Between 2022 and 2025, a sharp rise in military device thefts has exposed sensitive data and compromised national security worldwide. From laptops and USB drives to drones and smartphones, these thefts—often linked to hybrid warfare—reveal how physical assets are used for espionage, sabotage, and cyber infiltration.
This article maps confirmed incidents, official warnings from defense leaders, and outlines how even minor breaches can grant access to classified systems. In today’s threat landscape, securing every military device is critical to protecting sovereignty.
Documented Cases across France, the UK, Germany, Canada, the US, Ukraine, and Gambia.
Modus Operandi involving phishing attacks, compromised supply chains, drone espionage, and insider theft.
Official Alerts from defense ministers, intelligence chiefs, and security agencies warning about the strategic implications of stolen military-grade devices.
Technological Vulnerabilities that enable even small devices—like SD cards or USB keys—to act as backdoors into secure systems.
The article emphasizes the urgent need for cross-domain defense measures that go beyond encryption, including hardware-level protections, behavioral monitoring, and rapid response protocols. In the new digital battlefield, securing every military device is not optional—it’s a matter of national sovereignty.
About the Author – Jacques Gascuel is the inventor of patented hardware-based security solutions and the founder of Freemindtronic Andorra. With a focus on military-grade data protection, his research spans hybrid warfare, espionage tactics, and counter-intrusion technologies. This article on military device thefts reflects his commitment to developing offline, privacy-by-design tools that secure sensitive assets even beyond cyberspace.
Global Stakes: Hybrid Warfare and Digital Sabotage
These incidents align with a broader hybrid warfare strategy. They are not isolated cases but rather part of coordinated efforts involving espionage, sabotage, and infiltration. Stolen electronic equipment—laptops, USB drives, mobile phones, SSDs, even SD cards from drones—offers unauthorized access to military or state-level classified networks.
Malicious USB devices often serve as physical backdoors into critical infrastructures. Similarly, unidentified drone flyovers over sensitive sites suggest advanced surveillance and tactical scanning operations.
As General Philippe Susnjara (DRSD) emphasizes, these threats combine physical theft, cyberattacks, and strategic deception. Their cumulative effect directly undermines sovereignty and national defense. Computerworld Source
Global Inventory of Military Equipment Thefts & Data-Security Breaches (2022–2025)
Country/Region
Period
Incident Description
Equipment Stolen/Compromised
Context & Modus Operandi
Resolution Status
Source & Verification
France
Spring 2023
Soldiers stole laptops/fixed PCs at Kremlin-Bicêtre
Laptops and desktop computers
Internal military theft, equipment re-sold locally
Global Stakes: Hybrid Warfare and Digital Sabotage
These incidents align with a broader hybrid warfare strategy. They are not isolated cases but rather part of coordinated efforts involving espionage, sabotage, and infiltration. Stolen electronic equipment—laptops, USB drives, mobile phones, SSDs, even SD cards from drones—offers unauthorized access to military or state-level classified networks.
Malicious USB devices often serve as physical backdoors into critical infrastructures. Similarly, unidentified drone flyovers over sensitive sites suggest advanced surveillance and tactical scanning operations.
As General Philippe Susnjara (DRSD) emphasizes, these threats combine physical theft, cyberattacks, and strategic deception. Their cumulative effect directly undermines sovereignty and national defense. Computerworld Source
Inside the Global Shadow War Over Military Devices
🇫🇷 France
A troubling series of incidents—from military bases to defense exhibitions—has led to ministerial alerts. Sébastien Lecornu warns of a sharp increase in thefts affecting both civilian and military personnel. The DRSD highlights that devices often contain strategic data, and their loss could compromise France’s sovereignty.
🇩🇪 Germany
Surveillance drone sightings over sensitive sites and theft of equipment abroad (NATO Paris seminar) point toward sabotage and cross-border vulnerabilities.
🇺🇸 United States
Still coping with fallout from earlier breaches, like the theft of a contractor laptop holding data on over 207,000 reservists. The case remains a benchmark example of digital fallout from physical theft.
🇬🇧 United Kingdom
Supply-chain attacks demonstrate that not only direct military assets are targeted. Contractors handling sensitive information now represent a serious point of failure.
🇨🇦 Canada
Legislators’ phones and tablets were compromised as part of a state-sponsored campaign of intimidation and influence. These acts blur the lines between cyberespionage and political destabilization.
🇺🇦 Ukraine
Live conflict context accelerates hybrid operations. Stolen devices are weaponized instantly for signal intelligence (SIGINT). Groups like GRU’s Sandworm exploit battlefield-captured phones.
🇬🇲 Gambia
Theft of laptops from SIS headquarters represents one of Africa’s rare public breaches. It reveals structural weaknesses in intelligence security protocols.
Multi-region
Drone surveillance and memory card recovery expand the perimeter of military espionage to aerial and autonomous platforms. This represents a shift from physical theft to integrated hybrid reconnaissance.
From Devices to Doctrine: Rethinking Cyber-Physical Defense
Military electronics are now frontline assets. A stolen laptop, drone SD card, or USB key can become the gateway to classified systems. These devices must be treated as intelligence vectors, not just hardware.
The intersection of cyber and physical security demands smarter defense doctrines. Military infrastructure must now integrate AI-enhanced anomaly detection, offline compartmentalization, and self-erasing mechanisms.
Resilience is not just about preventing breaches. It’s about ensuring data can’t be exploited even if devices fall into enemy hands.
Final Signal: Securing Tomorrow’s Frontlines Today
This global mapping of military device thefts reveals more than just negligence—it signals a shift in modern conflict. Where data flows, power follows. And where equipment travels, so do vulnerabilities.
To protect sovereignty, nations must harden not just systems, but mindsets. Every stolen smartphone, every breached USB, is a reminder: defense begins with awareness, and ends with action.
Predator Files: How a Spyware Consortium Targeted Civil Society, Politicians and Officials Cytrox: The maker [...]
19 Oct
Incident Summary: A RecordBreaking Breach Unfolds
In June 2025, the digital world entered a new era of vulnerability. A massive breach involving more than 16 billion active credentials was discovered across several darknet marketplaces. This “megaleak” surpasses all previously known data breaches—both in sheer volume and in the freshness and diversity of the stolen data.
Unlike historical leaks that often stemmed from isolated serverside intrusions, this attack relied on a silent, distributed compromise executed on a massive scale using highly specialized malware. It reveals a deep transformation of cybercrime, where digital identity becomes a commodity, a weapon, and a tool of foreign interference.
Although the dataset is being presented as a new breach, several cybersecurity analysts have pointed out that it likely includes credentials from older leaks — such as RockYou2021 and earlier credential-stuffing compilations. This raises an important question: are we facing a new mega-leak or an inflation of existing records? Either way, the risk remains real — particularly because infostealers do not care how old a credential is, as long as the session is still valid.
Strategic Keywords: Darknet credentials 2025, global cyberattack, personal data breach, silent credential theft, infostealer logs, digital identity leak, cyber sovereignty breach
Darknet Credentials Breach 2025: A Global Digital Heist
Discover the true scope of the darknet credentials breach that shook the digital world in 2025. This unprecedented leak involved over 16 billion active identifiers and marks a dangerous shift in cybercriminal operations. From stealthy exfiltration to identity abuse and geopolitical espionage, this report unpacks the anatomy of the largest cyber credential heist ever recorded.
16+ Billion
Credentials leaked worldwide, redefining the scale and depth of modern identity theft operations.
Stealthy Exfiltration: How 16 Billion Credentials Were Stolen
The 2025 darknet credentials breach was not a result of serverside intrusions, but of widespread clientside compromise. Sophisticated infostealer malware like LummaC2, Redline, and Titan evolved to bypass traditional antivirus tools and extract session tokens, login credentials, and encrypted vaults with surgical precision.
Infostealer Payloads: Deployed via cracked software, fake browser updates, and malvertising, exfiltrating data silently to Telegram bots and private C2 servers.
Cookie Hijacking: Session hijacks from Google, Microsoft, and GitHub accounts allowed direct impersonation—even bypassing MFA.
Clipboard Scrapers: Targeted password managers, crypto wallets, and 2FA copypaste operations, stealing sensitive content in real time.
Telegram Exfil Channels: Over 60% of the data was exfiltrated via Telegram bots, enabling realtime credential leaks with minimal traceability.
OAuth Abuse: Attackers exploited persistent GitHub OAuth tokens to access developer tools, repositories, and secrets without triggering alerts.
BitB Attacks: Browserinthebrowser phishing pages harvested login credentials using cloned interfaces with perfect mimicry.
Who Was Targeted in the 2025 Breach?
This breach was not random. Behind the 16 billion compromised identifiers lies a calculated selection of highvalue targets spanning continents, sectors, and platforms. A breakdown of exposed credentials shows that this was a datadriven cyber operation designed for maximum strategic disruption.
Government Entities: Highranking emails, internal portals, and cloud credentials linked to diplomatic and intelligence operations.
Developers & IT Admins: Credentials linked to GitHub, SSH keys, API tokens, and internal tools—opening attack surfaces for software supply chains.
Telecom & Infrastructure: VPN, VoIP, and backend access credentials tied to major telecom operators in Europe, the Middle East, and Asia.
Journalists & Activists: Secure email platforms, PGP key leaks, and social media credentials exposed in authoritarian regions.
Enterprise Credentials: Active logins to Microsoft 365, Google Workspace, Slack, and Zoom—many with elevated privileges or SSO access.
Healthcare & Finance: EMR portals, insurance platforms, banking credentials—targeting identity validation and digital fraud channels.
Nature and Origin of Data: A New Class of Digital Assets Compromised
The 2025 megaleak is not just remarkable for its scale, but for the nature and diversity of the compromised data. Unlike past breaches mostly limited to emailpassword pairs or hashed dumps, this leak reveals dynamic, realtime identity layers
The dataset is largely composed of infostealer logs—files generated on compromised endpoints. These contain plaintext credentials, active session cookies, browser autofill data, password vault exports, crypto seed phrases, 2FA backup codes, and even system fingerprints. These logs allow immediate impersonation across services without requiring password resets or MFA tokens.
How Was the Data Acquired?
Most of the data originated from compromised personal and enterprise endpoints, harvested by malware strains such as LummaC2, Raccoon Stealer 2.3, and RedLine. These infostealers are capable of exfiltrating full identity profiles from infected machines in seconds, often without triggering detection systems.
They exploit weak security hygiene such as:
No hardwarebacked vault protection
Poor browser security settings Reuse of weak passwords
Strategic Insight: Unlike static breach dumps, this dataset grants access to live digital identities, turning each compromised log into a fully operational access package.
What Type of Data Was Leaked?
Plaintext Logins: Emails and passwords for thousands of platforms (Microsoft, Apple, Google, Facebook, TikTok, etc.)
Session Tokens: Cookies and JWTs enabling instant login without passwords or MFA
Vault Extracts: Exfiltrated files from KeePass, Bitwarden, 1Password, and Chromiumbased password managers
Browser & Device Fingerprints: IP, location, hardware specs, OS info, browser versions, and language preferences
Cybercriminals can now execute biometric spoofing attacks using nothing more than a phone and generative AI tools.
In response, PassCypher NFC HSM and HSM PGP secure authentication by storing cryptographic keys in tamper-proof hardware that no remote attacker — not even an AI-powered one — can forge, duplicate, or intercept.
Key Sources of Infection
The compromised data points to a global spread of malware through:
Pirated software and cracked installers
Fake browser updates or Flash installers
Email phishing attachments
Malvertising (malicious ad networks)
Discord, Telegram, and gaming communities
These infection chains reveal how attackers <strong>exploited trust ecosystems<strong>, disguising malicious payloads within platforms frequented by developers, gamers, and crypto users.
⚠️ Retention Risk: Since much of the data includes autologin sessions and persistent tokens, many victims are still vulnerable months after the initial compromise.
Up Next: Exfiltration Methods at Scale
The next section explores how this data was silently extracted from victims worldwide using encrypted Telegram bots, C2 networks, and sophisticated malware communication layers.
Exfiltration Methods: Silent, Distributed, and Highly Scalable
The exfiltration of over 16 billion credentials in 2025 wasn’t just massive—it was surgically precise. Threat actors orchestrated a globalscale theft using modular infostealers and encrypted communication layers. These methods enabled realtime credential leakage with minimal detection risk.
CommandandControl Channels: Telegram, Discord, and Beyond
The majority of logs were exfiltrated via Telegram bots configured to autoforward stolen data to private channels. These bots used tokenbased authentication and selfdeletion mechanisms, making traditional monitoring tools ineffective.
“`html
Strategic Insight: Over 60% of the logs recovered from darknet forums showed clear Telegramorigin metadata, pointing to widescale use of bot automation.
Discord also played a role, especially in targeting gaming communities and developers. Malicious bots embedded in servers silently captured credentials and pushed them via WebHooks to remote dashboards.
Malware Stealth Techniques: Evasion and Persistence
Infostealers like LummaC2, Redline, and Raccoon 2.3 embedded stealth modules to:
Disable Windows Defender and bypass AMSI
Inject payloads into trusted processes (svchost, explorer.exe)
Encrypt stolen data with custom XOR+Base64 algorithms before exfiltration
The malware lifecycle was shortlived but potent: designed for a singleuse log theft, then selfdeletion. This limited forensics and delayed incident response.
PhishingFree Exfiltration via Fake Updaters
No need for phishing emails. Attackers embedded payloads into fake installers for browsers, media players, and antivirus tools. These were promoted via:
Cracked software (often bundled with malware via forums and Telegram groups)
Fake installers mimicking Chrome, Brave, and Firefox updates
Weaponized PDFs and Office macros triggering driveby downloads
⚠️ Operational Note: Logs were often exfiltrated to C2 servers registered in rare TLDs (.lol, .cyou, .top), making IP reputationbased blocking inefficient.
Browser Hijacks and AutoFill Abuse
Once inside a system, malware extracted:
Session tokens from browser cookies (bypassing login screens)
Autofill form data (names, addresses, phone numbers, card info)
Saved credentials from Chromium vaults and localStorage APIs
Some payloads injected JavaScript into active browser sessions, capturing credentials before submission, making even secure pages vulnerable.
Victim Profiles: From Diplomats to Developers
This massive breach wasn’t indiscriminate. On the contrary, the leaked credentials reflect a deliberate and **strategic targeting** of users and organizations with highvalue access points. The 16+ billion identifiers mapped out a digital battlefield across continents and sectors.
Governments and Public Institutions
Hundreds of thousands of credentials were traced back to:
Diplomatic corps and foreign ministry portals
Intelligencelinked accounts using Microsoft 365 or ProtonMail
Sensitive platforms used by EU, Gulf, and ASEAN governments
“`html
Strategic Insight: These accounts allowed impersonation at the highest diplomatic levels—without needing to break into state servers.
Access to devops pipelines, CI/CD dashboards, and production vaults
API secrets connected to Amazon AWS, Azure, and Google Cloud projects
These credentials are a launchpad for software supply chain attacks—allowing infiltration far beyond the initial victim.
Enterprises and Cloud SaaS Platforms
Stolen enterprise credentials gave direct access to:
Microsoft 365 and Google Workspace sessions (many with SSO)
Zoom, Slack, Atlassian, Salesforce logins
Admin panels of ecommerce and banking apps
The breach also included access to customer support dashboards, exposing sensitive user communications and KYC documents.
Telecom and Infrastructure Providers
VPN endpoints and NOC portals in Europe and the Middle East
Privileged logins to VoIP, fiber provisioning, and 5G orchestration tools
Backend access to telecom SaaS used by ISPs and mobile operators
Journalists, Activists, and NGOs
Targeted individuals operating in:
Authoritarian or hybrid regimes (Russia, Iran, China, Belarus, Myanmar)
Platforms like ProtonMail, Signal, Tutanota, and Mastodon
Credentials enabling the takeover of anonymous social channels
Healthcare and Financial Systems
Active sessions to EMR systems, health insurance databases
Leaked IBANs, SWIFT codes, crypto wallet access
Identity validation bypasses for fintech services (Stripe, Revolut, Wise)
⚠️ Operational Note: Many stolen credentials had not expired at the time of discovery, allowing active impersonation months after the initial leak.
Up Next: The Cybercrime Ecosystem Monetizing Your Identity
Next, we explore how these stolen credentials are traded, resold, and automated on darknet platforms, turning each login into a revenuegenerating asset for cybercriminals across the globe.
Who Got Hit the Hardest?
By Victim Category (Estimates from 16B credentials sample):
Victim Category
Share (%)
Enterprise SaaS & Cloud Accounts
32%
Developers & IT Admins
21%
Government & Public Sector
14%
Finance & Insurance Platforms
11%
Telecom & Infrastructure
8%
Healthcare Systems
7%
Journalists, Activists & NGOs
4%
Other Personal Accounts
3%
By Region (Top 5):
Region
Share (%)
United States
24%
European Union (incl. France, Germany, Italy)
19%
India & Southeast Asia
15%
Middle East (incl. UAE, Israel, KSA)
13%
Russia & Ex-Soviet States
11%
Additional Insights: The Scale and Velocity of Credential Leaks
Infostealer data surge (2024): According to Bitsight and SpyCloud, the volume of logs containing cookies, session tokens, and browser data rose by +34% in underground forums.
Credential saturation per victim: SpyCloud reports that the average victim had 146 compromised records, spanning multiple platforms—highlighting widespread account reuse and poor credential hygiene.
Rapid session hijacking: As reported by The Hacker News, 44% of logs now include active Microsoft sessions, with exfiltration typically occurring via Telegram within 24 hours.
💡 These trends reveal how credentials aren’t just stolen—they’re weaponized with growing speed, making the use of reactive defenses increasingly obsolete.
