtronic

To take your data security to the next level, consider utilizing NFC HSM technologies manufactured in Andorra by Freemindtronic. These state-of-the-art devices are designed to meet the highest security standards, ensuring the confidentiality and integrity of your cryptographic keys.

Freemindtronic innovates, manufactures white-label NFC HSM technologies, including PassCypher NFC HSM and DataShielder Defense NFC HSM. These solutions, like EviPass, EviOTP, EviCypher, and EviKey, effectively combat LitterDrifter. They enhance data security, protecting against unauthorized access and decryption, even in the era of quantum computing.

With HSMs from Freemindtronic, you benefit from:

  • Tamper Resistance: HSMs are built to withstand physical tampering attempts, providing an added layer of protection against unauthorized access.
  • Hardware-Based Encryption: Enjoy the benefits of hardware-based encryption, which is more secure than software-based solutions and less susceptible to vulnerabilities.
  • Secure Key Management: HSMs enable secure generation, storage, and management of cryptographic keys, reducing the risk of key compromise.

By integrating HSMs into your organization’s security infrastructure, you can establish a robust defense against threats like LitterDrifter and ensure the confidentiality and integrity of your sensitive data.

Conclusion

Staying One Step Ahead of LitterDrifter

LitterDrifter, the USB worm associated with the Gamaredon cyber espionage group, poses a significant threat to cybersecurity. Its ability to infiltrate systems, collect sensitive data, and execute malicious actions underscores the importance of proactive protection.

By understanding LitterDrifter’s origins, functionality, and impact, as well as implementing robust cybersecurity measures, you can shield your organization from this perilous threat. Additionally, NFC HSM technologies offer an extra layer of security to safeguard your data and secrets.

Stay vigilant, stay informed, and stay ahead of LitterDrifter and the ever-evolving landscape of cyber threats.

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

TETRA Security Vulnerabilities secured by EviPass or EviCypher NFC HSM Technologies from Freemindtronic-Andorra
TETRA Security Vulnerabilities by Jacques Gascuel: This article will be updated with any new information on the topic.

TETRA Security Vulnerabilities

Tetra is a radio communication standard used by critical sectors worldwide. But it has five security flaws that could expose its encryption and authentication. How can you protect your Tetra system from hackers? Read this article TETRA Security Vulnerabilities to find out the best practices and tips.

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures from Cyberattacks

TETRA (Terrestrial Trunked Radio) is a radio technology that is used worldwide for critical communications and data, especially in the sectors of security, energy, transport and defense. But this technology, which has been kept secret for more than 25 years, hides serious security vulnerabilities, including a backdoor that could allow devastating cyberattacks.

What is TETRA?

TETRA is a European radio standard that was developed in the 1990s to meet the needs of professional mobile services, such as police, firefighters, emergency services, military, prison staff, etc. TETRA allows to transmit data and voice encrypted on frequencies ranging from 380 to 470 MHz, with a range of several kilometers.

TETRA is used by more than 2000 networks in more than 150 countries, according to the TETRA and Critical Communications Association (TCCA), which brings together the manufacturers, operators and users of this technology. Among the main manufacturers of TETRA radios, we find Motorola Solutions, Hytera, Airbus, Sepura and Rohill.

TETRA offers several advantages over other radio technologies, such as:

  • better sound quality
  • greater transmission capacity
  • greater security thanks to encryption
  • greater flexibility thanks to the possibility of creating communication groups
  • greater interoperability thanks to the compatibility of equipment

Source french: TETRA digital mode & F4HXZ – Blog radioamateur

What are the vulnerabilities of TETRA?

Despite its strengths, TETRA also has weaknesses, which have been revealed by a group of Dutch researchers from Radboud University Nijmegen. These researchers conducted a thorough analysis of the TETRA standard and its encryption algorithms, which were until then kept secret by the manufacturers and authorities.

The researchers discovered two types of major vulnerabilities in TETRA:

  • A backdoor in the encryption algorithm TEA1, which is used in radios sold for sensitive equipment, such as pipelines, railways, power grid, public transport or freight trains. This backdoor allows an attacker to decrypt the communications and data transmitted by these radios, and possibly to modify or block them. The backdoor exists since the creation of the algorithm TEA1, in 1998, and cannot be corrected by a simple software update. The researchers managed to extract the secret key of the backdoor by analyzing the binary code of the radios.
  • A weakness in the encryption algorithm TEA2, which is used in radios intended for professional mobile services, such as police, firefighters, emergency services, military or prison staff. This weakness allows an attacker to reduce the number of possible keys to test to decrypt the communications and data transmitted by these radios. The researchers estimated that it would take about 10 minutes to find the right key with a standard computer. This weakness was corrected by the manufacturers in 2016, but the radios that have not been updated remain vulnerable.

To find the backdoor in the TEA1 algorithm, the researchers used a technique called “differential analysis”, which consists of comparing the outputs of the algorithm for slightly different inputs. By observing the differences, they were able to identify a part of the code that was not normally used, but that was activated by a special condition. This condition was the presence of a secret key of 64 bits, which was hidden in the binary code of the radios. By analyzing the code, they were able to extract the secret key and test it on encrypted communications with the TEA1 algorithm. They were thus able to confirm that the secret key allowed to decrypt the communications without knowing the normal key of 80 bits. The researchers published their official report and the source code of the TETRA encryption algorithms on their website.

Source: https://cs.ru.nl/~cmeijer/publications/All_cops_are_broadcasting_TETRA_under_scrutiny.pdf

What are the risks for critical infrastructures?

The vulnerabilities identified in TETRA represent a danger for the critical infrastructures that use this technology, because they could be exploited by cybercriminals, terrorists or spies to disrupt or damage these infrastructures.

For example, an attacker could:

  • listen to the communications and confidential data of the security or defense services
  • impersonate an operator or a manager to give false instructions or orders
  • modify or erase data or commands that control vital equipment, such as valves, switches, signals or brakes
  • cause failures, accidents, fires or explosions

These scenarios could have dramatic consequences on the security, health, economy or environment of the countries concerned.

How to protect yourself from cyberattacks on TETRA?

The users of TETRA must be aware of the vulnerabilities of this technology and take measures to protect themselves from potential cyberattacks. Among the recommendations of the researchers, we can mention:

  • check if the radios used are affected by the vulnerabilities and ask the manufacturers for correction solutions
  • avoid using the algorithm TEA1, which contains the backdoor, and prefer safer algorithms, such as TEA3 or TEA4
  • use encryption keys that are long and complex enough, and change them regularly
  • set up verification and authentication procedures for communications and data
  • monitor the radio traffic and detect anomalies or intrusion attempts
  • raise awareness and train staff on cybersecurity and good practices

TETRA digital mode: how to transfer data via TETRA

TETRA (Terrestrial Trunked Radio) is a digital and secure radio communication standard used by emergency services, law enforcement, public transport and industries. TETRA uses a π/4-DQPSK phase modulation and a TDMA time division multiplexing to transmit voice and data on a bandwidth of 25 KHz per transmission channel. Each channel is divided into four timeslots, one of which is reserved for signaling in trunked mode (TMO).

TETRA allows file transfer via radio in two ways: by the packet data service (PDS) or by the circuit data service (CDS).

The PDS uses the IP protocol to transmit data packets on one or more timeslots. It offers a maximum throughput of 28.8 kbit/s per timeslot, or 86.4 kbit/s for three timeslots. The PDS can be used to send small files, such as images, text messages or forms.

The CDS uses the LAPD protocol to transmit data by circuit on a dedicated timeslot. It offers a constant throughput of 4.8 kbit/s per timeslot, or 19.2 kbit/s for four timeslots. The CDS can be used to send large files, such as documents, videos or maps.

The choice of the data service depends on the type of file, the size of the file, the quality of the radio link, the cost and the availability of radio resources. The PDS offers more flexibility and performance, but it requires a good signal quality and it can be more expensive in terms of battery consumption and spectrum occupation. The CDS offers more reliability and simplicity, but it requires a prior allocation of a timeslot and it can be slower and less efficient.