With stolen identities fueling everything from financial fraud to state-sponsored digital espionage, the black market has evolved into a strategic reservoir for hostile influence campaigns. This industrialization of cybercrime now forms the backbone of digital proxy wars — where attribution is murky, and plausible deniability is a feature, not a flaw.
Insight: Targets were not random. The strategic nature of the breach reveals cyber operations tailored to economic influence, software supply chain disruption, and geopolitical destabilization.
Underground Market: The New Gold Rush for Stolen Identities
The massive leak of over 16 billion credentials in 2025 didn’t just disappear into the void—it was monetized, shared, and resold across an increasingly organized underground ecosystem. From Telegram channels to dedicated marketplaces, cybercriminals have professionalized the distribution and monetization of stolen digital identities.
The leaked credentials are not merely dumped for notoriety—they’re sold in targeted bundles by region, sector, or platform, often using subscription-based models. These black-market credentials fuel account takeovers, business email compromises, and deepfake-enabled impersonations.
Key Monetization Channels:
Telegram bot markets: Instant purchase of fresh logs and access tokens, often automated with search-by-email features.
Genesis-style marketplaces: Offer full digital fingerprints, session cookies, and device emulations.
Infostealer-as-a-Service (IaaS): Subscription models where cybercriminals access ready-to-use infection logs in real time.
Darkweb credential catalogs: Indexed credential collections searchable by domain, country, or company.
Infographic: The black-market ecosystem for stolen digital identities in 2025. From Telegram bots to infostealer-as-a-service (IaaS), this economy fuels cybercrime and espionage.
💡 Strategic Insight: The value of an identity is no longer just tied to username-password pairs. Full access packages with session tokens, fingerprinting data, and behavioral metadata now fetch higher prices and enable stealthier attacks.
Sample Prices (June 2025):
Item Type
Avg. Price (USD)
Gmail account with session cookie
$4.50
Google Workspace admin access
$35–$200
Crypto wallet seed phrase
$20–$500
Full identity kit (passport scan + credentials)
$25–$100
Access to developer tools (GitHub, Jira, etc.)
$8–$60
As these stolen credentials are traded and weaponized, their geopolitical consequences begin to surface—especially when the targets include critical sectors and foreign governments.
Credential Pricing Tiers
Basic Logins: $1–$5 for email/password combos
Session Cookies: $10–$50 depending on freshness and service
Strategic Insight:
Darknet platforms now operate like ecommerce sites, with search filters by region, platform, and even employer. The industrialization of cybercrime is no longer hypothetical — it’s fully operational.
These marketplaces don’t just sell access — they empower strategic sabotage. In the next section, we examine how hostile states and actors exploited this trove for cyber espionage and digital manipulation.
Geopolitical Exploitation: Cybercrime as a Proxy Tool
Behind the massive leak of over 16 billion credentials in mid-2025 lies more than just a financial motivation — it reveals a darker, more strategic exploitation of stolen identities for geopolitical influence and cyberespionage.
By classifying the data by language, region, platform, and collection date, malicious actors — including nation-state groups — have been able to build curated databases for targeted disinformation campaigns, surveillance, and infiltration of sensitive networks.
These activities blur the line between traditional cybercrime and state-sponsored operations. Initial Access Brokers (IABs), often the first sellers of stolen credentials, may unknowingly serve the interests of geopolitical actors looking for covert entry points into rival nations’ digital infrastructures.
Examples of geopolitical misuse include:
Hijacking Telegram or WhatsApp groups to spread targeted disinformation during elections;
Abusing access to GitHub, Notion, or internal platforms to steal trade secrets or diplomatic communications;
Using compromised LinkedIn accounts to plant narratives, gain trust, or engineer influence within private or public organizations.
With stolen identities fueling everything from financial fraud to state-sponsored digital espionage, the black market has evolved into a strategic reservoir for hostile influence campaigns. This industrialization of cybercrime now forms the backbone of digital proxy wars — where attribution is murky, and plausible deniability is a feature, not a flaw.
These operations rely on the stealth and realism that infostealer data provides. Stolen credentials offer more than access — they offer credible digital identities. This transforms a simple malware victim into a proxy agent of influence.
💡 Strategic Insight
Cybercriminals aligned with geopolitical interests no longer need direct access to weaponized exploits. Instead, credential access allows infiltration with plausible deniability, turning stolen identities into digital mercenaries.
Through this lens, the 2025 mega-leak is not just a cybercrime event — it is a cyber-diplomatic weapon, affecting the very foundations of trust, identity, and sovereignty in cyberspace.
Next: Who is really behind the 2025 credential breach? The next section investigates how behaviorally tailored data sets give adversaries the ability to impersonate, influence, and infiltrate with near-perfect fidelity.
Threat Actor Attribution: Who Engineered the 2025 Mega-Leak?
The forensic evidence left behind by this massive credential breach paints a fragmented picture—but not an anonymous one. While attribution remains inherently complex in cyber operations, several indicators suggest the involvement of well-resourced actors, possibly operating under the protection—or direction—of nation-states.
Malware Signatures and TTPs (Tactics, Techniques, Procedures) identified in the breach align with malware families historically associated with Eastern European cybercriminal ecosystems. The use of Telegram bots, GitHub token abuse, and advanced session hijacking are all markers of actor groups linked to data monetization and hybrid influence operations.
In addition, several C2 domains and payload hashes trace back to infrastructure previously tied to the cybercriminal collective “DC804“, an advanced threat group believed to have links with actors operating from Ukraine and surrounding regions.
💡 Strategic Insight Attribution in cyberspace often relies on patterns, not confessions. In this case, the tooling, language settings, C2 server timings, and monetization channels suggest a fusion of cybercriminal profit motives and geopolitical disruption strategies.
Indicators of Nation-State Involvement
The operational scale of the breach—and its remarkably coordinated exfiltration tactics—raise suspicion that the attackers benefited from infrastructure support, safe havens, or even passive cooperation from government-aligned groups. This includes:
Regional Target Bias: A disproportionate volume of credentials came from NATO countries and Asian democracies, while data from certain Eastern bloc regions appears underrepresented.
Language Fingerprints: Several payloads and admin panels were configured in Russian and Ukrainian locales, with Cyrillic-based filename conventions.
Operational Times: Attack traffic patterns followed Central European and Moscow Time business hours—suggesting actors worked standard office shifts, not criminal ad hoc hours.
Tool Reuse: Obfuscation layers reused from malware previously attributed to Sandworm and Gamaredon, suggesting potential crossover or tooling leaks.
Attribution Caveat: While these clues are strong, none alone constitute irrefutable proof. The breach may result from a hybrid operation blending financially motivated hackers with state-level beneficiaries or disinformation agendas.
Understanding the threat actors is crucial not just for retaliation, but for anticipating their next moves. The final section delivers actionable insights to help organizations strengthen their cyber posture.
Digital Forensics and Open-Source Intelligence (OSINT)
Independent analysts and cybersecurity firms noted that much of the leaked data first surfaced on Telegram channels used by known ransomware groups. Certain accounts had ties to earlier leaks like “RockYou2024” and “Mother of All Breaches“, indicating an ecosystem where access brokers share, trade, and repurpose stolen credentials.
The GitHub OAuth token abuse, for example, mirrors patterns seen during the SolarWinds follow-on attacks, though no direct link has been established.
Attribution Synthesis:
Behind every leaked credential may lie a chain of actors — from low-level brokers to geopolitical operatives. Understanding this chain is crucial to defend not just individual identities, but the sovereignty of institutions and nations. The final section delivers actionable strategies to mitigate these evolving threats and protect digital assets.
From Espionage to Counter-Espionage: Shifting the Power Balance
With the underground market thriving and nation-states exploiting identity data at scale, the only remaining question is: how can individuals and organizations fight back? In the next section, we explore advanced countermeasures — including hardware-based encryption tools like PassCypher HSM PGP and DataShielder NFC HSM — that offer a radically new approach to protecting digital identity, even when credentials are compromised.
In the wake of the 2025 mega-leak, traditional cybersecurity hygiene practices — like rotating passwords or enabling 2FA — have proven insufficient against the industrialization of credential theft. Cybercriminals no longer need your password. They buy your session.
From Reactive Defense to Proactive Immunity
Infostealers now bypass 2FA by exfiltrating session cookies and device fingerprints, which are then sold in blackmarket ecosystems that emulate your digital identity in real time. The only viable defense lies outside the operating system, in tamper-proof hardware-based authentication.
What Should You Do After the Darknet Credentials Breach?
In response to this unprecedented leak, cybersecurity experts recommend a series of critical actions:
Immediately change your passwords, especially for email, banking, and social media accounts.
Enable Two-Factor Authentication (2FA) on all services that support it.
Check if your email or credentials have been exposed using services like HaveIBeenPwned.
Use a password manager to generate and store unique, strong passwords for each service.
Consider switching to Passkeys (FIDO/WebAuthn) for better phishing resistance — though these are not immune to session hijacking.
While these measures are helpful, they remain inherently software-based. Once a device is compromised by an infostealer, even 2FA and passkeys may not be enough.
Ready to reclaim control over your identity?
Discover how PassCypher NFC HSM and PassCypher HSM PGP help you defeat infostealers, session hijacks, and phishing — even when your device is compromised. Offline. Tamper-proof. And yours alone.
PassCypher: The Offline Hardware Identity Shield That Outclasses All Digital Authentication Systems
From password managers to biometric logins and FIDO2 passkeys, most digital authentication systems — even those marketed as “passwordless” — still rely on your operating system, browser, or cloud. This reliance creates an invisible attack surface — always present, and always exploitable.
PassCypher removes the need for trust in software or connected devices altogether. It’s not just another password replacement — it’s a paradigm shift in identity sovereignty.
Developed by Freemindtronic Andorra, the PassCypher suite — combining NFC HSM and HSM PGP — delivers a new security model that goes beyond password managers, passkeys, biometrics, or FIDO tokens.
Unlike traditional solutions, PassCypher never stores secrets on your phone, browser, cloud, or system memory. No master password. No trusted device. No syncing.
Only physical presence and cryptographic segmentation grant access — making phishing, malware, session hijacking, and deepfake impersonation technically impossible.
[/ux_text]
Passkeys vs PassCypher – When Zero Trust Becomes Zero Exposure
Beyond Trust: A security model where secrets are never exposed — not even after a breach.
What Top Experts Say About Passkeys — and What They Can’t Prevent
Despite their cryptographic rigor, passkeys still depend on trust in the local execution environment. As shown in Trail of Bits’ 2025 analysis and their 2023 investigation, authenticators embedded in browsers or OS-managed enclaves remain exposed to local code injection or manipulation.
🕷️ Browser-based malware can trick users into authenticating malicious domains.
💥 Counterfeit authenticators may leak private keys if firmware is compromised.
🎯 Recovery mechanisms in cloud-based passkey backups widen the attack surface.
PassCypher eliminates all these risks by removing browsers, operating systems, and the cloud from the authentication equation entirely. It stores segmented AES-256 keys in offline, air-gapped tamper-proof hardware. No shared memory. No fallback logic. Nothing exposed to runtime attacks. Not even trust in the hardware manufacturer is required — because the secrets never leave the NFC HSM or HSM PGP container.
🔐 While passkeys resist phishing, PassCypher makes it technically impossible by eliminating every single exposure vector — including those acknowledged by the FIDO/WebAuthn technical literature.
📌 As Trail of Bits concludes, “Passkeys are not silver bullets.” That’s why PassCypher exists.
Digital Authentication vs PassCypher: What Really Keeps You Safe?
Passkeys (FIDO2/WebAuthn) replace passwords with cryptographic key pairs. This reduces phishing attacks but does not eliminate malware threats. In most deployments, the private key is stored inside the OS or a browser-managed enclave — potentially accessible by advanced malware, as highlighted by Trail of Bits (2025).
In addition, studies such as Specops (2024) and MDPI (2023) emphasize the vulnerabilities of passkeys in case of local malware, session hijacking, or cloud sync compromise.
PassCypher takes a radically different approach: keys are generated and stored entirely offline, in a tamper-proof, air-gapped NFC HSM or encrypted local container (PGP). The secret never appears in memory, isn’t accessible by any process, and remains invisible — even to an infected system.
Takeaway: Unlike passkeys and other passwordless systems, PassCypher doesn’t just improve convenience — it physically separates secrets from any exploitable digital environment. Whether browser plugin (PGP) or NFC hardware module, the data remains encrypted, segmented, and unreachable — even by advanced malware or AI-powered impersonators.
Structural Immunity: Up to 97% of Credential Attack Vectors Neutralized
According to public breach analyses and malware telemetry, over 95% of identity-based cyberattacks exploit a narrow set of vectors: phishing (including BITB), session hijacking, OS-level malware, token reuse, and cloud-synced credential leaks.
PassCypher neutralizes these threats by architectural design. Instead of patching surface-level symptoms, it eliminates structural exposure entirely:
🔐 AES-256 CBC segmented keys — never stored in RAM, browser memory, or synced to the cloud
📴 Offline-by-default storage — in local encrypted vaults (HSM PGP) or air-gapped NFC hardware (NFC HSM)
📲 Activated only by physical presence — via secure NFC scan or QR code, no trusted device dependency
🧩 PassCypher isn’t just for usernames and passwords. It safeguards:
Multiple independent studies — from Trail of Bits, Specops, and MDPI — confirm that offline, hardware-rooted and segmented identity models can prevent up to 97% of credential exploitation paths, far beyond the 50–60% blocked by cloud-dependent passkey systems.
This isn’t just breach mitigation — it’s breach immunity. Even advanced AI-powered impersonation or deepfake-based attacks can’t decrypt what’s never exposed. With PassCypher, identity protection becomes a matter of physics, not policy.
🛡️ Active BITB Protection — Defusing a Common Entry Point in Credential Breaches
One of the most exploited attack vectors behind large-scale credential leaks — such as the 2025 Darknet dump of over 16 billion valid identities — is the Browser-in-the-Browser (BITB) phishing technique. It creates fake login popups that are visually identical to real providers (Google, Microsoft, etc.), tricking users into entering valid credentials or initiating trusted sessions.
PassCypher HSM PGP goes beyond simple login isolation. Its embedded BITB defense mechanism automatically destroys iframe-based redirections and, in semi-automatic mode, flags suspicious redirect URLs before they reach the user’s screen — even after authentication. This makes it a rare solution capable of disrupting phishing operations even after login has occurred.
In a world where deepfakes and session hijacks are automated, real-time sanitization of the browser environment isn’t a luxury — it’s a necessity.
📚 Want to See PassCypher in Action?
Curious about how PassCypher actually works? These in-depth guides walk you through the full architecture, usage, and security model:
Learn how air-gapped key storage, NFC hardware, and PGP plugins create a tamper-proof authentication flow — even on compromised devices.
Security Without Exposure — Not Even After Intrusion
Secrets remain continuously encrypted using AES-256 CBC with segmented keys. No software, hardware, or network-level incident can expose them — because decryption requires multiple simultaneous trust conditions: native 2FA, origin validation, and active anti-BITB protection.
This isn’t reactive security through erasure. It’s proactive immunity through structural inaccessibility — enforced at every single access attempt.Deepfake-Proof Identity: Why Hardware Authentication Is Immune to AI Impersonation
As AI-generated deepfakes evolve to mimic voices, faces, and even behavioral biometrics, traditional identity verification methods — including facial recognition, fingerprint scans, and voice authentication — are becoming dangerously unreliable. Identity is no longer about who you are. It’s about what you control offline.
AI Can Fake You — But Not Your NFC HSM
Today, attackers can execute biometric spoofing attacks using just a smartphone and generative AI tools. In contrast, PassCypher NFC HSM and PassCypher HSM PGP store secure hardware keys that no remote attacker — not even one powered by AI — can forge, duplicate, or intercept.
Segmentation: The Ultimate Trust Factor
The PassCypher suite introduces segmented key authentication, meaning your identity is only accessible if you physically possess a specific hardware module and successfully authenticate locally via PIN, ID Phone, or a combination. No AI can simulate this chain of trust.
Zero Biometrics, Zero Risk
No facial data stored or processed
No fingerprint scans to forge or replay
No voiceprint to capture or spoof
Only encrypted secrets stored offline and validated via segmented trust
Hardware Beats AI
When authentication relies on possession, segmentation, and local control, AI impersonation becomes irrelevant. PassCypher doesn’t care what you look or sound like. It only reacts to what you hold — and what you’ve physically secured.
This model ensures that no biometric, behavioral, or system-level data can be faked, phished, or leaked. It’s a trustless-by-design authentication that doesn’t rely on third parties, devices, or assumptions — just physical cryptographic proof.
Resilient Identity: From AI-Resistant Profiles to Hardware-Backed Sovereignty
As generative AI evolves, the line between real and synthetic identities continues to blur. In this age of digital impersonation, resilient identity isn’t just about proving who you are — it’s about proving who you are not.
Why Traditional Identity Checks Fail
Biometric spoofing: Deepfake engines now bypass facial and voice recognition systems.
Document forgery: AI-powered scripts auto-generate fake ID cards, passports, and licenses.
Credential stuffing: Even MFA can be bypassed using session tokens stolen by infostealers.
PassCypher NFC HSM: Enforcing Digital Authenticity at the Hardware Layer
PassCypher NFC HSM devices (Lite or Master editions) enforce identity verification using tamper-proof, air-gapped NFC modules. Each action — login, message decryption, or key sharing — requires physical presence and device trust pairing. In contrast to centralized identity providers, PassCypher works offline, eliminates impersonation risks, and gives users full control of authentication without disclosing biometric or personal data.
Strategic Takeaway
Resilient identity isn’t verified in the cloud — it’s sealed in hardware you control. As threat actors use AI to clone users, organizations must adopt cryptographic proof-of-personhood that cannot be simulated, spoofed, or replicated.
The Future of Authentication: Biometrics, AI and Their Limitations
As threats grow more sophisticated, the push toward biometric and AI-assisted identity verification systems is accelerating. From fingerprint readers to facial recognition and voice authentication, the world is transitioning toward “who you are” rather than “what you know.” But while biometrics offer convenience, they are not immune to compromise.
AI Can Fake You
Deepfake technologies now allow attackers to replicate biometric features using stolen media — including voice samples, images, and videos. In some cases, AI-generated fingerprints have been used to bypass sensor-based authentication systems. AI is no longer just a tool for defense. It’s a weapon in the arsenal of identity theft.
Biometrics = Permanent Risk
Unlike passwords, you can’t change your fingerprint or retina scan after a data breach. If a biometric identifier is stolen, it’s compromised forever — and the attacker can reuse it globally. That makes biometrics **inherently non-revocable**, raising legal and operational risks for long-term security strategies.
Offline Hardware vs. AI-Based Spoofing
PassCypher NFC HSM offers a radically different model: it keeps authentication completely offline and shields your identity from any AI-based spoofing attempt.
It stores all cryptographic keys offline.
It performs authentication locally via NFC or QR code.
It avoids storing, transmitting, or requiring any biometric data — ever.
>Strategic Insight: The future of secure identity is not more AI — it’s less exposure. Air-gapped hardware offers what AI cannot: trust-by-design, not trust-by-illusion.
💡 For journalists, executives, developers and activists, staying under the radar may mean staying out of the biometric web entirely.
Industrial Espionage & Identity Subversion
Credential leaks don’t just enable fraud — they serve as a gateway for **corporate espionage**. Stolen sessions from executives, developers, or sysadmins can offer deep access to intellectual property, internal tools, and strategic documents.Today’s digital identity is not just personal — it’s **privileged**.
Session Hijack = Invisible Espionage
A hijacked session token grants immediate access to internal dashboards, file repositories, and business communications — **without triggering login alerts**.
This makes session theft the preferred tactic for stealthy reconnaissance and sabotage.
</ux_text]
From Source Code to Insider IP Theft
When credentials from platforms like GitHub, Jira, Confluence or Slack are leaked, attackers can:
Read source code and introduce backdoors
Monitor R&D pipelines in stealth mode
Access procurement and negotiation files
Sabotage infrastructure (e.g., deleting repositories or staging ransomware)
Case in Point: Silent Access, Maximum Damage
In 2024, multiple leaks led to exfiltration of sensitive data from aerospace, energy, and pharmaceutical sectors — not via malware, but through legitimate session reuse by unauthorized actors. By the time anomalies were noticed, the attackers had already left.
> Strategic Insight: The greatest threat is not breach but invisibility. Session hijacks allow adversaries to operate as if they were insiders — with zero friction.
Advanced persistent threats don’t hack your system. They **borrow your login** — and act as if they built it.
Legal & Regulatory Fallout
The 2025 identity leak doesn’t just raise cybersecurity concerns — it triggers **legal and compliance minefields**. Organizations impacted by session hijacks and credential resale now face scrutiny under global data protection frameworks.
GDPR, NIS2, and Beyond
Stolen sessions qualify as **personal data breaches**. Under laws like:
GDPR (EU): Companies must report identity-based breaches within 72 hours.
NIS2 (EU): Operators of essential services face stricter security obligations.
CCPA (California): Failure to secure digital identity data can trigger lawsuits.
Failure to comply may result in **multi-million euro penalties** and mandatory audits.
Employer Liability: A Growing Vector
When attackers hijack an employee’s session to commit fraud or espionage, they shift the legal burden onto the company — forcing it to assume responsibility for:
Failure to implement sufficient identity protection
Negligence in breach containment
Insufficient logging and detection
This risk is especially high for sectors with high-value intellectual property (finance, pharma, aerospace).
Compliance Requires More Than Policy
Legal experts now recommend:
Hardware-based identity proofing for high-privilege roles
Real-time session traceability with hardware tokens
Decentralized identity management — to reduce cloud trust exposure
Strategic Insight: Laws were built around passwords and systems. The future of compliance is built around sessions and people.
The next compliance wave isn’t about passwords. It’s about proving you can detect, revoke, and replace stolen digital identities.
Final Strategic Insight – A New Identity Paradigm
The Fortinet mega-leak is not just another breach — it’s a **paradigm shift in the mechanics of digital trust**. We no longer face isolated password leaks. We face the full industrialization of identity emulation, driven by real-time session resale, hardware fingerprinting, and AI-powered impersonation. This demands a new model.
Decentralization + Hardware + Anonymity
The future of identity protection starts when users reclaim control. We must move identity offline, anchor it in tamper-proof hardware, and decentralize it entirely. In this model, users don’t just get “authenticated” — they carry their own cryptographic shield by default. This model:
Rejects dependence on cloud trust or biometric central servers
Prevents identity theft at the root: session-level interception
Empowers sovereign control of credentials and private keys
From Defense to Deterrence
Legacy MFA and password managers cannot scale against AI-enhanced identity fraud. Instead, a shift is needed:
From credential storage to session immunity
From cloud-based authentication to air-gapped, tamper-proof hardware
From password rotation to identity isolation by design
Users must adopt hardware-segmented identity as the only viable long-term strategy — one they control directly, one that remains invisible to malware, and one that even AI cannot forge.
Rebuilding Digital Trust in the Age of AI-Driven Identity Fraud
The leak of over 16 billion valid credentials doesn’t just reveal the failure of perimeter defenses — it confirms something deeper: the collapse of implicit digital trust.
Today, cybercriminals exploit generative AI to synthesize voices, faces, and deepfake videos in real time, using nothing more than data stolen from infostealer logs. In this new reality, a password no longer proves identity. A token means little. Even a voice over the phone could be fake.
To counter this, we must shift the burden of proof back to the individual. Only the user — physically present, cryptographically segmented, and offline — can serve as the unforgeable anchor of trust.
Solutions like PassCypher HSM PGP and PassCypher NFC HSM already operate on this principle. They transform users from the weakest link into the root of trust, removing the need to delegate authentication to vulnerable digital infrastructure.
But technology alone isn’t enough. This transformation begins by radically shifting our mindset: we must stop hosting identity in the cloud, syncing it across devices, or delegating it to third parties — and instead, start making it personal, portable, and verifiable by design.
Until we embrace this model, even the most complex credentials remain exploitable.
Now is not the time to apply security patches. Now is the time to reinvent authentication from the ground up.
Update 22 july In 2025 : WeTransfer attempted to include a clause in its Terms of Service allowing the use of uploaded user files for AI model training. Withdrawn after public backlash, this clause unveiled a deeper dynamic: file transfers are becoming mechanisms of cognitive capture. Centralized platforms increasingly exploit transmitted content as algorithmic fuel—without informed consent.
TL;DR — This Chronicle unveils how digital file transfers become covert mechanisms for AI cognitive extraction. It dissects hidden clauses in user contracts, outlines sovereign countermeasures, and exposes the systemic risks across major platforms.
Digital file transfers are no longer neutral mechanisms; they are increasingly transformed into algorithmic extraction vectors. Terms of Service, often written in opaque legalese, have evolved into covert infrastructures for AI training—turning user data into raw cognitive matter. Meanwhile, regulatory efforts struggle to keep pace, continually outflanked by the extraterritorial reach of foreign jurisdictions. In response, the European Union’s recent strategic initiatives—such as EuroStack and the proposed Buy European Act—signal a profound realignment of digital sovereignty. Yet, platform behavior diverges ever more from user expectations, and it becomes clear that only technical measures such as local encryption and isolated key custody can offer meaningful resistance to these systemic risks.
About the Author – Jacques Gascuel is the founder of Freemindtronic Andorra and inventor of patented sovereign technologies for serverless encryption. He operates in critical environments requiring offline, tamper-proof, auditable communications.
Clause 6.3 – Legalized Appropriation
⮞ Summary
WeTransfer’s 2025 attempt to impose a perpetual, transferable, sublicensable license on uploaded user files for AI purposes exposed the unchecked power platforms hold over digital content.
This move marked a watershed in the perception of user agreements. While the retraction of the clause followed intense public backlash, it revealed a broader strategy among digital service providers to legalize the repurposing of cognitive material for machine learning. Clause 6.3 was not a simple legal footnote—it was a blueprint for algorithmic appropriation masked under standard contract language.
“Worldwide, perpetual, transferable, sublicensable license for AI training and development.” – Extract from Clause 6.3 (Withdrawn)
Such phrasing illustrates the shift from service facilitation to cognitive extraction. By embedding rights for AI development, WeTransfer aligned with a growing trend in the tech industry: treating data not as a user right, but as a training resource. The episode served as a warning and highlighted the necessity for robust countermeasures, transparency standards, and sovereign alternatives that place user control above algorithmic interests.
CGU Comparison
⮞ Summary
A focused comparison of leading platforms reveals the systemic ambiguity and power imbalance in Terms of Service related to AI usage and data rights.
Platform
Explicit AI Usage
Transferable License
Opt-Out Available
WeTransfer
Yes (Withdrawn)
Yes, perpetual
No
Dropbox
Yes via third parties
Yes, partial
Unclear
Google Drive
Algorithmic processing
Yes, functional
No
Geopolitical Reactions
⮞ Summary
Sovereign concerns over AI data capture have sparked divergent responses across jurisdictions, highlighting gaps in enforcement and regulatory intent.
European Union: AI Act passed in 2024, but lacks enforceable civil liability for AI misuse. Push toward EuroStack, Buy European Act, NIS2, and LPM reforms intensifies strategic sovereignty.
United States: Pro-innovation stance. No federal constraints. Stargate program funds $500B in AI R&D. Cloud Act remains globally enforceable.
UNESCO / United Nations: Ethical recommendations since 2021, yet no binding international legal framework.
Case Study: Microsoft under French Senate Scrutiny
On June 10, 2025, before the French Senate Commission (led by Simon Uzenat), Anton Carniaux (Director of Public and Legal Affairs, Microsoft France) testified under oath that Microsoft cannot guarantee French data hosted in the EU would be shielded from U.S. intelligence requests.
Pierre Lagarde (Microsoft Public Sector CTO) confirmed that since January 2025, while data is physically retained in the EU, the U.S. Cloud Act supersedes local encryption or contractual frameworks.
🔎 Weak Signals:
– Microsoft admits no guarantee data stays out of U.S. reach
– Cloud Act overrides encryption and contracts
– Transparency reports omit classified requests
Sovereignty Acceleration – July 2025
⮞ Summary
July 2025 brought a turning point in European digital sovereignty, with official declarations, industrial strategies, and new pressure on U.S. hyperscalers’ extraterritorial influence.
European Union Strategic Shift
July 21 – Financial Times: EU proposes “Buy European Act” and EuroStack (€300B)
New Tech Sovereignty Commissioner appointed; exclusion proposed for Amazon, Google, Microsoft from critical infrastructure contracts
Microsoft Senate Testimony (June 10 & July 21, 2025)
Anton Carniaux, Microsoft France, acknowledges inability to block U.S. Cloud Act data access—even within EU
Brussels Signal: France accused of “digital suicide” by outsourcing sensitive infrastructure to U.S. clouds
Microsoft Sovereign Cloud Response
June 16 – Launch of “Microsoft Sovereign Public Cloud” with local controls, Bleu (Orange-Capgemini)
KuppingerCole: positive move, but concerns over proprietary dependencies remain
🔎 Weak Signals Identified:
– Cloud Act still overrides EU contractual frameworks
– Transparency reports exclude classified requests
– Strategic divergence between EU policy and U.S. platforms deepens
Global File Transfer Landscape
⮞ Summary
Comparison of major file transfer services reveals systemic vulnerabilities—ranging from unclear AI clauses to lack of encryption and non-European server locations.
Service
Country
AI Clause / Risk
Reference / Link
TransferNow
🇫🇷 France
Indirect algorithmic processing authorized
Terms PDF
Smash
🇫🇷 France
Amazon S3 storage, potential AI processing
Official site
SwissTransfer
🇨🇭 Switzerland
No AI, servers located in CH
Official site
Filemail
🇳🇴 Norway
AI in Pro version, automated tracking
ToS
pCloud
🇨🇭 Switzerland
Optional client-side encryption
Terms
Icedrive
🇬🇧 UK
AI in enterprise version
GDPR
TeraBox
🇯🇵 Japan
Native AI, tracking, advertising
Help Center
Zoho WorkDrive
🇮🇳 India
OCR AI, auto-analysis
Under review
Send Anywhere
🇰🇷 South Korea
Unclear risks, AI suggestions
Pending
BlueFiles
🇫🇷 France
ANSSI-certified sovereignty
Pending
Timeline of Algorithmic Drift
⮞ Summary
Tracing the evolution of AI file transfer extraction practices through key milestones, from early user content harvesting to the institutionalization of algorithmic appropriation.
The rise of AI file transfer extraction has not occurred overnight. It reflects a decade-long erosion of the boundary between user ownership and platform processing rights. In 2011, Facebook quietly began training algorithms on user-generated content without explicit consent, under the guise of service improvement. This pattern intensified in 2023 when Zoom inserted controversial clauses enabling the use of video streams for generative AI development.
By 2024, a wave of subtle yet systemic changes reshaped the Terms of Service of major cloud providers—embedding AI training clauses into legal fine print. These changes culminated in the 2025 WeTransfer debacle, where the overt Clause 6.3 aimed to codify perpetual AI training rights over all uploaded data, effectively legalizing cognitive content extraction at scale.
This drift illustrates a deeper structural shift: platforms no longer see uploaded files as inert data but as dynamic cognitive capital to be mined, modeled, and monetized. The user’s agency vanishes behind opaque contracts, while algorithmic models extract knowledge that cannot be retracted or traced.
✪ Illustration — Timeline of AI file transfer extraction milestones from social platforms to file hosting services.
Legal Semantics of ToS
⮞ Summary
Decoding how the legal language in Terms of Service enables hidden forms of AI file transfer extraction, revealing structural loopholes and algorithmic license laundering.
The Terms of Service (ToS) of digital platforms have become vehicles of silent appropriation. Their language—crafted for maximal legal elasticity—shields platforms from scrutiny while unlocking unprecedented access to user content. Phrases like “improving services” or “enhancing performance” conceal layers of cognitive harvesting by AI systems.
When a clause refers to a “perpetual, worldwide license,” it often translates to long-term rights of exploitation regardless of jurisdiction. The term “sublicensable” allows redistribution to third-party entities, including opaque AI training consortia. Meanwhile, catch-all terms like “content you provide” encompass everything from raw files to metadata, thus legalizing broad extraction pipelines.
This semantic engineering forms the linguistic backbone of AI file transfer extraction. It bypasses informed consent, turning each uploaded document into a potential data vector—where legality is retrofitted to platform ambitions. The visible contract diverges sharply from the underlying operational reality, revealing a growing rift between user expectations and AI data regimes.
Sensitive File Typologies
⮞ Summary
AI file transfer extraction does not treat all data equally. Administrative, biometric, professional, and judicial files are disproportionately targeted—each representing unique vectors of algorithmic appropriation.
Not all files carry the same cognitive weight. In the context of AI file transfer extraction, typology dictates vulnerability. Administrative files—containing national ID scans, tax records, or electoral data—offer structured, standardized templates ideal for training entity recognition systems. Similarly, biometric files such as passport scans or fingerprint data are exploited for facial recognition model reinforcement and biometric signature prediction.
Meanwhile, professional and contractual documents often include internal memos, business strategies, and technical schematics—unintentionally fueling AI agents trained on corporate decision-making and supply chain optimization. Judicial documents, ranging from affidavits to forensic reports, present a rare density of factual, narrative, and procedural data—perfectly suited for training legal decision engines.
Concretely, a leaked internal arbitration file from a multinational energy firm was reportedly used in 2024 to refine conflict resolution modules in a closed-source LLM deployed by a U.S. defense contractor. Elsewhere, a biometric file exfiltrated from a compromised passport office—later found in a 2025 training dataset for a commercial facial recognition suite—highlights the unintended consequences of lax file transfer governance.
⮞ Weak Signals Identified
– Pattern: Judicial files disproportionately present in anonymized training datasets
– Trend: Rising correlation between enterprise document formats and AI-captured syntax
– Vector: Embedded metadata used to refine prompt injection vulnerabilities
✓ Sovereign Countermeasures
– Deploy DataShielder NFC HSM to localize file access with zero exposure
– Use PassCypher for contractual document integrity via hash verification
– Strip metadata before file transfers using sovereign scrubbers
Cognitive AI Capture Statistics
⮞ Summary
AI file capture now represents over 24% of datasets used for commercial model training. Sensitive sectors such as energy, healthcare, and legal services are disproportionately impacted.
According to the 2025 AI Dataset Integrity Consortium, approximately 1.4 billion documents extracted via public and semi-private channels were incorporated into model pretraining pipelines since 2023. Within these, legal records account for 16%, while biometric files comprise 11%. The healthcare sector—long presumed protected under HIPAA and GDPR—contributes nearly 19% of identifiable documents, largely through indirect metadata trails.
In practical terms, models trained on these datasets demonstrate elevated performance in tasks related to compliance prediction, medical diagnostics, and even behavioral inference. The economic value of such datasets is surging, with a recent valuation by QuantMinds placing them at €37.5 billion for 2025 alone.
Sector-specific analysis reveals that critical infrastructure sectors are not only data-rich but also structurally exposed: shared drives, collaborative platforms, and cross-border storage routes remain the most exploited vectors. As AI accelerates, the strategic imperative to regulate file-level provenance becomes a national security concern.
✪ Illustration — AI file capture trends 2025 by sector: energy, healthcare, legal, biometric.
Algorithmic Contamination Cycle
⮞ Summary
Once ingested, contaminated files do not remain passive. They recursively alter the behavior of downstream AI models—embedding compromised logic into subsequent algorithmic layers.