Securing TETRA file transfers with Freemindtronic’s EviCypher technology

However, both data services are subject to the TETRA security vulnerabilities that we have discussed in the previous sections. These vulnerabilities could allow an attacker to intercept, modify or corrupt the files transferred via TETRA, or to prevent their transmission altogether. Therefore, the users of TETRA must ensure the integrity and the confidentiality of the files they send or receive, by using encryption, verification and authentication methods. Freemindtronic’s EviCypher technology can be a valuable solution for encrypting data with post-quantum AES-256 from an NFC HSM with your own randomly generated keys before transferring them via TETRA. This way, even if an attacker corrupts the data transmitted by TETRA, they will not be able to decrypt the data encrypted by a product embedding

How to secure file transfers via TETRA with Freemindtronic’s EviCypher technology

La technologie EviCypher de Freemindtronic peut être une solution précieuse pour chiffrer les données avec AES-256 post-quantique à partir d’un HSM NFC avec vos propres clés générées aléatoirement avant de les transférer via TETRA. Ainsi, même si un attaquant corrompt les données transmises par TETRA, il ne pourra pas décrypter les données cryptées par un produit embarquant la technologie EviCypher NFC HSM technology, such as DataShielder NFC HSM or DataSielder Defense NFC HSM. These products are portable and autonomous devices that allow you to secure the access to computer systems, applications or online services, using the NFC as a means of authentication and encryption.

The management of encryption keys for TETRA

To use encryption on the TETRA network, you need an encryption key, which is a secret code of 80 bits, or 10 bytes. This key must be shared between the radios that want to communicate securely, and must be protected against theft, loss or compromise.

There are several methods to save and enter encryption keys for TETRA, depending on the type of radio and the level of security required. Here are some examples:

  • The manual method: it consists of entering the encryption key using the keyboard of the radio, by typing the 10 bytes in hexadecimal form. This method is simple, but impractical and unsafe, because it requires to know the key by heart or to write it down on a support, which increases the risk of disclosure or error. For example, a 80-bit key could be 3A4F9C7B12E8D6F0.
  • The automatic method: it consists of using an external device, such as a computer or a smart card, which generates and transfers the encryption key to the radio by a cable or a wireless link. This method is faster and more reliable, but it requires to have a compatible and secure device, and to connect it to the radio at each key change.
  • The EviPass method: it consists of using the EviPass NFC HSM technology which allows to generate, store and manage keys and secrets in a secure and independent NFC HSM device. This method is the most innovative and secure, because it allows to create keys higher than 80 bits randomly in hexadecimal base 16, 58, 64 or 85, to store them in a physical device protected by an access code and a robust AES-256 post-quantum encryption algorithm, and to transfer them by various contactless means, via a computer. This method does not require to know or write down the key, which reduces the risk of disclosure or error. For example, a 10-byte key of 80 bits could be 3F 8A 6B 4C 9D 1E 7F 2A 5B 0C.

The EviPass NFC HSM technology of Freemindtronic allows to create secure gateways between the NFC devices and the computer systems, using advanced encryption protocols, such as AES, RSA or ECC. The EviPass NFC HSM technology is embedded in the PassCyber NFC HSM product, which is a portable and autonomous device that allows to secure the access to computer systems, applications or online or offligne services, using the NFC as a means of authentication.

Conclusion

TETRA is a radio technology that was designed to offer secure and reliable communication to professional mobile services and critical infrastructures. But this technology, which has been kept secret for decades, presents vulnerabilities that could be exploited by cyberattackers to compromise these communications and infrastructures. The users of TETRA must be vigilant and take measures to protect themselves from these threats, by updating their equipment, choosing robust encryption algorithms, using strong keys, verifying and authenticating data and monitoring radio traffic. The EviPass NFC HSM technology of Freemindtronic can be an effective solution to strengthen the security of keys and secrets used for verification and authentication, by storing them in a secure and independent NFC device. The researchers who revealed the vulnerabilities of TETRA hope that their work will contribute to improve the security of communications in critical domains.

FormBook Malware: How to Protect Your Gmail and Other Data

FormBook Malware: how to protect your gmail and other data
Protect your Gmail Account FormBook malware – Jacques Gascuel: This article will be updated with any new information on the topic.