The act of file ingestion by AI systems is not a neutral event. When a compromised or biased file enters a training dataset, it triggers a cascade: extracted knowledge reshapes not just that model’s predictions, but also its influence over future derivative models. This recursive pollution—a phenomenon we term the algorithmic contamination cycle—is now structurally embedded into most large-scale model pipelines.
Consider the case of predictive compliance engines used in fintech. A single misinterpreted regulatory memo, once embedded in pretraining, can result in systematic overflagging or underreporting—errors that multiply across integrations. The contamination spreads from LLMs to API endpoints, to user interfaces, and eventually to institutional decision-making.
Worse, this cycle resists remediation. Once a file has altered a model’s parameters, its influence is not easily extractable. Re-training or purging data offers no guarantee of cognitive rollback. Instead, AI architectures become epistemologically infected—reproducing the contamination across updates, patches, and forked deployments.
✪ Illustration — AI file transfer extraction process forming an algorithmic contamination cycle.
⮞ Weak Signals Identified
– Vector: Unmonitored AI pipelines reusing contaminated weights
– Pattern: Cascade of anomalies across decision support systems
– Risk: Institutional reliance on non-auditable model layers
✓ Sovereign Countermeasures
– Isolate model training from operational environments
– Employ auditable training datasets using Freemindtronic-sealed archives
– Prevent contamination via air-gapped update mechanisms
Sovereign Countermeasures
From Legal Clauses to Operational Realities
Most mitigation attempts against cognitive AI capture remain declarative: consent forms, platform pledges, or regional hosting promises. These approaches fail under adversarial scrutiny. In contrast, Freemindtronic’s sovereign architecture introduces operational irreversibility: the data is cryptographically sealed, physically isolated, and strategically fragmented across user-controlled environments.
Discrepancies Between Clauses and Actual Exploitation
Recent examples underscore this fragility. In 2025, WeTransfer attempted to introduce a clause enabling AI training on uploaded files. Though officially retracted, the very proposal confirmed how CGUs can be weaponized as silent appropriation instruments. Similarly, SoundCloud’s terms in early 2024 briefly allowed uploaded content to be used for AI development, before the platform clarified its scope under pressure from the creator community.
Timeline: The WeTransfer Clause 6.3 Incident
June 2025: WeTransfer updates Clause 6.3 to include rights “including to improve performance of machine learning models” — set to take effect on August 8, 2025.
July 14, 2025: The clause is flagged publicly on Reddit (source), triggering concern across creative communities.
July 15, 2025: WeTransfer issues a public clarification that it “does not and will not use files for AI training” (official statement).
July 16, 2025: Revised ToS removes the AI clause entirely (coverage).
First alarm was raised by professionals in Reddit’s r/editors thread, quickly echoed by Ashley Lynch and other creatives on X and LinkedIn. This incident highlights the time-lag between clause deployment and retraction, and the necessity for vigilant watchdog networks.
Such episodes highlight a critical dynamic: CGUs operate in the realm of legal possibility, but their enforcement—or the lack thereof—remains opaque. Unless independently audited, there is no verifiable mechanism proving that a clause is not operationalized. As whistleblowers and open-source investigators gain traction, platforms are pressured to retract or justify vague clauses. However, between declared terms and algorithmic pipelines, a sovereignty vacuum persists.
Devices such as DataShielder NFC HSM render files unreadable unless decrypted via local authentication, without server mediation or telemetry leakage. Meanwhile, PassCypher validates document provenance and integrity offline, resisting both exfiltration and prompt injection risks.
These tools do not simply protect—they prevent transformation. Without access to raw cleartext or embedded metadata, AI systems cannot reconfigure input into modelable vectors. The result is strategic opacity: a file exists, but remains invisible to cognitive systems. Sovereignty is no longer abstract; it becomes executable.
✪ Illustration — Sovereign countermeasures by Freemindtronic: offline encryption, anti-exfiltration, metadata neutralization.
⮞ Sovereign Use Case | Resilience with Freemindtronic
In a cross-border legal proceeding involving sensitive EU arbitration documents, Freemindtronic’s DataShielder NFC HSM was deployed to encrypt and locally isolate the files. This measure thwarted exfiltration attempts even amid partial system compromise—demonstrating operational sovereignty and algorithmic resistance in practice.
⛏ What We Didn’t Cover
While this Chronicle dissected the structural vectors and sovereign responses to AI file transfer extraction, adjacent vectors such as voiceprint leakage, encrypted traffic telemetry, and generative prompt recycling remain underexplored. These domains will be treated in future briefings.
🔎 Weak Signals:
– Multiple platforms (e.g., SoundCloud, WeTransfer) have introduced and then revised AI-related clauses in their Terms of Service following public pressure.
– The absence of independent audits or technical proofs prevents any reliable verification of actual AI clause enforcement.
– Whistleblowers, investigative journalists, and open-source monitors remain the only safeguards against undeclared algorithmic data harvesting.
– This reinforces the necessity of sovereign technical countermeasures over declarative trust models.
Anàlisi jurídica profunda de la llei andorrana de doble ús Llei 10/2025 del Codi de Duana d’Andorra
La Llei andorrana sobre el doble ús s’inscriu en una reforma estratègica del control de les exportacions. Davant les noves amenaces híbrides, es crea una base jurídica centrada en el dret duaner, la sobirania tecnològica i l’alineament parcial amb la UE. Identificació EORI, compliment UE i regulació criptogràfica esdevenen pilars d’aquesta seguretat reglamentària, convertint aquesta anàlisi en una referència en català per al control estratègic de la tecnologia.
El control de les exportacions de béns de doble ús esdevé un pilar de la sobirania tecnològica andorrana. Davant la complexitat creixent de les cadenes de valor, la criptologia exportada i les regulacions extraterritorials, Andorra anticipa aquests desafiaments mitjançant una reforma estratègica del seu marc duaner i reglamentari. Aquesta anàlisi jurídica especialitzada explora:
✔ Com Andorra articula el compliment UE i al mateix temps la autonomia sobirana a través de la Llei 10/2025. ✔ Per què el règim EORI i l’acord duaner Andorra–UE ofereixen un avantatge per a les exportacions estratègiques. ✔ Com estructurar una doctrina andorrana del doble ús, en coherència amb el Règim (UE) 2021/821. ✔ Quins són els futurs reptes: IA, ciberseguretat hardware, sobirania de cadenes crítiques.
Sobre l’autor — Inventor de tecnologies de doble ús i fundador de Freemindtronic Andorra, Jacques Gascuel desenvolupa solucions de protecció de dades i contraespionatge amb vocació civil i militar. Analitza aquí els aspectes estratègics de la llei andorrana sobre el doble ús des d’una perspectiva «privacy by design» conforme a les exigències reglamentàries internacionals.
1. Anàlisi estratègica de la Llei andorrana de doble ús: reforma del Codi de Duana 2025
El Consell General d’Andorra va aprovar la Llei 10/2025 el 13 de maig de 2025, publicada posteriorment al BOPA núm. 68 del 4 de juny de 2025. Aquesta llei suposa un punt d’inflexió clau en l’evolució del dret duaner andorrà, ja que busca l’alineació de la legislació nacional amb el Codi Duaner de la Unió Europea, segons estableix el Reglament (UE) núm. 952/2013 de 9 d’octubre de 2013 (EUR-Lex – CELEX:32013R0952).
En substitució de la Llei 17/2020, aquesta reforma introdueix una arquitectura moderna per a la regulació duanera. Consta de 296 articles repartits en nou títols. Concretament, facilita els tràmits duaners, impulsa la digitalització de les operacions i, sobretot, estableix un marc jurídic sòlid per al control dels fluxos sensibles, especialment pel que fa als béns de doble ús.
Per a més informació oficial, els textos són consultables aquí:
Així, aquesta nova legislació posiciona Andorra en una lògica de compliment reforçat i integració reguladora progressiva amb la Unió Europea.
2. Elements estructurants del nou Codi de Duana andorrà
Abans d’abordar les disposicions específiques de la Llei andorrana de doble ús, és útil revisar els punts estructurants del nou Codi de Duana, que reforcen l’eficiència i la transparència del sistema duaner andorrà.
2.1 Ampliació del perímetre duaner
El territori duaner andorrà inclou ara l’espai aeri i les aigües interiors, a més de les fronteres terrestres.
Aquesta ampliació pretén controlar de manera més estricta els fluxos de mercaderies a través de tots els modes de transport, especialment l’aeri i el multimodal.
2.2 Precisió terminològica essencial
El Codi redefineix conceptes clau per millorar la seguretat jurídica:
Terme
Definició (segons la llei)
Estatut duaner
Caràcter comunitari o no d’una mercaderia
Posada en lliure pràctica
Règim que permet l’entrada al mercat andorrà
Representant duaner
Mandatari autoritzat per realitzar els tràmits duaners en nom d’un tercer
2.3 Digitalització dels procediments
L’ús de sistemes electrònics esdevé obligatori per a totes les operacions.
Això inclou les declaracions d’importació/exportació, les sol·licituds d’autorització i les sol·licituds de reemborsament.
Aquesta mesura té per objectiu reduir els terminis de tramitació i reforçar la traçabilitat.
3. Sistema andorrà de drets, garanties i autoritzacions: cap a un control eficaç
Continuem l’anàlisi de la Llei andorrana de doble ús examinant ara l’estructura financera i procedimental que regula els fluxos duaners. Aquest pilar normatiu, lluny de ser secundari, assegura la seguretat dels ingressos públics i aporta previsibilitat i fiabilitat als operadors econòmics.
Aquesta part del nou Codi estableix un triplet coherent: gestió del deute duaner, implementació de garanties i disseny d’autoritzacions administratives. Aquests elements asseguren una governança rigorosa dels fluxos comercials de risc, especialment els relacionats amb tecnologies sensibles.
3.1 Regulació dels deutes duaners i garanties
La Llei 10/2025 introdueix un mecanisme coherent de càlcul, pagament i reemborsament dels drets de duana. A més, estableix normes precises sobre el deute duaner i exigeix, en determinats casos, garanties financeres dels operadors.
3.2 Règims econòmics duaners: fluïdesa amb condicions
Es clarifiquen els procediments de trànsit, dipòsit duaner, perfeccionament actiu i passiu.
El codi preveu una racionalització dels règims particulars, millorant la competitivitat de les empreses andorranes amb projecció internacional.
Aquesta estructuració pretén establir una logística més fluïda tot mantenint un alt nivell de supervisió.
3.3 Gestió de les autoritzacions duaneres: un gir normatiu
La nova llei estableix un sistema estructurat per a les sol·licituds, tramitació i emissió d’autoritzacions duaneres, fonamental per garantir la seguretat jurídica dels operadors econòmics.
L’administració duanera pot atorgar autoritzacions generals o específiques segons el tipus d’operació i el nivell de risc associat.
Un registre digital centralitzat recull totes les autoritzacions emeses, assegurant-ne la traçabilitat i verificabilitat.
El codi imposa un termini màxim de resposta per evitar bloquejos administratius.
Aquest sistema de gestió integrada augmenta la transparència i la previsibilitat, dos pilars essencials per reforçar la competitivitat duanera d’Andorra en el marc dels seus compromisos amb la Unió Europea.
4. Regulació específica de la Llei andorrana de doble ús
Ara entrem al nucli del dispositiu legal relatiu als béns de doble ús, un aspecte sensible de la Llei 10/2025.
4.1 Article 267.3.f: marc jurídic essencial
Text de referència: Reglament (UE) 2021/821
Aquesta disposició va entrar en vigor immediatament després de la publicació de la llei, el 5 de juny de 2025, segons la seva disposició final.
El Decret 207/2025, publicat el 12 de juny de 2025, especifica els tràmits associats a l’autorització. Text oficial: BOPA Andorra – GR_2025_06_11_13_27_27
Aquest text preveu que:
Tota exportació de béns inclosos a l’annex I del Reglament (UE) 2021/821 requereix autorització duanera;
S’estableix una excepció per a les destinacions dins de la Unió Europea;
Es poden atorgar autoritzacions de llarga durada (fins a 12 mesos) per a fluxos regulars;
És obligatori declarar l’usuari final per garantir la traçabilitat dels usos finals.
4.3 Freemindtronic: un exemple de conformitat proactiva
Abans fins i tot de l’entrada en vigor de la Llei andorrana de doble ús, Freemindtronic ja havia iniciat, des de 2021, una acció exemplar. Avançant-se a les obligacions reguladores, l’empresa va estructurar els seus fluxos comercials sensibles dins un marc ètic i jurídic rigorós.
Freemindtronic va proposar una Carta Ètica, acompanyada d’una documentació formalitzada des de 2022, per regular l’ús i exportació de les seves tecnologies criptogràfiques sensibles.
Mesures concretes:
Implementació d’un dispositiu d’informació regular a les autoritats andorranes;
Llicència d’exportació especial obtinguda el 2022 per a Eurosatory a través de COGES Events sota l’empara del GICAT, validada pel General Charles Beaudouin (LinkedIn);
4.4 Documentació de conformitat internacional: model francès i procediment ANSSI
Per garantir una conformitat jurídica total en l’exportació de tecnologies sensibles, Freemindtronic també s’ha recolzat en els requisits francesos pel que fa al control dels mitjans de criptologia.
O per correu postal: ANSSI, Bureau des contrôles réglementaires, 51 boulevard de la Tour-Maubourg, 75700 Paris 07 SP
El formulari principal, Annexe I, és disponible aquí: formulari PDF.
Aquest document inclou:
Identificació completa del sol·licitant;
Descripció tècnica dels productes;
Modalitats d’exportació previstes;
Compromisos de conformitat amb la legislació de la UE i nacional.
Gràcies a aquest rigor, Freemindtronic ha pogut exportar legalment els mòduls DataShielder NFC HSM Defense, amb la validació del seu soci exclusiu AMG Pro.
5. Cooperació andorrana i recursos pedagògics: una obertura estratègica
Mentre l’aplicació de la Llei andorrana sobre els béns de doble ús tot just comenca, els actors públics i privats poden tenir un paper estratègic en la difusió de bones pràctiques. Aquesta dinàmica representa una gran oportunitat per estructurar un ecosistema virtuós d’acompanyament normatiu i de sensibilització dels operadors econòmics.
En particular, Andorra disposa d’un potencial de co-construcció entre institucions i empreses innovadores, amb respecte a les seves prerrogatives respectives. En aquest context, esdevé pertinent desenvolupar eines d’ajuda per a la comprensió de la regulació i oferir informació clara i estructurada als professionals implicats.
5.1 Absència de guies institucionals: un buit a omplir
La regulació andorrana sobre els béns de doble ús, tot i estar publicada al BOPA, pateix actualment una manca de documentació aplicada. Encara no s’han publicat punts d’informació especialitzats, tutorials administratius o guies de conformitat per part de les institucions públiques.
5.2 Contribució de Freemindtronic: contingut pedagògic, guia pràctica i sensibilització
Basant-se en la seva experiència reguladora, Freemindtronic ha iniciat la redacció d’una guia pràctica de conformitat, co-marcable amb entitats com la Duana Andorrana (enllaç oficial).
Aquesta iniciativa té per objectiu:
Explicar de manera entenedora els procediments de sol·licitud d’autorització;
Proposar models tipus de documents conformes al Decret 207/2025;
Difondre les obligacions essencials per a l’exportació de béns sensibles.
5.3 Eines digitals disponibles
Paral·lelament, Freemindtronic ha publicat diversos recursos accessibles en línia sobre la regulació internacional dels productes de doble ús, en particular:
Aquests recursos es presenten com a complements informatius fiables als textos oficials i contribueixen a la implementació de la Llei andorrana sobre els béns de doble ús.
Alineació del règim andorrà amb la normativa internacional
El règim andorrà de control de les exportacions de doble ús forma part d’un marc regulador global, on cada jurisdicció imposa estàndards específics per a la regulació i el seguiment dels fluxos comercials sensibles. A causa del seu acord duaner amb la Unió Europea, Andorra es beneficia de peculiaritats que influeixen en el seu enfocament de les exportacions i les exempcions aplicables.
No obstant això, la normativa vigent a les grans potències econòmiques – la Unió Europea, els Estats Units, el Regne Unit, Suïssa, els països de la Commonwealth – influeix en les obligacions dels exportadors andorrans. Aquesta dinàmica es reflecteix en:
L’adopció d’estàndards internacionals com els estàndards de Wassenaar i el Reglament de la UE 2021/821.
Harmonització gradual dels procediments d’exportació a mercats estratègics.
Restriccions a determinades categories de mercaderies segons destinacions i controls extraterritorials.
Per tal de comparar aquestes regulacions i avaluar el seu impacte en el comerç intracomunitari, a la taula següent es presenta un resum de la normativa internacional, les seves dates d’entrada en vigor i les seves implicacions per a Andorra.
Control d’exportacions a través del Ministeri de Comerç Exterior.
Efecte extraterritorial i singularitat andorrana
L’ efecte extraterritorial de la normativa nord-americana (AEOI) i europea (Reglament UE 2021/821) afecta la gestió de les exportacions d’Andorra. No obstant això, gràcies a l’Acord Duaner de 1990, Andorra es beneficia d’una unió duanera parcial amb la UE, que permet la lliure circulació de productes industrials (capítols 25 a 97 de l’aranzel duaner) un cop introduïts a la cadena europea, sense tràmits addicionals.
Així, una anàlisi en profunditat suggereix que és possible exportar productes de doble ús d’Andorra a la Unió Europea sense autorització prèvia, subjecte a les condicions següents:
Compliment de les normes europees.
Identificació mitjançant un número EORI.
No hi ha restriccions específiques enumerades a l’annex IV del Reglament Europeu.
Aquesta peculiaritat normativa diferencia Andorra dels Estats membres de la UE, que han d’aplicar estrictes règims de control de les exportacions. No obstant això, encara cal una major vigilància, especialment pel que fa als desenvolupaments legislatius internacionals que podrien reforçar els requisits duaners.
6. Alineació del règim andorrà amb les regulacions internacionals
La promulgació de la Llei andorrana sobre els béns de doble ús (Llei 10/2025) marca una evolució significativa dins de l’arquitectura normativa del país, en establir les primeres bases per a un control d’exportació reglamentat. Aquesta secció analitza l’abast material, els actors institucionals implicats i els efectes concrets per als operadors econòmics, en un context d’integració progressiva al marc europeu.
6.1 Lliure circulació dins de la UE
El Reglament (UE) 2021/821 permet, en general, la lliure circulació dels béns de doble ús dins del mercat interior de la UE, excepte per a productes especialment sensibles inclosos a l’Annex IV. Això implica que, un cop un bé forma part de l’àmbit de la UE, la seva reexportació cap a un altre Estat membre no requereix autorització addicional, llevat de casos particulars.
6.2 Andorra i la Unió Duanera Parcial
L’Acord del 1990 estableix una unió duanera parcial entre el Principat d’Andorra i la Unió Europea, que cobreix els capítols 25 a 97 del Tarifa Duaner Comuna. Aquest acord permet la lliure circulació de mercaderies, suprimint barreres aranzelàries per als productes concernits.
Segons les anàlisis del CEPS, els productes prèviament importats a Andorra des d’un Estat tercer i que disposin d’un número EORI poden circular lliurement per la UE sense formalitats addicionals, excepte els productes del tabac, que resten sotmesos a regulacions específiques.
6.3 Implicacions per als béns de doble ús
Una conclusió a verificar és si, sobre la base de l’acord duaner i el reglament europeu, esdevé possible exportar béns de doble ús des d’Andorra cap a la UE sense autorització prèvia andorrana, sota certes condicions:
Conformitat amb les regulacions europees;
Identificació clara mitjançant número EORI;
Absència de restricció específica (Annex IV del Reglament (UE) 2021/821).
Si aquestes condicions es compleixen, representaria una singularitat notable en relació amb les regulacions dels Estats membres de la UE.
6.4. Beneficis directes per als industrials andorrans del sector dual i defensa
La reforma duanera impulsada per la Llei 10/2025 i el seu decret d’aplicació proporciona als industrials andorrans condicions operatives estratègiques en un entorn altament regulat a escala internacional..
✔ Oportunitat reguladora: Les empreses andorranes que desenvolupen o fabriquen tecnologies d’ús dual o militar poden ara exportar lliurement cap a la UE sense necessitat d’iniciar procediments d’autorització andorrans, excepte per als béns recollits a l’Annex IV.
En aquest sentit, diversos dispositius criptogràfics “fabricats a Andorra” de la gamma DataShielder NFC HSM o PGP HSM, malgrat estar classificats dins de la categoria 5, part 2 del Reglament (UE) 2021/821, no estan inclosos a l’Annex IV i per tant es beneficien plenament de l’exempció europea contemplada per aquesta nova normativa andorrana:
Ús previst:
Activitat econòmica del comprador: ____
Ús/destinació dels béns: ____
Em comprometo a:
– Utilitzar els béns exclusivament segons l’ús declarat;
– No reexportar-los sense autorització de les autoritats del país de destinació.
Data, lloc, signatura, segell, funció del signant
6.6. Sancions, embargaments i buit regulador a Andorra
Tot i que Andorra ha reforçat recentment el seu marc legislatiu amb la Llei andorrana sobre els béns de doble ús, en particular a través de l’article 267, paràgraf 3, lletra f de la Llei 10/2025, persisteix una zona grisa preocupant pel que fa a sancions i embargaments. Aquesta llei defineix les condicions d’autorització d’exportació per als béns sensibles criptogràfics, però no preveu cap mecanisme de control a posteriori ni dispositiu repressiu autònom en cas d’incompliment de les seves obligacions.
A les jurisdiccions europees i nord-americanes, aquesta mancança donaria lloc a un sistema detallat tant administratiu com penal. Per exemple, el Reglament (UE) 2021/821 estableix procediments clars per a la repressió d’infraccions, mentre que els Estats Units disposen d’un arsenal normatiu sòlid a través de l’EAR i de les sancions de l’OFAC. A Suïssa i a França, l’exportació no autoritzada de tecnologies de doble ús és objecte de sancions severes, inclosa la responsabilitat penal dels directius.
A l’inrevés, el marc jurídic exportador andorrà encara presenta mancances estructurals quant a la resposta davant infraccions. Aquesta absència d’un règim sancionador explícit obre un buit normatiu que pot exposar el país a riscos d’abús i posar en qüestió la seva cooperació internacional, especialment en el marc del Reglament europeu esmentat.
A tenir en compte: En absència d’un dispositiu autònom de sancions, Andorra podria ser objecte d’una invocació de responsabilitat extraterritorial per part dels seus socis comercials, especialment si les seves tecnologies de doble ús són desviades a usos prohibits.
6.7. Cap a una governança andorrana del doble ús: inspiració europea i marc operatiu
Davant les mancances detectades en el règim actual, sembla oportú consolidar progressivament una governança nacional andorrana del control d’exportació. Aquesta podria inspirar-se útilment en els dispositius implantats a França i Espanya, sense fer una transposició mecànica, sinó amb respecte per la sobirania jurídica d’Andorra.
Exemple francès:
El control dels béns de doble ús a França és competència de la Subdirecció de Comerç Internacional de Béns Estratègics (SBDU), vinculada a la Direcció General d’Empreses (DGE). Aquest organisme concedeix autoritzacions d’exportació en coordinació amb la Duana i el Ministeri de les Forces Armades a través del Servei d’Informació i Documentació (SID) per a un seguiment reforçat postexportació.
🔹 SBDU: Autoritat competent en matèria de control i emissió de llicències.
➡ Ministeri d’Economia – Béns de doble ús
🔹 Coordinació amb la Duana: Seguiment dels fluxos comercials sensibles i verificació de conformitat.
➡ Direcció General de Duanes i Drets Indirectes (DGDDI)
🔹 Ministeri de Defensa – SID: Anàlisi de riscos i control estratègic de les exportacions.
➡ Servei d’Informació i Documentació (SID)
Exemple espanyol: La Secretaria d’Estat de Comerç (SECOMS) i la Junta Interministerial Reguladora del Comerç Exterior de Material de Defensa i de Doble Ús (JIMDDU) asseguren una coordinació interministerial centralitzada per decidir sobre les exportacions de material de defensa i doble ús.
🔹 SECOMS: Responsable de l’aplicació de regulacions sobre exportacions i importacions sensibles.
➡ Ministeri d’Indústria, Comerç i Turisme
🔹 JIMDDU: Òrgan intergovernamental competent sobre exportacions estratègiques.
➡ Decret oficial BOE 2023-21672
🔹 Informe semestral sobre exportacions de material de defensa i béns de doble ús:
➡ Estadístiques i dades (2024)
En aquest context, Andorra podria instaurar un Comitè intergovernamental andorrà del doble ús, integrat per:
els ministeris d’Afers Exteriors, Finances i Justícia,
la Duana Andorrana,
experts en dret internacional i tecnologies sensibles,
representants del sector industrial habilitat.
Aquest comitè tindria el mandat d’elaborar una doctrina sobirana d’exportació, adoptar un decret d’aplicació autònom que defineixi sancions i controls, i coordinar la cooperació amb els socis europeus.
Aquesta inspiració té una legitimació especial, ja que els dos estats de referència – França i Espanya – són també coprínceps constitucionals d’Andorra. La seva influència institucional i arrelament històric confereixen a les seves pràctiques un estatus de referència compatible amb l’ordre jurídic andorrà.
Accions pràctiques a implementar des d’ara
Mantenir una matriu de conformitat que encreui les exigències de la Llei 10/2025, els règims extraterritorials (US EAR, UK OGEL…) i les obligacions contractuals amb els socis estrangers.
Verificar sistemàticament les llistes de control de la UE i altres jurisdiccions, en especial l’annex IV del Reglament (UE) 2021/821 abans de qualsevol exportació intraeuropea.
Formar els equips en normes de traçabilitat duanera i obligacions relatives als identificadors EORI, especialment per a exportacions cap a la UE.
Integrar clàusules de control d’exportació en tots els contractes que continguin elements tecnològics sensibles, incloent-hi restriccions de reexportació i compromisos de no desviació.
Implantar una vigilància activa sobre les autoritzacions generals d’exportació (GEA) europees i nacionals, incloent-hi modificacions d’abast o condicions d’ús.
7. Abast normatiu i perspectives d’aplicació
A la llum de les disposicions introduïdes per la Llei andorrana sobre els béns de doble ús i el seu decret d’aplicació, sembla evident que el legislador andorrà ha fet un pas estructurant cap a una convergència amb els estàndards europeus, tot preservant l’especificitat jurídica del Principat d’Andorra. L’articulació entre el dret intern, el dret de la Unió Europea i els règims extraterritorials internacionals (US EAR, UK, Wassenaar) exigeix a partir d’ara una vigilància constant per part dels operadors econòmics, a fi de garantir la conformitat dinàmica de les seves pràctiques exportadores.
En aquest sentit, la trajectòria anticipadora i ètica de Freemindtronic — il·lustrada per actuacions documentades i una doctrina de conformitat consolidada — constitueix un model transferible. Demostra que la iniciativa privada pot contribuir útilment a la construcció d’un règim jurídic coherent, en benefici tant de l’Estat com dels actors industrials.
Correspon ara a les autoritats andorranes competents continuar amb l’esforç d’acompanyament normatiu, en particular mitjançant la producció de doctrines administratives, guies oficials i la posada en marxa de formacions i finestretes especialitzades. En paral·lel, les empreses han d’institucionalitzar una vigilància reguladora integrada, articulada amb matrius d’impacte extraterritorial, per fer de la conformitat exportadora un veritable eix estratègic.
Així, la implementació efectiva i fluida d’aquest règim es fonamenta en una sinergia entre dret, tecnologia i responsabilitat compartida. Traça els contorns d’un nou pacte normatiu andorrà basat en la transparència, la seguretat jurídica i l’ambició d’un model econòmic obert però rigorosament regulat.
8. Enfocament comparatiu i prospectiu: cap a una doctrina andorrana del doble ús
La reforma del Codi de Duana mitjançant la Llei 10/2025, del 13 de maig, juntament amb el Reglament d’execució sobre l’exportació de béns de doble ús (Decret 207/2025), ofereix una oportunitat inèdita per al Principat d’Andorra de construir una doctrina pròpia en matèria de control estratègic, alineada però diferenciada dels règims europeus (UE), francès, espanyol i suís.
Comparacions doctrinals i marcs jurídics
França: el règim francès es fonamenta en el Codi de la defensa, l’ordre del 8 de juliol de 2015 per a les AIMG i l’ordre del 2 de juny de 2014 per a les LEMG, combinats amb decisions puntuals de suspensió de derogacions. Distingix rigorosament entre materials classificats (cat. ML) i béns de doble ús (cat. DU), i imposa procediments complexos i centralitzats, incloses les importacions temporals de materials amb finalitats d’exhibició.
Espanya: sota l’empara del Reial decret 679/2014, Espanya també aplica el Reglament (UE) 2021/821, amb una interpretació administrativa sovint conservadora. La classificació en matèria de criptologia o de components electrònics és sistemàtica, i l’exportació cap a països tercers (fora de la UE) està subjecta a un seguiment reforçat.
Suïssa: tot i no ser membre de la UE, Suïssa adopta una política d’equivalència basada en la Güterkontrollverordnung (GKV) i l’Ordenança sobre el material de guerra (OMG). L’autoritat SECO supervisa un règim fluid però rigorós, amb èmfasi en la transparència comercial i la conformitat extraterritorial.
Unió Europea: el Reglament (UE) 2021/821 (versió consolidada) estableix una base harmonitzada fonamentada en les llistes de control, els criteris de seguretat internacional i l’anàlisi de risc per país.
Reptes específics per a Andorra: cap a una doctrina nacional del doble ús
Recomanació estratègica: formalitzar una doctrina andorrana del doble ús a través d’una Carta oficial interinstitucional amb les empreses del sector, basada en el reglament (UE) 2021/821 i la pràctica d’exportació sobirana.
La Carta Ètica entre Freemindtronic i el Govern d’Andorra prefigura aquesta doctrina, integrant els principis de transparència, no proliferació, desenvolupament sostenible i sobirania jurídica. Constitueix una base rellevant per estendre la regulació a segments tecnològics emergents, com ara sistemes d’autenticació distribuïda, mitjans criptològics d’ús ciberdefensiu, o tecnologies fonamentades en ADN digital.
Perspectives d’evolució reguladora
La UE preveu ampliar l’àmbit d’aplicació del règim de doble ús a tecnologies crítiques com la intel·ligència artificial, la ciberseguretat i la cadena de blocs, en el marc de l’estratègia de seguretat econòmica europea (Comunicació COM(2023) 249 final). Andorra haurà d’anticipar aquests moviments per mantenir l’equivalència reguladora.
Reptes futurs i sobirania tecnològica andorrana
La dinàmica actual impulsa el país a estructurar una capacitat nacional de doctrina, supervisió i innovació reguladora sobre el doble ús, incloent:
IA i sistemes autònoms amb possibles usos militars o cibernètics;
Ciberseguretat avançada fora de xarxa amb arquitectura de confiança de maquinari (DataShielder NFC HSM);
Sobirania de les cadenes de valor i reducció de dependències extraterritorials (núvol, components, certificacions);
Normes d’exportació sobiranes integrant anàlisi del risc ètic i geopolític.
Acció proposada: creació d’un Comitè intergovernamental andorrà del doble ús, incloent actors industrials, experts en dret internacional i agències de seguretat, per pilotar una doctrina adaptativa conforme als compromisos internacionals i a la sobirania tecnològica d’Andorra.
Interès pràctic: un glossari clarifica els termes tècnics, normatius o jurídics complexos, com AIMG, LEMG, DU, reglament (UE) 2021/821, criptologia d’ús dual, conformitat extraterritorial, etc. Això evita sobrecarregar el cos del text i garanteix la llegibilitat per a públics diversos (juristes, industrials, administració, socis estrangers).
Glossari d’acrònims i termes especialitzats
AIMG : Autorització d’importació de material de guerra (França)
LEMG : Llicència d’exportació de material de guerra (França)
DU : Béns de doble ús (amb finalitat civil i militar)
Codi de Duana : Codi duaner d’Andorra
Reglament (UE) 2021/821 : Règim europeu de control dels béns de doble ús
EAR / ITAR : Normatives d’exportació nord-americanes amb abast extraterritorial
SECO : Autoritat suïssa encarregada del control d’exportacions (via GKV i OMG)
GKV : Ordenança suïssa sobre el control de béns (Güterkontrollverordnung)
OMG : Ordenança suïssa sobre el material de guerra
TARIC : Tarifa duanera integrada de la Unió Europea
EORI : Número d’identificació duaner europeu requerit per a importació/exportació
PDU : Plataforma francesa de declaració d’exportacions de béns de doble ús
COM(2023) 249 final : Comunicació de la Comissió Europea sobre l’estratègia de seguretat econòmica
Carta ètica DU : Acord entre el Govern d’Andorra i Freemindtronic per a la regulació sobirana de tecnologies duals concebudes, desenvolupades i fabricades a Andorra
Analyse juridique approfondie loi andorrane double usage Llei 10/2025 du Codi de Duana d’Andorre
La Loi andorrane sur le double usage s’inscrit dans une refonte stratégique du contrôle des exportations. Face aux nouvelles menaces hybrides, elle établit un socle juridique fondé sur le droit douanier, la souveraineté technologique et l’alignement partiel sur l’UE. Identification EORI, conformité UE, et encadrement cryptologique deviennent des piliers de cette sécurité réglementaire.
Le contrôle des exportations de biens à double usage devient un pilier de la souveraineté technologique andorrane. Face à la complexité croissante des chaînes de valeur, de la cryptologie exportée et des réglementations extraterritoriales, l’Andorre anticipe ces défis par une réforme stratégique de son cadre douanier et réglementaire. Cette analyse juridique explore :
✔Comment l’Andorre articule conformité UE et autonomie souveraine à travers la Llei 10/2025.
✔Pourquoi le régime EORI et l’accord douanier Andorre–UE offrent un levier pour les exportations à contrôle stratégique.
✔Comment structurer une doctrine andorrane du double usage, en cohérence avec le Règlement (UE) 2021/821.
✔Quels sont les défis futurs : IA, cybersécurité matérielle, souveraineté des chaînes critiques.
À propos de l’auteur — Inventeur de technologies à double usage et fondateur de Freemindtronic Andorre, Jacques Gascuel développe des solutions de protection des données et de contre-espionnage à vocation civile et militaire. Il analyse ici les enjeux stratégiques de la loi andorrane sur le double usage dans une approche « privacy by design » conforme aux exigences réglementaires internationales.
1. Analyse stratégique de la Loi andorrane double usage : réforme du Codi de Duana 2025
Le Conseil Général d’Andorre a adopté la Llei 10/2025 le 13 mai 2025, ensuite publiée au BOPA n°68 du 4 juin 2025. Cette loi marque une étape déterminante dans l’évolution du droit douanier andorran, puisqu’elle vise à aligner la législation nationale sur le Code des douanes de l’Union européenne, tel qu’établi par le Règlement (UE) n°952/2013 du 9 octobre 2013 (EUR-Lex – CELEX:32013R0952).
En remplaçant la Llei 17/2020, cette réforme introduit une architecture moderne de la régulation douanière. Elle comprend 296 articles répartis en neuf titres. Plus précisément, elle facilite les procédures douanières, renforce la numérisation des opérations, et, surtout, elle établit un cadre juridique robuste pour le contrôle des flux sensibles, notamment ceux relatifs aux biens à double usage.