Secure Your Gmail from FormBook Attacks

FormBook is a malware that can steal your Gmail credentials, messages, and attachments. Learn how to use the Freemindtronic devices to encrypt your Gmail data and use passwordless and 2FA.

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

How to Protect Your Gmail Account from FormBook Malware

Introduction

Imagine that you receive an email from your bank, asking you to confirm your identity by clicking on a link. You open the link, and you find yourself on a page that looks like your bank’s website, but it is actually a fake. You enter your credentials, and you think you are done. But in reality, you have just given access to your bank account to hackers, who will use it to steal your money, or worse. This is what FormBook can do, a malware that can steal your sensitive data, and that Google cannot stop. In this article, we will explain what FormBook is, how it works, and how to protect yourself from this malware.

What is FormBook and why is it a threat?

FormBook is a malware that can record your keystrokes, take screenshots, and steal your passwords, cookies, and clipboard data. It can also download and execute other malicious files on your device.

FormBook is distributed through phishing emails that contain malicious attachments. These attachments are usually disguised as invoices, receipts, or shipping confirmations. When you open them, they ask you to enable macros or content. If you do, the malware will be installed on your device.

FormBook can target any web browser, but it has a special feature for Chrome. It can inject a fake Gmail login page into your browser, and trick you into entering your credentials. The malware will then send your Gmail username and password to a remote server controlled by the hackers.

FormBook is a threat because it can compromise your Gmail account and access your personal and professional information. It can also use your Gmail account to send spam or phishing emails to your contacts, or to access other online services that are linked to your Gmail account, such as Google Drive, Google Photos, or Google Pay.

How to protect yourself from FormBook?

Google has not yet found a way to detect and block FormBook. Therefore, you need to be extra careful when you use Gmail and other online services. Here are some tips to protect yourself from FormBook and other malware:

  • Do not open or download attachments from unknown or suspicious senders. If you are not sure about the legitimacy of an email, contact the sender directly or check the official website of the company or organization.
  • Do not enable macros or content in any document unless you trust the source. Macros are small programs that can run malicious code on your device.
  • Use a strong and unique password for your Gmail account and other online accounts. Do not reuse the same password for different services. Change your password regularly and use a password manager to store and generate your passwords.
  • Enable two-factor authentication (2FA) for your Gmail account and other online accounts. 2FA adds an extra layer of security by requiring a code or a device confirmation in addition to your password.
  • Use a reputable antivirus software and keep it updated. Antivirus software can scan your device for malware and remove it. You can also use a browser extension that can block malicious websites and pop-ups.

How to encrypt your Gmail messages and attachments with DataShielder NFC HSM

DataShielder NFC HSM is a device that allows you to encrypt and decrypt your Gmail messages and attachments with your own encryption keys that you create and store offline. It uses the EviCypher NFC HSM technology, which is a contactless hardware security module (NFC HSM) that won the Gold Medal for International Inventions in Geneva on March 2021.

With DataShielder NFC HSM, you can encrypt and decrypt your data with AES-256 keys that are randomly generated and stored in the NFC HSM. You can store up to 100 keys and one pair of RSA-4096 keys in the NFC HSM. You can also use different keys for the message and the attachment.

To encrypt your Gmail message and attachment, you need to use the EviCrypt and EviFile applications that are embedded in the DataShielder NFC HSM. These applications allow you to encrypt and decrypt your data with a simple tap of your NFC phone on the DataShielder NFC HSM. You can also share your encrypted data with other users who have the same device and the same key.

By using DataShielder NFC HSM, you can protect your Gmail messages and attachments from FormBook or any other malware that can access your Gmail account. Even if your Gmail account is hacked, your encrypted data will remain encrypted and unreadable by the hackers. Only you and the authorized recipients can decrypt your data with the DataShielder NFC HSM.

How to protect your web Gmail account with passwordless and 2FA using PassCypher NFC HSM

Do you want to manage your web accounts with complicated and complex passwords that you do not need to know, remember, or type? If yes, then you should try PassCypher NFC HSM. This device uses the EviPass NFC HSM technology, which is a contactless hardware password manager that won the Silver Medal for International Inventions in Geneva on March 2021.