Pour plus d’informations officielles, les textes sont consultables ici :
Ainsi, cette nouvelle législation positionne Andorre dans une logique de conformité renforcée et d’intégration réglementaire progressive avec l’Union européenne.
2. Éléments structurants du nouveau Code douanier andorran
Avant d’aborder les dispositions spécifiques à la Loi andorrane double usage, il est utile de passer en revue les points structurants du nouveau Codi de Duana qui renforcent l’efficacité et la transparence du système douanier andorran.
2.1 Extension du périmètre douanier
Le territoire douanier andorran couvre dorénavant l’espace aérien et les eaux intérieures, en plus des frontières terrestres.
Cette extension vise à encadrer plus strictement les flux de marchandises via tous les modes de transport, notamment aérien et multimodal.
2.2 Précisions terminologiques essentielles
Le Code redéfinit des notions clés pour une meilleure sécurité juridique :
Terme
Définition (selon la loi)
Statut douanier
Caractère communautaire ou non d’une marchandise
Mise en libre pratique
Régime permettant l’entrée sur le marché andorran
Représentant douanier
Mandataire habilité à accomplir les formalités douanières au nom d’un tiers
2.3 Dématérialisation des procédures
L’usage des systèmes électroniques devient obligatoire pour toutes les opérations.
Cela concerne les déclarations d’import/export, les demande d’autorisation, et les demandes de remboursement.
Cette mesure vise à réduire les délais de traitement et renforcer la traçabilité.
3. Système andorran de droits, garanties et autorisations : vers un contrôle performant
Poursuivons notre exploration de la Loi andorrane double usage en examinant désormais la structure financière et procédurale qui encadre les flux douaniers. Ce pilier réglementaire, loin d’être secondaire, permet d’assurer la sécurité des recettes publiques, tout en apportant de la prévisibilité et de la fiabilité aux opérateurs économiques.
Ainsi, cette partie du nouveau Code met en place un triptyque cohérent : gestion de la dette douanière, mise en œuvre de garanties, et dynamique d’autorisations administratives. Ces éléments assurent une gouvernance rigoureuse des flux commerciaux à risques, notamment ceux liés aux technologies sensibles.
3.1 Encadrement des dettes douanières et des garanties
La Llei 10/2025 introduit un mécanisme cohérent de calcul, de paiement et de remboursement des droits de douane. En outre, elle prévoit des règles précises en matière de dette douanière et exige, dans certains cas, la constitution de garanties financières par les opérateurs.
3.2 Régimes douaniers économiques : fluidité sous conditions
Les procédures de transit, d’entrepôt douanier, de perfectionnement actif et passif sont clarifiées.
Le code prévoit une rationalisation des régimes particuliers, permettant un gain de compétitivité pour les entreprises andorranes opérant à l’international.
Cette structuration vise à instaurer une logistique plus fluide tout en maintenant un haut niveau de surveillance.
3.3 Gestion des autorisations douanières : un tournant réglementaire
La nouvelle loi instaure un système structuré de demandes, traitements et délivrances d’autorisations douanières, essentiel pour garantir la sécurité juridique des opérateurs économiques.
L’administration douanière peut délivrer des autorisations générales ou spécifiques selon le type d’opération et le niveau de risque associé.
Un registre numérique centralisé recense désormais toutes les autorisations émises, assurant leur traçabilité et leur vérifiabilité.
Le code impose un délai maximum de réponse pour éviter tout blocage administratif.
Ce système de gestion intégrée accroît la transparence et la prévisibilité, deux piliers indispensables pour renforcer la compétitivité douanière d’Andorre dans le cadre de ses engagements européens.
4. Réglementation spécifique de la Loi andorrane double usage
Entrons désormais dans le cœur du dispositif lié aux biens à double usage, qui constituent un volet sensible de la Llei 10/2025.
4.1 Article 267.3.f : cadre juridique essentiel
Texte de référence : Règlement (UE) 2021/821
Cette disposition est entrée en vigueur immédiatement après publication de la loi, soit le 5 juin 2025, conformément à sa disposition finale.
Le Décret 207/2025, publié le 12 juin 2025, précise les formalités associées à cette autorisation. Texte officiel : BOPA Andorre – GR_2025_06_11_13_27_27
Ce texte prévoit que :
Toute exportation de biens listés à l’annexe I du Règlement (UE) 2021/821 est soumise à autorisation douanière ;
Une dérogation est accordée pour les destinations au sein de l’Union européenne ;
Des autorisations de longue durée (maximum 12 mois) peuvent être délivrées pour les flux réguliers ;
La déclaration de l’utilisateur final est obligatoire pour assurer la traçabilité des usages ultimes.
4.3 Freemindtronic : un exemple de conformité proactive
Avant même l’entrée en vigueur de la Loi andorrane double usage, Freemindtronic a initié une démarche exemplaire dès 2021. En anticipant les obligations réglementaires, l’entreprise a structuré ses flux commerciaux sensibles dans un cadre éthique et juridique rigoureux.
Freemindtronic a proposé une Charte éthique, soutenue par une documentation formalisée dès 2022, pour encadrer l’usage et l’exportation de ses technologies cryptographiques sensibles.
Les mesures concrètes incluent :
La mise en place d’un dispositif d’information régulière envers les autorités andorranes ;
La licence d’exportation spéciale obtenue en 2022 pour Eurosatory par COGES Events sous l’égide du GICAT, validée par le Général Charles Beaudouin (LinkedIn);
4.4 Documentation de conformité internationale : modèle français et procédure ANSSI
Afin d’assurer une conformité juridique complète à l’export des technologies sensibles, Freemindtronic s’est également appuyée sur les exigences françaises en matière de contrôle des moyens de cryptologie.
Ou par courrier : ANSSI, Bureau des contrôles réglementaires, 51 boulevard de la Tour-Maubourg, 75700 Paris 07 SP
Le formulaire principal, à savoir l’annexe I, est téléchargeable ici : formulaire PDF.
Ce document inclut notamment :
L’identification complète du demandeur ;
Une description technique des produits ;
Les modalités d’export envisagées ;
Les engagements de conformité avec la législation UE et nationale.
Grâce à cette rigueur, Freemindtronic a pu exporter légalement les modules DataShielder NFC HSM, avec la validation de son partenaire exclusif AMG Pro.
4.4 Documentation de conformité internationale : modèle français et procédure ANSSI
Afin d’assurer une conformité juridique complète à l’export des technologies sensibles, Freemindtronic s’est également appuyée sur les exigences françaises en matière de contrôle des moyens de cryptologie.
Ou par courrier : ANSSI, Bureau des contrôles réglementaires, 51 boulevard de la Tour-Maubourg, 75700 Paris 07 SP
Le formulaire principal, à savoir l’annexe I, est téléchargeable ici : formulaire PDF.
Ce document inclut notamment :
L’identification complète du demandeur ;
Une description technique des produits ;
Les modalités d’export envisagées ;
Les engagements de conformité avec la législation UE et nationale.
Grâce à cette rigueur, Freemindtronic a pu exporter légalement les modules DataShielder NFC HSM Defense, avec la validation de son partenaire exclusif AMG Pro (site officiel).
5. Coopération andorrane et ressources pédagogiques : une ouverture stratégique
Alors que la mise en œuvre de la Loi andorrane double usage ne fait que commencer, les acteurs publics et privés peuvent jouer un rôle stratégique dans la diffusion des bonnes pratiques. Cette dynamique constitue une opportunité majeure pour structurer un écosystème vertueux d’accompagnement réglementaire et de sensibilisation des opérateurs économiques.
En particulier, l’Andorre bénéficie d’un potentiel de co-construction entre institutions et entreprises innovantes, dans le respect de leurs prérogatives respectives. Il devient ainsi pertinent de développer des outils d’aide à la compréhension de la réglementation et d’offrir une information claire et structurée aux professionnels concernés.
5.1 Absence de guides institutionnels : un vide à combler
La réglementation andorrane sur les biens à double usage, bien qu’entérinée par le BOPA, souffre actuellement d’un manque de documentation appliquée. Aucun guichet d’information spécialisé, tutoriel administratif ou guide de conformité n’a encore été publié par les institutions publiques.
5.2 Contribution de Freemindtronic : contenu pédagogique, guide pratique, et sensibilisation
S’appuyant sur son expérience réglementaire, Freemindtronic a amorcé la rédaction d’un guide pratique de conformité, co-marquable avec des entités telles que la Douane andorrane (lien officiel).
Cette initiative vise à :
Vulgariser les procédures de demande d’autorisation ;
Proposer des modèles types de documents conformes au Décret 207/2025 ;
Diffuser les obligations essentielles à l’export de biens sensibles.
5.3 Outils numériques disponibles
En parallèle, Freemindtronic a publié plusieurs ressources accessibles en ligne au sujet de la règlementation international des produits double usage, notamment :
Ces ressources se présentent comme des compléments informatifs fiables aux textes officiels.7. Panorama international et effet extraterritorial
Alignement du régime andorran sur les réglementations internationales
Le régime andorran de contrôle des exportations de biens à double usage s’inscrit dans un cadre réglementaire mondial, où chaque juridiction impose des normes spécifiques pour la régulation et la surveillance des flux commerciaux sensibles. En raison de son accord douanier avec l’Union européenne, l’Andorre bénéficie de particularités qui influencent son approche des exportations et des exemptions applicables.
Cependant, les réglementations en vigueur dans les grandes puissances économiques – Union européenne, États-Unis, Royaume-Uni, Suisse, Pays du Commonwealth – exercent une influence sur les obligations des exportateurs andorrans. Cette dynamique se traduit par :
L’adoption des standards internationaux tels que les normes Wassenaar et le règlement UE 2021/821.
Une harmonisation progressive des procédures d’exportation vers des marchés stratégiques.
Des restrictions sur certaines catégories de biens selon les destinations et les contrôles extraterritoriaux.
Afin de comparer ces régulations et d’évaluer leur impact sur les échanges intra-UE, le tableau ci-dessous présente une synthèse des réglementations internationales, leurs dates d’entrée en vigueur et leurs implications pour l’Andorre.
Régime harmonisé applicable dans tous les États membres :
• 4 types d’autorisations : générale, globale, individuelle, nationale
• Contrôle des exportations, du courtage, de l’assistance technique, du transit et des transferts
• Annexe I : liste commune des biens à double usage (mise à jour annuelle)
• Annexe IV : biens soumis à autorisation même en transfert intra-UE
• Clause attrape-tout (article 4) pour les utilisations militaires ou de prolifération
• Autorités nationales compétentes + coordination via le groupe Dual-Use de la Commission
Régime aligné sur les standards UE et Wassenaar :
• Autorité compétente : SECO (Secrétariat d’État à l’économie)
• Licences obligatoires pour les biens listés dans les annexes 1 à 6
• Mise à jour annuelle des annexes techniques (dernière : 1er mai 2025)
• Contrôle des exportations, du courtage, du transit et de l’assistance technique
• Coopération renforcée avec l’UE, tout en conservant une autonomie réglementaire
Régime dual coordonné par deux autorités :
• Ministère de l’Économie : contrôle des biens à double usage civil
• Ministère de la Défense (DECA) : contrôle des biens militaires et sensibles
• Licence obligatoire pour cryptologie, IA, cybersécurité, drones, optronique
• Alignement partiel sur les régimes Wassenaar, MTCR, NSG
• Sanctions civiles et pénales en cas de non-conformité
• Re-exportation également soumise à autorisation israélienne
Régime autonome post-Brexit :
• Plateforme SPIRE obligatoire pour toute demande
• Contrôle des biens militaires et à double usage
• Nouvelles entrées 2024 : quantum, cryogénie, semi-conducteurs, IA
• Alignement sur les listes Wassenaar, MTCR, NSG, AG
• Autorité compétente : Export Control Joint Unit (ECJU)
Régime strict de contrôle des exportations :
• Licence obligatoire pour les biens à double usage
• Alignement progressif sur les listes UE/USA
• Coopération renforcée avec les partenaires occidentaux
• Autorité compétente : Département du contrôle des exportations (Minéconomie)
Régime de contrôle stratégique renforcé :
• Interdiction d’exportation de biens à double usage, technologies critiques, IA, semi-conducteurs, cryptographie
• 16 paquets de sanctions UE depuis 2022
• Coordination G7 / GECC pour limiter l’accès aux technologies occidentales
• Contrôle douanier renforcé, licences suspendues ou refusées
• Autorité compétente : Service fédéral russe du contrôle technique et des exportations (FSTEC)
Régime centralisé et strict :
• Contrôle des exportations via MOFCOM et GACC
• Restrictions sur IA, cybersécurité, quantum, semi-conducteurs
• Liste de contrôle nationale indépendante, partiellement alignée Wassenaar
• Licences obligatoires pour les technologies sensibles
• Sanctions administratives et pénales en cas de non-conformité
Régime fondé sur le Strategic Goods (Control) Act (SGCA) :
• Autorité compétente : Singapore Customs
• Licence obligatoire pour les biens listés dans la liste des biens stratégiques
• Alignement sur les régimes Wassenaar, NSG, MTCR, AG
• Contrôle renforcé sur IA, cybersécurité, électronique avancée
• Notification préalable ou licence requise selon la sensibilité du bien
Régime de contrôle géré par le Ministério do Desenvolvimento, Indústria, Comércio e Serviços (MDIC) :
• Licence obligatoire via la plateforme SISCOMEX
• Alignement partiel sur les régimes MTCR, NSG et Wassenaar
• Contrôle renforcé sur les technologies sensibles (cybersécurité, IA, électronique)
• Autorité compétente : Secrétariat du Commerce Extérieur (SECEX)
• Procédures électroniques centralisées, traçabilité des exportations sensibles
2023–2024 (réforme administrative et technologique)
Régime dual :
• Export Control Act 2020 pour les produits agricoles, administré par le DAFF
• Defence Trade Controls Act 2012 pour les biens militaires et à double usage, administré par le DECO
• Contrôle des technologies sensibles (IA, quantum, cybersécurité)
• Licences obligatoires pour exportation, courtage, assistance technique
• Alignement sur les régimes Wassenaar, MTCR, NSG, AG
Alignement partiel sur le Règlement (UE) 2021/821 dans le cadre de l’Accord Douanier Andorre–UE.
Licence préalable obligatoire pour cryptographie, IA et technologies sensibles.
Traçabilité exigée – contrôle douanier via identifiant EORI. Texte consolidé publié au BOPA (Butlletí Oficial del Principat d’Andorra).
Effet extraterritorial et singularité andorrane
L’effet extraterritorial des réglementations américaines (EAR) et européennes (Règlement UE 2021/821) impacte la gestion des exportations depuis l’Andorre. Toutefois, grâce à l’Accord douanier de 1990, l’Andorre bénéficie d’une union douanière partielle avec l’UE, permettant aux produits industriels (chapitres 25 à 97 du Tarif douanier) de circuler librement une fois introduits dans la chaîne européenne, sans formalités supplémentaires.
Ainsi, une analyse approfondie suggère qu’il est possible d’exporter des biens à double usage de l’Andorre vers l’Union européenne sans autorisation préalable, sous réserve des conditions suivantes :
Conformité aux normes européennes.
Identification via un numéro EORI.
Absence de restriction spécifique figurant dans l’Annexe IV du règlement européen.
Cette singularité réglementaire différencie l’Andorre des États membres de l’UE, qui doivent appliquer des régimes stricts de contrôle des exportations. Toutefois, une vigilance accrue reste nécessaire, notamment vis-à-vis des évolutions législatives internationales qui pourraient renforcer les exigences douanières.
6. Cadre juridique andorran des biens à double usage
La promulgation de la Loi andorrane sur les biens à double usage (Llei 10/2025) marque une évolution majeure dans l’architecture normative du pays, en posant les premières pierres d’un contrôle export encadré. Cette section analyse la portée matérielle, les acteurs institutionnels impliqués et les effets concrets pour les opérateurs économiques, dans un contexte d’intégration progressive au dispositif européen.
6.1 Circulation libre au sein de l’UE
Le Règlement (UE) 2021/821 permet en général la libre circulation des biens à double usage à l’intérieur du marché intérieur de l’UE, à l’exception de produits particulièrement sensibles figurant à l’Annexe IV . Cela signifie que, dès lors qu’un bien fait partie de l’UE, sa ré-exportation vers un autre État membre ne nécessite pas d’autorisation supplémentaire, sauf cas particuliers.
6.2 Andorre et l’Union Douanière Partielle
L’Accord du 1990 établit une union douanière partielle entre la Principauté d’Andorre et l’Union Européenne, couvrant les chapitres 25 à 97 du Tarif douanier commun. Cet accord permet une libre circulation des marchandises, supprimant les barrières tarifaires pour les produits concernés.
D’après les analyses du CEPS, les produits préalablement importés en Andorre depuis un État tiers et bénéficiant d’un numéro EORI peuvent circuler librement dans l’UE sans formalités additionnelles, à l’exception des produits du tabac, qui restent soumis à des régulations spécifiques.
6.3 Implications pour les biens à double usage
Une conclusion à vérifier est de savoir si sur la base de l’accord douanier et du règlement européen, il devient possible d’exporter des biens à double usage d’Andorre vers l’UE sans autorisation préalable andorrane, sous certaines conditions :
Conformité aux réglementations européennes,
Identification claire via un numéro EORI,
Absence de restriction spécifique (Annexe IV du règlement (UE) 2021/821).
Si ces conditions sont remplies, cela représenterait une singularité notable par rapport aux réglementations des États membres de l’UE.
6.4. Bénéfices directs pour les industriels andorrans du secteur dual et défense
La réforme douanière portée par la Llei 10/2025 et son décret d’application offre aux industriels andorrans des conditions opérationnelles stratégiques dans un environnement fortement régulé à l’échelle internationale.
✔ Opportunité réglementaire : les entreprises andorranes développant ou fabricant des technologies à usage dual ou militaire peuvent désormais exporter librement vers l’UE sans engager de procédures d’autorisation andorrane, sauf pour les biens relevant de l’Annexe IV.
À ce titre, plusieurs dispositifs cryptographiques « made in Andorra » de la gamme DataShielder NFC HSM ou PGP HSM, bien qu’ils relèvent de la catégorie 5, partie 2 du Règlement (UE) 2021/821, ne sont pas inclus dans l’Annexe IV et bénéficient donc pleinement de cette exemption européen stipulé par cette nouvelle réglementation Andorran :
Destinataire :
Nom/Raison sociale : ____
Adresse complète : ____
Activité économique liée aux biens : ____
Site web : ____
Ultime destinataire (si différent) :
Nom/Raison sociale : ____
Adresse complète : ____
Activité : ____
Site web : ____
Biens à exporter :
Code TARIC (10 chiffres) : ____
Description : ____
Quantité/Unité : ____
Valeur (€) : ____
Pays d’origine : ____
Pays de provenance : ____
Données contractuelles :
Date du contrat : ____
Code du régime douanier : ____
Usage final détaillé : ____
Documents joints : [ ] Déclaration de destination finale
Date, lieu, cachet et signature
Modèle B – Déclaration de destination finale
DESTINATAIRE :
Duana Andorrana – Despatx Central de Duana
Av. Fiter i Rossell, núm. 2, bloc A, Escaldes-Engordany, AD700
Utilisation prévue :
Activité économique de l’acquéreur : ____
Utilisation/destination des biens : ____
Je m’engage à :
– Utiliser les biens uniquement selon l’usage déclaré ;
– Ne pas les réexporter sans autorisation des autorités du pays de destination.
Date, lieu, signature, cachet, fonction du signataire
6.6. Sanctions, embargos et vide réglementaire en Andorre
Alors que l’Andorre a récemment renforcé son cadre législatif avec la Loi andorrane sur les biens à double usage, notamment à travers l’article 267, alinéa 3, lettre f de la Llei 10/2025, subsiste une zone grise préoccupante en matière de sanctions et d’embargos. En effet, bien que cette loi définisse les conditions d’autorisation d’exportation pour les biens sensibles cryptographiques, elle ne prévoit ni mécanisme de contrôle a posteriori, ni dispositif répressif autonome en cas de manquement aux obligations qu’elle instaure.
Dans les juridictions européennes et nord-américaines, une telle carence réglementaire donnerait lieu à un encadrement détaillé, à la fois administratif et pénal. Par exemple, le règlement (UE) 2021/821 prévoit des procédures claires pour la répression des violations, tandis que les États-Unis disposent d’un arsenal robuste via l’EAR et les sanctions OFAC. En Suisse et en France, l’exportation non autorisée de technologies à double usage est passible de sanctions sévères, incluant la responsabilité pénale des dirigeants.
À l’inverse, le cadre juridique export Andorre souffre encore de lacunes structurelles en matière de réponse aux infractions. Cette absence d’un régime de sanctions explicite ouvre un vide réglementaire pouvant exposer le pays à des risques d’abus, mais également à une remise en cause de sa coopération internationale, en particulier dans le contexte du règlement européen susmentionné.
À retenir : En l’absence de dispositif autonome de sanctions, l’Andorre pourrait être confrontée à une invocation de responsabilité extraterritoriale par ses partenaires commerciaux, notamment si des technologies à double usage andorranes sont détournées à des fins prohibées.
6.7. Vers une gouvernance andorrane du double usage : inspiration européenne et cadre opérationnel
Face aux lacunes identifiées dans le régime actuel, une consolidation progressive de la gouvernance nationale andorrane du contrôle export apparaît souhaitable. Celle-ci pourrait utilement s’inspirer des dispositifs mis en place en France et en Espagne, sans transposition mécanique, mais dans le respect de la souveraineté juridique du pays.
Exemple français :
Le contrôle des biens à double usage en France est assuré par la Sous-Direction du Commerce International des Biens Stratégiques (SBDU), rattachée à la Direction Générale des Entreprises (DGE). Cet organisme délivre les autorisations d’exportation en coordination avec la Douane et le Ministère des Armées via le Service de l’Information et de la Documentation (SID) pour un suivi renforcé post-exportation.🔹 SBDU : Autorité compétente en matière de contrôle et délivrance des licences.
➡ Ministère de l’Économie – Biens à double usage https://www.entreprises.gouv.fr/fr/biens-double-usage🔹 Coordination avec la Douane : Suivi des flux commerciaux sensibles et vérification de conformité.
➡ Direction Générale des Douanes et Droits Indirects (DGDDI) https://www.douane.gouv.fr/🔹 Ministère des Armées – SID : Analyse des risques et contrôle stratégique des exportations.
➡ Service de l’Information et de la Documentation (SID) https://www.defense.gouv.fr/
Exemple espagnol : La Secretaría de Estado de Comercio (SECOMS) et la Junta Interministerial Reguladora del Comercio Exterior de Material de Defensa y de Doble Uso (JIMDDU) assurent une coordination interministérielle centralisée pour statuer sur les exportations de matériel de défense et à double usage.
🔹 Rapport semestriel sur les exportations de matériel de défense et biens à double usage : ➡ Statistiques et données (2024)
Dans cette optique, l’Andorre pourrait instaurer un Comité intergouvernemental andorran du double usage, réunissant :
les ministères des Affaires étrangères, des Finances et de la Justice,
la Duana Andorrana,
des experts en droit international et technologies sensibles,
des représentants du secteur industriel habilité.
Ce comité aurait pour mandat d’élaborer une doctrine d’exportation souveraine, d’adopter un décret d’application autonome pour définir les sanctions et contrôles, et de coordonner la coopération avec les partenaires européens.
Cette inspiration trouve une légitimité particulière dans le fait que les deux États de référence – France et Espagne – sont également co-princes constitutionnels d’Andorre. Leur influence institutionnelle et leur ancrage historique confèrent à leurs pratiques un statut de référence compatible avec l’ordre juridique andorran.
Actions pratiques à mettre en œuvre dès à présent
En parallèle de ces évolutions institutionnelles, les entreprises andorranes opérant dans les secteurs sensibles peuvent immédiatement renforcer leur conformité en adoptant les mesures suivantes :
Maintenir une matrice de conformité croisant les exigences de la Llei 10/2025, les régimes extraterritoriaux (US EAR, UK OGEL…) et les obligations contractuelles avec les partenaires étrangers.
Vérifier systématiquement les listes de contrôle de l’UE et d’autres juridictions, notamment l’annexe IV du règlement (UE) 2021/821 avant toute exportation intra-européenne.
Former les équipes aux règles de traçabilité douanière et aux obligations liées aux identifiants EORI, notamment pour les exportations vers l’UE.
Intégrer des clauses de contrôle à l’export dans tous les contrats comportant des éléments technologiques sensibles, y compris des restrictions de réexportation et des engagements de non-détournement.
Mettre en place une veille active sur les autorisations générales d’exportation (GEA) européennes et nationales, y compris les modifications de portée ou de conditions d’usage.
7. Portée normative et perspectives d’application
À la lumière des dispositions introduites par la Loi andorrane sur les biens à double usage et son décret d’application, il apparaît que le législateur andorran a franchi une étape structurante vers une convergence avec les standards européens, tout en préservant la spécificité juridique du Principat d’Andorra. L’articulation entre le droit interne, le droit de l’Union européenne, et les régimes extraterritoriaux internationaux (US EAR, UK, Wassenaar) appelle désormais une vigilance constante des opérateurs économiques, afin de garantir la conformité dynamique de leurs pratiques exportatrices.
En ce sens, la trajectoire anticipatrice et éthique de Freemindtronic — illustrée par des démarches documentées et une doctrine de conformité consolidée — constitue un modèle transposable. Elle démontre que l’initiative privée peut contribuer utilement à l’édification d’un régime juridique cohérent, au bénéfice de l’État et des acteurs industriels.
Il incombe désormais aux autorités andorranes compétentes de poursuivre l’effort d’accompagnement normatif, notamment par la production de doctrines administratives, de guides officiels, et par la mise en place de formations et de guichets spécialisés. En parallèle, les entreprises doivent institutionnaliser une veille réglementaire intégrée, articulée avec des matrices d’impact extraterritorial, pour faire de la conformité export un levier stratégique à part entière.
Ainsi, la mise en œuvre effective et fluide de ce régime repose sur une synergie entre droit, technologie et responsabilité partagée. Elle trace les contours d’un nouveau pacte normatif andorran, fondé sur la transparence, la sécurité juridique et l’ambition d’un modèle économique ouvert mais rigoureusement encadré.
8. Approche comparative et prospective : vers une doctrine andorrane du double usage
La réforme du Codi de Duana par la Llei 10/2025, del 13 de maig, couplée au Règlement d’exécution sur les exportations de biens à double usage (Decret 207/2025), offre l’occasion inédite pour le Principat d’Andorra de structurer une doctrine propre en matière de contrôle stratégique, alignée mais différenciée des régimes européens (UE), français, espagnol et suisse.
Comparaisons doctrinales et cadres juridiques
France : le régime français repose sur le Code de la défense, l’arrêté du 8 juillet 2015 pour les AIMG, et l’arrêté du 2 juin 2014 pour les LEMG, combinés à des décisions ponctuelles de suspension de dérogations. Il distingue rigoureusement les matériels classifiés (cat. ML) et les biens de double usage (cat. DU), et impose des procédures complexes et centralisées, y compris pour les importations temporaires de matériels à des fins d’exposition.
Espagne : sous l’égide du Real Decreto 679/2014, l’Espagne applique également le Règlement (UE) 2021/821, avec une interprétation administrative souvent conservatrice. La classification en matière de cryptologie ou de composants électroniques est systématique, et l’exportation vers les pays tiers (hors UE) fait l’objet d’un suivi renforcé.
Suisse : bien que non membre de l’UE, la Suisse adopte une politique d’équivalence fondée sur la Güterkontrollverordnung (GKV) et l’Ordonnance sur le matériel de guerre (OMG). L’autorité SECO supervise un régime fluide mais rigoureux, avec une emphase sur la transparence commerciale et la conformité extraterritoriale.
Union européenne : le Règlement (UE) 2021/821 (version consolidée : eur-lex.europa.eu/legal-content/FR/TXT/?uri=CELEX:32021R0821) pose un socle harmonisé sur la base des listes de contrôle, des critères de sécurité internationale, et de l’analyse des risques pays.
Enjeux spécifiques à Andorre : vers une doctrine nationale du double usage
Recommandation stratégique : formaliser une doctrine andorrane du double usage à travers une Charte officielle interinstitutionnelle avec les entreprises du secteur, fondée sur la règlementation (UE) 2021/821 et la pratique d’exportation souveraine.
La Charte Éthique entre Freemindtronic et le Gouvernement d’Andorre préfigure cette doctrine, en intégrant les principes de transparence, non-prolifération, développement durable et souveraineté juridique. Elle constitue une base pertinente pour étendre la régulation aux segments technologiques émergents, comme les systèmes d’authentification distribuée, les moyens cryptologiques à usage cyber-défense, ou encore les technologies fondées sur l’ADN digital.
Perspectives d’évolution réglementaire
L’UE envisage d’étendre le champ d’application du régime dual-use à des technologies critiques telles que l’intelligence artificielle, la cybersécurité et la chaîne de blocs, dans le cadre de la stratégie de sécurité économique européenne (Communication COM(2023) 249 final). Andorre devra anticiper ces mouvements pour maintenir l’équivalence règlementaire.
Défis futurs et souveraineté technologique andorrane
La dynamique actuelle engage le pays à structurer une capacité nationale de doctrine, de supervision et d’innovation réglementaire sur le double usage, incluant :
IA et systèmes autonomes à potentiels usages militaires ou cybernétiques ;
Cybersécurité avancée hors réseau avec architecture de confiance matérielle (DataShielder NFC HSM) ;
Souveraineté des chaînes de valeur et réduction des dépendances extraterritoriales (cloud, composants, certifications) ;
Normes d’exportation souveraines intégrant l’analyse du risque éthique et géopolitique.
Action proposée : création d’un Comité intergouvernemental andorran du double usage, incluant les acteurs industriels, experts en droit international, et agences de sécurité, pour piloter une doctrine adaptative conforme aux engagements internationaux et à la souveraineté technologique d’Andorre.
Intérêt pratique : un glossaire clarifie les termes techniques, réglementaires ou juridiques complexes, comme AIMG, LEMG, DU, règlement (UE) 2021/821, cryptologie à usage dual, conformité extraterritoriale, etc. Cela évite d’alourdir le corps du texte tout en garantissant la lisibilité pour des publics variés (juristes, industriels, administration, partenaires étrangers).
Glossaire des sigles et termes spécialisés
AIMG : Autorisation d’importation de matériels de guerre (France)
LEMG : Licence d’exportation de matériels de guerre (France)
DU : Biens à double usage (à vocation civile et militaire)
Codi de Duana : Code des douanes d’Andorre
Règlement (UE) 2021/821 : Régime européen de contrôle des biens à double usage
EAR / ITAR : Réglementations américaines d’exportation à portée extraterritoriale
SECO : Autorité suisse chargée du contrôle des exportations (via GKV et OMG)
GKV : Ordonnance suisse sur le contrôle des biens (Güterkontrollverordnung)
OMG : Ordonnance suisse sur le matériel de guerre
TARIC : Tarif douanier intégré de l’Union européenne
EORI : Numéro d’identification douanier européen requis pour l’import/export
PDU : Plateforme française de déclaration des exportations de biens à double usage
COM(2023) 249 final : Communication de la Commission européenne sur la stratégie de sécurité économique
Charte éthique DU : Accord entre le gouvernement andorran et Freemindtronic sur l’encadrement souverain des technologies duales conçues, développées et fabriquées en Andorre
.NET DevExpress Framework: Reinventing UI Security in an Age of Cyber Threats
The .NET DevExpress Framework is more than a UI toolkit—it is a security-driven solution designed to combat modern cyber threats. With increasing attacks targeting authentication systems, UI vulnerabilities, and APIs, developers need robust security architectures that seamlessly integrate zero-trust principles, encryption, and multi-factor authentication.
Cybersecurity in UI development has reached a critical juncture. With XSS attacks, SQL injection, and credential hijacking becoming more sophisticated, relying on traditional authentication methods is no longer enough. This article examines:
✔How cybercriminals exploit UI vulnerabilities to compromise sensitive data.
✔Why DevExpress integrates advanced security features to defend against modern threats.
✔How developers can enforce zero-trust security models for UI frameworks.
✔The future of UI security, driven by AI threat detection and hardware-based authentication.
About the Author – Jacques Gascuel As the inventor of several security technologies and founder of Freemindtronic Andorra, Jacques Gascuel explores how cyberattacks target UI vulnerabilities, identity systems, and APIs in the modern threat landscape. This article reflects his ongoing work in developing privacy-by-design technologies that empower users to regain control over their digital interactions.
Rethinking Security in UI Frameworks
With cyber threats becoming more complex and pervasive, developers must rethink security beyond traditional defenses. A decade ago, UI security focused primarily on password complexity. Today, cybercriminals exploit front-end vulnerabilities, intercept API data, and bypass multi-factor authentication using AI-assisted attacks. As a result, secure application development requires a multi-layered defense, incorporating encryption, identity validation, and adaptive access control.
Cyber Attacks Targeting UI and Authentication Systems
The user interface (UI) has become a strategic entry point for cybercriminals. As applications shift toward rich, client-side logic with asynchronous API calls, attackers now bypass conventional perimeter defenses by targeting the visual and interactive surface of applications. Today’s most dangerous threats exploit weak client-side validation, misconfigured API endpoints, and session management flaws. Below are the most prevalent attack vectors used to compromise modern web UIs:
Attackers now bypass conventional security layers using targeted exploits such as:
Cross-Site Scripting (XSS) – Injecting malicious JavaScript into UI components to hijack sessions and exfiltrate data. [OWASP XSS Guide]
SQL Injection – Exploiting weakly sanitized database queries via UI inputs to steal credentials. [OWASP SQL Injection]
API Security Breaches – Manipulating front-end API calls to bypass authentication and access sensitive data. [OWASP API Security]
☑️ UI Threats Explained: XSS (Cross-Site Scripting): Malicious JavaScript injected into the UI to hijack user sessions and perform unauthorized actions. CSRF (Cross-Site Request Forgery): Tricks a legitimate user into unknowingly executing actions in a different security context. Clickjacking: Conceals UI elements under deceptive overlays to trick users into clicking harmful links.
The DevExpress UI Framework addresses these threats through pre-validated components, hardened input controls, and secure API binding.
A visual breakdown of a Cross-Site Scripting (XSS) attack, showing how an injected script compromises both the UI and the user’s session.
DevExpress vs Other UI Frameworks: A Security Comparison
Framework
Security Features
Known Vulnerabilities
DevExpress
Zero Trust Model
MFA
OAuth2
AES-256 encryption
Secure API binding
✦ Limited third-party plugin security
✦ Risk of outdated dependencies
Angular
Automatic XSS protection
CSP headers
Two-way data binding security
✦ High dependency on third-party libraries
✦ Vulnerability risks from package updates
React
Virtual DOM security
Strong TypeScript integration
Runtime sanitization
✦ XSS vulnerabilities from unsafe prop injection
✦ Uncontrolled component re-rendering
Vue.js
Reactive security bindings
Automated sanitization
Lightweight component structure
✦ Limited enterprise security options
✦ Potential validation gaps in directives
Rethinking Security in UI Frameworks
With cyber threats becoming more complex and pervasive, developers must rethink security beyond traditional defenses. A decade ago, UI security focused primarily on password complexity. Today, cybercriminals exploit front-end vulnerabilities, intercept API data, and bypass multi-factor authentication using AI-assisted attacks. As a result, secure application development requires a multi-layered defense, incorporating encryption, identity validation, and adaptive access control.