With PassCypher NFC HSM, you can create and store your usernames and passwords of more than 256-bit in the NFC HSM. Moreover, you can store your OTP TOTP or HOTP secret keys in the NFC HSM to generate the 2FA code for your web accounts. The NFC HSM can store up to 100 web accounts and one pair of RSA-4096 keys.

To use PassCypher NFC HSM, you need to install the Freemindtronic extension for your web browser based on Chromium or Firefox. This extension uses the EviCore NFC HSM Browser technology, which allows you to communicate with the NFC HSM via your NFC phone. You also need to use the EviPass and EviOTP applications that are embedded in the PassCypher NFC HSM. These applications allow you to create, edit, and delete your web accounts and OTP secret keys with a simple tap of your NFC phone on the PassCypher NFC HSM.

By using PassCypher NFC HSM, you can secure your web accounts with passwordless and 2FA. You do not need to display, know, or type your username and password. You just need to tap your NFC phone on the PassCypher NFC HSM and the extension will autofill and auto login your web account. You also do not need to check for a typosquatting attack, since the extension will verify the URL of the website before logging in. And you do not need to use another device or application to generate the 2FA code, since the PassCypher NFC HSM will do it for you.

How to protect your Gmail account from FormBook with PassCypher NFC HSM

FormBook is a dangerous malware that can access your Gmail account and other sensitive data. Google has not yet found a solution to stop it. Therefore, you need to be vigilant and follow the best practices to protect yourself from cyberattacks. One of them is to use PassCypher NFC HSM to secure your Gmail account with passwordless and 2FA.

By using PassCypher NFC HSM, you can protect your Gmail account from FormBook or any other malware that can access your web browser. Even if your web browser is hacked, your usernames and passwords will remain encrypted and inaccessible by the hackers. Only you can decrypt your Gmail account with the PassCypher NFC HSM. And even if the hackers manage to steal your session cookies, they will not be able to log in to your Gmail account without the 2FA code that is generated by the PassCypher NFC HSM.

To use PassCypher NFC HSM with your Gmail account, you need to follow these steps:

  • Create a Gmail account in the EviPass application on the PassCypher NFC HSM. You can use the default username and password, or you can generate a random and complex password with the EviPass application.
  • Enable 2FA for your Gmail account on the Google website.
  • Choose the option to use an authenticator app, and scan the QR code with the EviOTP application on the PassCypher NFC HSM. This will store your OTP secret key in the NFC HSM.
  • Log in to your Gmail account with the Freemindtronic extension on your web browser. Tap your NFC phone on the PassCypher NFC HSM and the extension will autofill and auto login your Gmail account. You will also see a pop-up window with the 2FA code that you need to enter on the Google website.

By following these steps, you can use PassCypher NFC HSM to secure your Gmail account with passwordless and 2FA. You can also use PassCypher NFC HSM with other web accounts that support 2FA, such as Facebook, Twitter, or Amazon. This way, you can protect yourself from FormBook and other malware that can access your web browser.

Recent statistics on FormBook

FormBook is a malware that was first discovered in 2016, but it remains very active and dangerous. According to the Check Point report on cybersecurity in 2022, FormBook was the third most widespread malware in 2021, attacking 5% of enterprise networks. It was also the most prolific infostealer malware, accounting for 16% of attacks worldwide.

FormBook spreads mainly through phishing emails that contain malicious attachments. These attachments are often RAR self-extracting archives, which are compressed files that can run malicious code when opened. The RAR files contain a legitimate document, such as a PDF or a Word file, and a hidden executable file, which is the FormBook malware. When the user opens the RAR file, the document is displayed, but the malware is also installed in the background.

FormBook can also spread through other methods, such as drive-by downloads, malicious links, or removable media. The malware can infect any Windows device, from Windows XP to Windows 10. The malware can also evade detection and removal by using various techniques, such as encryption, obfuscation, or anti-analysis.

Here are some recent statistics on FormBook, based on the data from Check Point and ANY.RUN:

  • FormBook was the most popular malware in August 2021, affecting 4.5% of organizations worldwide, followed by Trickbot and Agent Tesla, affecting respectively 4% and 3% of organizations worldwide.
  • FormBook was the fourth most common malware in 2020, according to the ranking of malware families by ANY.RUN. It accounted for 8% of the samples analyzed by the online sandboxing service.
  • FormBook was used in many phishing campaigns targeting various industries, such as defense, aerospace, health, education, finance, retail, etc. It was also used to attack Ukrainian targets during the war between Russia and Ukraine in 2022.
  • FormBook has a successor called XLoader, which appeared in 2020 and which is able to infect macOS users. XLoader is sold on the dark web for $59 for a Windows license and $49 for a macOS license.

Danger level of FormBook compared to other malware

FormBook is a very dangerous malware, because it can steal sensitive information, such as credentials, passwords, credit card numbers, 2FA codes, etc. It can also download and execute other malware, such as ransomware, banking trojans, spyware, etc. It can also remotely control the infected device and perform various malicious actions, such as deleting browser cookies, taking screenshots, restarting or shutting down the system, etc.

FormBook is also hard to detect and remove, because it uses advanced evasion techniques, such as code injection, string obfuscation, data encryption, anti-analysis, etc. It also changes frequently its name, path, and file extension, and uses random Windows registry keys to maintain its persistence.

To compare the danger level of FormBook with other known malware in its category, we can use the following criteria:

  • The number of organizations affected worldwide
  • The type and amount of information stolen
  • The ability to download and execute other malware
  • The ability to remotely control the infected device
  • The evasion techniques used
  • The ease of detection and removal

Here is a table that compares FormBook with other popular infostealer malware, such as Trickbot, Agent Tesla, LokiBot, and Raccoon:

Malware Number of organizations affected Type and amount of information stolen Ability to download and execute other malware Ability to remotely control the infected device Evasion techniques used Ease of detection and removal
FormBook 4.5% in August 2021 Credentials, passwords, credit card numbers, 2FA codes, screenshots, keystrokes, etc. Yes Yes Code injection, string obfuscation, data encryption, anti-analysis, etc. Hard
Trickbot 4% in August 2021 Credentials, passwords, banking information, personal data, etc. Yes Yes Code injection, string obfuscation, data encryption, anti-analysis, etc. Hard
Agent Tesla 3% in August 2021 Credentials, passwords, banking information, personal data, screenshots, keystrokes, etc. No Yes String obfuscation, data encryption, anti-analysis, etc. Medium
LokiBot 1.5% in August 2021 Credentials, passwords, banking information, personal data, etc. No Yes String obfuscation, data encryption, anti-analysis, etc. Medium
Raccoon 0.8% in August 2021 Credentials, passwords, banking information, personal data, etc. No Yes String obfuscation, data encryption, anti-analysis, etc. Medium

From this table, we can see that FormBook is the most dangerous infostealer malware, because it affects the most organizations, steals the most types of information, and can download and execute other malware. It is also the hardest to detect and remove, because it uses more evasion techniques than the other malware.

Forms of attacks of FormBook

FormBook can be delivered through different forms of attacks, depending on the delivery mechanism chosen by the malicious actor. Here are some forms of attacks of FormBook:

  • Phishing: FormBook can be sent by email as a malicious attachment, such as a Word, Excel, PDF, or ZIP or RAR file. The email can have a misleading subject, such as an invoice, a receipt, a contract, a job offer, etc. When the user opens the attachment, the malware runs and infects the device.
  • Exploitation of vulnerabilities: FormBook can exploit vulnerabilities in popular software, such as Microsoft Office, Windows, Adobe Reader, etc. For example, FormBook used the vulnerability CVE-2017-8570 in Microsoft Office to run malicious code from a RTF file. FormBook also used the vulnerability CVE-2021-40444 in Microsoft MSHTML to run malicious code from a CAB file.
  • Drive-by downloads: FormBook can be downloaded without the user’s knowledge when they visit a compromised or malicious website. The website can use a script or an exploit kit to trigger the download and execution of the malware on the user’s device.
  • Removable media: FormBook can be copied to removable media, such as USB drives, external hard drives, memory cards, etc. When the user connects the removable media to their device, the malware runs automatically and infects the device.
  • Social media: FormBook can be spread by messages or posts on social media, such as Facebook, Twitter, Instagram, etc. These messages or posts can contain links or images that redirect to malicious websites or infected files. When the user clicks on the link or image, the malware is downloaded and executed on their device.

Here is a type of formbook malware attacks image:

Type of Formbook MalwareAttacks

How PassCypher NFC HSM and DataShielder NFC HSM can protect you from FormBook attacks

PassCypher NFC HSM and DataShielder NFC HSM are two devices that use the EviPass NFC HSM technology from Freemindtronic, which is a contactless hardware password manager that won the Silver Medal for International Inventions in Geneva on March 2021. These devices can help you protect your web accounts and your Gmail messages and attachments from FormBook attacks, by using passwordless, 2FA, and encryption.

PassCypher NFC HSM can create and store your usernames and passwords of more than 256-bit in the NFC HSM. It can also store your OTP TOTP or HOTP secret keys in the NFC HSM to generate the 2FA code for your web accounts. The NFC HSM can store up to 100 web accounts and one pair of RSA-4096 keys.

DataShielder NFC HSM can encrypt and decrypt your Gmail messages and attachments with your own encryption keys that you create and store offline. It uses the EviCypher NFC HSM technology, which is a contactless hardware security module (NFC HSM) that won the Gold Medal for International Inventions in Geneva on March 2021. It can store up to 100 keys and one pair of RSA-4096 keys in the NFC HSM.

To use PassCypher NFC HSM and DataShielder NFC HSM, you need to install the Freemindtronic extension for your web browser based on Chromium or Firefox. This extension uses the EviCore NFC HSM Browser technology, which allows you to communicate with the NFC HSM via your NFC phone. You also need to use the EviPass, EviOTP, EviCrypt, and EviFile applications that are embedded in the PassCypher NFC HSM and DataShielder NFC HSM. These applications allow you to create, edit, delete, encrypt, and decrypt your web accounts, OTP secret keys, messages, and attachments with a simple tap of your NFC phone on the PassCypher NFC HSM or DataShielder NFC HSM.

By using PassCypher NFC HSM and DataShielder NFC HSM, you can secure your web accounts and your Gmail messages and attachments with passwordless, 2FA, and encryption. You do not need to display, know, or type your username, password, or encryption key. You just need to tap your NFC phone on the PassCypher NFC HSM or DataShielder NFC HSM and the extension will autofill, auto login, encrypt, or decrypt your web account, message, or attachment. You also do not need to use another device or application to generate the 2FA code, since the PassCypher NFC HSM will do it for you.

Here is a table that shows how PassCypher NFC HSM and DataShielder NFC HSM can protect you from different FormBook attack vectors, such as keylogger, password stealer, file transfer, screenshot, etc. I used a check mark or a cross mark to show visually what PassCypher NFC HSM and DataShielder NFC HSM protect.

 

FormBook PassCypher DataShielder
Keylogger ✔️ ✔️
Password stealer ✔️ ✔️
File transfer ✔️
Screenshot ✔️ ✔️
Remote control
Phishing ✔️ ✔️
Exploit kit
Drive-by download
Removable media ✔️
Social media

This table shows that PassCypher NFC HSM and DataShielder NFC HSM can protect your web accounts from FormBook’s keylogger, password stealer, and phishing, by using passwordless and 2FA. They can also protect your Gmail messages and attachments from FormBook’s file transfer and screenshot, by using encryption and decryption. DataShielder NFC HSM can also protect your data stored in computers or removable media, by using encryption and decryption. However, neither device can protect your device from FormBook’s remote control, exploit kit, drive-by download, or unsecured social media, which can compromise your system and your data. Therefore, you should also use an antivirus software and a firewall to prevent FormBook from accessing your device.

This site uses cookies to offer you a better browsing experience. By browsing this website, you agree to our use of cookies.