🛡 Compliance Shield for .NET DevExpress Framework
In sectors such as defense, finance, healthcare, or critical infrastructure, user interface (UI) security must comply with strict regulatory requirements. When deploying applications built with the .NET DevExpress Framework, it becomes crucial to choose tools and architectures that are not only technically robust, but also fully compliant with international legal standards.
✅ Regulatory Readiness Highlights:
GDPR Compliance: No user identification, no tracking, no personal data storage — full privacy-by-design architecture.
ISO/IEC 27001 Alignment: Follows key information security management principles: confidentiality, integrity, and availability.
NIS2 Directive (EU): Designed for cyber-resilient architectures with zero third-party trust and full sovereignty of encryption and authentication operations.
CLOUD Act Immunity: Unlike server-based solutions such as Bitwarden or FIDO2-authenticators, the PassCypher HSM PGP suite operates completely offline and outside any US-based legal jurisdiction.
PassCypher HSM PGP and the DataShielder NFC HSM ecosystem ensure that your .NET DevExpress Framework applications meet today’s most demanding compliance, privacy, and sovereignty requirements—without compromising usability or integration capabilities.
Cyber Attacks Targeting UI and Authentication Systems
The user interface (UI) has become a strategic entry point for cybercriminals. As applications shift toward rich, client-side logic with asynchronous API calls, attackers now bypass conventional perimeter defenses by targeting the visual and interactive surface of applications. In environments built with the .NET DevExpress Framework, these risks are particularly relevant, as the high interactivity of components can expose vulnerabilities if not properly secured. Today’s most dangerous threats exploit weak client-side validation, misconfigured API endpoints, and session management flaws. Below are the most prevalent attack vectors used to compromise modern web UIs:
Attackers now bypass conventional security layers using targeted exploits such as:
Cross-Site Scripting (XSS) – Injecting malicious JavaScript into UI components to hijack sessions and exfiltrate data. [OWASP XSS Guide]
SQL Injection – Exploiting weakly sanitized database queries via UI inputs to steal credentials. [OWASP SQL Injection]
API Security Breaches – Manipulating front-end API calls to bypass authentication and access sensitive data. [OWASP API Security]
☑️ UI Threats Explained:
XSS (Cross-Site Scripting): Malicious JavaScript injected into the UI to hijack user sessions and perform unauthorized actions.
CSRF (Cross-Site Request Forgery): Tricks a legitimate user into unknowingly executing actions in a different security context.
Clickjacking: Conceals UI elements under deceptive overlays to trick users into clicking harmful links.
The .NET DevExpress Framework addresses these threats through pre-validated components, hardened input controls, and secure API binding. Its architecture allows developers to enforce strong client-side policies while maintaining high-performance and interactive user interfaces — a critical advantage in modern threat landscapes.
A step-by-step visual showing how a UI vulnerability like XSS is identified, demonstrated, and mitigated with proper sanitization.
DevExpress vs Other UI Frameworks: A Security Comparison
In the sections that follow, we explore a range of advanced UI security paradigms specifically tailored to the .NET DevExpress Framework. First, we introduce foundational principles through comparative analysis, then progressively transition to hands-on demonstrations involving secure interface development. This includes practical use cases featuring encryption with PassCypher HSM PGP and air-gapped authentication with DataShielder NFC HSM devices. Moreover, we examine real-world vulnerabilities and provide mitigation strategies adapted to cloud, serverless, and edge environments. Ultimately, this collection of modules aims to guide developers, architects, and cybersecurity professionals in fortifying front-end resilience, improving authentication workflows, and integrating zero-trust architectures—all critical aspects for those seeking robust, future-proof UI security within enterprise-grade .NET DevExpress applications.
Advanced UI Security Paradigms Compared
DevExpress: Nativement intègre une couche Zero Trust, OAuth2, MFA, et un encryptage côté client et serveur.
Material UI (React): Focus sur l’expérience utilisateur mais dépendance forte à la validation côté client.
Bootstrap: Plus orienté design, nécessite des extensions tierces pour intégrer une sécurité poussée.
DevExpress offre une approche plus robuste contre les attaques XSS et les injections SQL grâce à des composants pré-validés côté serveur.
OAuth2 Integration: Secure your UI components with IdentityServer + DevExpress Auth UI.
Vulnerability Detection: Scan your UI with OWASP ZAP – look for reflected XSS, insecure cookies, and CSP issues.
Interactive DevExpress UI Security Challenge for .NET Interface Developers
Test your own application’s security with a hands-on cybersecurity challenge:
Run an XSS vulnerability test on a UI component with OWASP ZAP.
Identify and fix session hijacking risks.
Experiment with OAuth2 security flows in an API-based authentication process.
Fortifying UI Security in .NET User Interfaces Built with DevExpress
DevExpress integrates security-first principles across ASP.NET Core, Blazor, and .NET MAUI, ensuring UI components are hardened against attacks. Key security enhancements include:
Data Encryption (AES-256 & RSA) – Protecting sensitive data during transmission and storage.
Zero Trust Security Model – Restricting access based on continuous validation.
Multi-Factor Authentication (MFA) – Strengthening user authentication resilience.
• Multi-Factor Authentication (MFA) MFA requires users to verify their identity using two or more independent factors—typically something they know (password), something they have (token), or something they are (biometrics). → This drastically reduces the risk of credential-based attacks.
• OAuth2 and OpenID Connect OAuth2 separates authentication from authorization. Combined with OpenID Connect, it enables secure access delegation to APIs without exposing user credentials. → DevExpress integrates these standards for secure Single Page Applications (SPAs).
• Zero Trust Security This model assumes no user or system is trusted by default—even inside the corporate network. → DevExpress implements this through role-based access control (RBAC), continuous validation, and secure-by-default UI behavior.
• AES-256 and RSA Encryption AES-256 ensures fast, strong encryption for data at rest and in transit, while RSA handles secure key exchange and token signing. → Together, they offer robust cryptographic protection across UI interactions.
🛡 Enhance DevExpress UI Security with PassCypher HSM PGP
PassCypher HSM PGP is the world’s first hybrid Hardware Security Module combining offline, passwordless authentication with advanced encryption containers (PGP AES-256 CBC) and a segmented key architecture. Unlike traditional HSMs, it merges physical isolation with software cryptography in a sovereign, tamper-resistant system. It supports OTP (TOTP/HOTP) auto-injection, sandboxed credential workflows, and real-time PIN management, making it ideal for securing UI components built with the .NET DevExpress Framework. ✓ 100% serverless, database-free, and accountless ✓ Quantum-resilient by design: AES-256 CBC + segmented key system + no attack surface ✓ Native multi-factor authentication: 2 keys are required to access identity containers ✓ Phishing, typosquatting, and BITB-proof via sandboxed URL validation ✓ SSH, AES, RSA, ed25519 key generation with entropy feedback ✓ Fully air-gapped via NFC HSM or secure QR key import
⚠️ Immune to the CLOUD Act and external surveillance, PassCypher is designed for the most demanding use cases—defense, critical infrastructure, classified systems—by offering post-quantum resilient protection today, without relying on future PQC standards.
Comparative Snapshot: Air-Gapped Security for .NET DevExpress Framework
Solution
Fully Air-Gapped
Passwordless
MFA
OTP with PIN Injection
PQC-Ready
Serverless
⌂ HID Injection + URL Sandbox ⌂
Bitwarden
⨉
Not available
✓
Supported
✓
Supported
⨉
Not available
⨉
Not available
⨉
Not available
⨉ Not available
FIDO2 Key
⨉
Requires server
✓
Supported
✓
Supported
⨉
Not available
⨉
Not available
⨉
Not available
⨉ Not available
PassCypher HSM PGP
✓
Hybrid HSM, offline-native
✓
Supported
✓
Multi-Factor Authentication
(2FA via segmented key)
✓
Auto-injected TOTP/HOTP
✓
Post-Quantum Ready *
✓
Fully serverless
✓ Sandbox-based authentication
Use Case Spotlight: Air-Gapped DevExpress ApplicationContext
A military-grade classified .NET DevExpress Framework-based dashboard requires fully offline access control without risk of credential exposure. Solution:PassCypher HSM PGP + DataShielder NFC HSM
Secure PIN code auto-injected in login field via sandboxed URL validation
No passwords, servers, or user ID involved
Supports complex flows (e.g. Microsoft 365 login with dynamic redirect)
Works in air-gapped environments — no software agent needed
Solution
Fully Air-Gapped
Passwordless
MFA
OTP with PIN Injection
PQC-Ready
Serverless
⌂ HID Injection + URL Sandbox ⌂
Bitwarden
⨉
Not available
✓
Supported
✓
Supported
⨉
Not available
⨉
Not available
⨉
Not available
⨉ Not available
FIDO2 Key
⨉
Requires server
✓
Supported
✓
Supported
⨉
Not available
⨉
Not available
⨉
Not available
⨉ Not available
PassCypher HSM PGP
✓
Hybrid HSM, offline-native
✓
Supported
✓
Multi-Factor Authentication
(2FA via segmented key)
✓
Auto-injected TOTP/HOTP
✓
Post-Quantum Ready *
✓
Fully serverless
✓ Sandbox-based authentication
Expert Insights: Lessons from the Field
“We implemented a Zero Trust UI using DevExpress Role-Based Access Control combined with server-side validation. The biggest challenge was API session hardening.” – Lead Engineer, FinTech Startup “The most common mistake? Relying on client-side MFA enforcement. With DevExpress, we moved it entirely server-side.” – Cybersecurity Architect
Preferred tools: DevExpress Security Strategy Module, AuthenticationStateProvider for Blazor.
Most effective pattern: Combining OAuth2 login with HSM-based session storage.
Securing UI in Cloud and Serverless Environments
Serverless risks: Stateless UI functions in AWS Lambda or Azure Functions can be exploited if UI logic leaks into backend permissions.
UI in Cloud Platforms: Securing DevExpress-based interfaces on Azure or GCP requires hardened CSP policies and API Gateways.
Microservices & Identity: Complex UI flows across microservices increase surface area—OAuth2 and JWT must be tightly scoped.
Best practices include isolating UI logic from identity services and implementing strict CORS & RBAC.
Essential Defense Mechanisms Against Cyber Threats
To mitigate modern security threats, DevExpress and cybersecurity experts recommend:
🛡 Secure API Gateway with Rate-Limiting – Preventing denial-of-service attacks.
☑️ Key Security Mechanisms:
CSP (Content Security Policy): Defines which scripts and resources can load, blocking XSS vectors.
RBAC (Role-Based Access Control): Grants UI access based on user roles and responsibilities.
Content Sniffing Protection: Prevents browsers from misinterpreting content-type headers.
Integrating these with the DevExpress Framework ensures your UI resists injection-based exploits and access control bypass attempts.
Advanced Client-Side Encryption with DataShielder HSM PGP
For developers seeking maximum UI security and data sovereignty, DataShielder HSM PGP offers a breakthrough: PGP-grade encryption and signature workflows directly within the browser, fully offline and serverless.
Encrypt session data or API tokens with AES-256 CBC PGP inside DevExpress components.
Inject encryption keys via secure QR codes or NFC HSM—ideal for military or classified apps.
Digitally sign sensitive UI forms (consent, transactions) using RSA-4096 signatures without a third party.
Protect UI logic and credentials from phishing and typosquatting using sandboxed encryption containers.
DataShielder enables a sovereign Zero Trust architecture with quantum-resilient cryptography, ideal for air-gapped or critical systems using DevExpress-based interfaces. Learn more about DataShielder HSM PGP Data Encryption
Future of Cybersecurity in UI Development
By 2030, UI frameworks will be self-healing, capable of automatically mitigating threats before they escalate:
AI-powered authentication – Eliminating passwords with behavior-based security checks.
Blockchain-secured credentials – Reducing fraud in identity verification.
Post-Quantum Encryption – Protecting applications from next-gen cryptographic attacks.
Test Your Skills: UI Security Challenge
Identify the XSS flaw in a mock DevExpress dashboard – submit your correction.
Analyze a forged API call – can you spot and fix the CSRF risk?
Set up a secure login using OAuth2 in DevExpress and test its resistance to replay attacks.
Use OWASP Juice Shop or a DevExpress sandbox app to simulate these challenges.
Disruptive Trends in UI Security
Post-Quantum Cryptography (PQC): Anticipating quantum threats, NIST-backed PQC is reshaping encryption standards in UI-based communications.
Adversarial AI: Malicious AI can generate fake UI behaviors or bypass behavioral detection—requiring continuous learning models.
Zero-Knowledge Proof (ZKP): Web3 innovations leverage ZKP to authenticate users without revealing any credentials—ideal for privacy-centric UI flows.
☑️ Emerging Technologies: • PQC (Post-Quantum Cryptography): Uses quantum-resistant algorithms to future-proof UI encryption. • ZKP (Zero-Knowledge Proofs): Verifies user authenticity without revealing credentials—ideal for Web3 UI. • Adversarial AI: Malicious models that mimic UI behavior to bypass authentication layers.
As cyber threats evolve, DevExpress-compatible platforms must adopt proactive architectures to remain resilient.
Next Steps for Developers: Strengthening UI Security Today
The landscape of UI security is shifting rapidly, and developers cannot afford to be passive observers. Implementing DevExpress security features, enforcing Zero Trust authentication, and staying ahead of AI-assisted cyber threats will shape the resilience of tomorrow’s applications.
Actions to take now:
Review current security implementations in your applications and identify potential vulnerabilities.
Implement multi-layered security architecture, including MFA, encryption, and API protection.
Stay informed about emerging threats and adopt proactive security solutions.
Explore the full capabilities of DevExpress to reinforce your development strategies.
Offline Key Management for DevExpress UI Framework with NFC HSM
For projects demanding advanced physical security and air-gapped compatibility, the DataShielder NFC HSM Starter Kit provides a sovereign, offline solution for encryption, authentication, and credential protection.
☑️ What is an NFC HSM?• NFC HSM: A tamper-proof, contactless device storing cryptographic secrets offline. • Hardware-level security: All encryption, decryption, and authentication are performed inside the device. • No data exposure: Secrets are never exposed to the OS, browser, or any connected software.
This architecture ensures full offline cryptographic isolation—ideal for DevExpress UI integration in hostile environments.
NFC HSM Auth: Allows direct AES-256 key insertion into the UI component without exposure to software or network layers.
NFC HSM M-Auth: Enables remote key provisioning using RSA-4096 public key encryption and QR Code transfer.
Zero-server architecture: No cloud, no database, no tracking — full offline and anonymous security stack for DevExpress UI.
Optional Bluetooth Keyboard Emulator 🠖 Bridges encrypted secrets from NFC HSMs directly to any DevExpress UI field via secure BLE-to-HID transmission, without ever storing data on the device.
☑️ Segmented Key System Explained• Key splitting: Encryption keys are broken into multiple independent parts. • Distributed trust: Each segment is useless alone, eliminating single points of failure. • Quantum resilience: Designed to resist post-quantum and brute-force attacks.
This patented technique enhances confidentiality and mitigates future-proof threats in DevExpress-integrated infrastructures.
This patented anti-espionage technology was developed and manufactured in Europe (France / Andorra), and supports both civilian and military-grade use cases. The optional Bluetooth Keyboard Emulator ensures air-gapped usability, bypassing vulnerable OS environments via direct wireless input from an Android NFC device. Learn more about DataShielder NFC HSM Starter Kit
Glossary for the .NET DevExpress Framework
BLE (Bluetooth Low Energy): A wireless communication protocol optimized for minimal power consumption, ideal for secure real-time transmission in hardware devices.
.NET DevExpress Framework: A powerful UI development framework for .NET applications, combining DevExpress components with Microsoft technologies to build secure, high-performance interfaces.
DevExpress UI: A commercial set of UI components and controls for .NET developers, offering high-performance data visualization and interface design tools.
HID (Human Interface Device): A standard for devices like keyboards and mice. The Bluetooth Keyboard Emulator uses this to simulate key input securely.
NFC (Near Field Communication): A contactless communication technology used in secure hardware modules like the DataShielder NFC HSM to trigger cryptographic operations.
HSM (Hardware Security Module): A tamper-resistant physical device designed to protect and manage digital keys and perform cryptographic functions securely.
OTP (One-Time Password): A password valid for only one login session or transaction, often generated by HSMs for multi-factor authentication.
PGP (Pretty Good Privacy): An encryption protocol for securing email and files, supported by tools like PassCypher HSM PGP for passwordless key management.
PQC (Post-Quantum Cryptography): A set of cryptographic algorithms designed to be secure against quantum computer attacks.
RSA-4096: A strong asymmetric encryption algorithm using 4096-bit keys, used in M-Auth modules for secure remote key exchanges.
Segmented Key: A method of splitting a cryptographic key into independent parts, each stored separately for maximum security and resilience.
TOTP / HOTP: Time-based and counter-based OTP algorithms used in MFA systems for generating short-lived access codes.
Zero-Server Architecture: A security design with no reliance on cloud, servers, or databases — ensuring complete offline, anonymous operations.
Passwordless Security Trends in 2025: Navigating the Digital Landscape
Explore the key passwordless security trends, challenges, and innovative solutions shaping our online security. This interactive report delves into user password habits, the escalating impact of cyber threats, and the critical transition towards more secure digital authentication methods. According to the Digital 2024 Global Overview Report by We Are Social and Hootsuite [Source A], over 5 billion people are connected to the Internet, spending an average of 6 hours and 40 minutes online daily.
423+ Billion
active online accounts worldwide, highlighting the immense scale of modern digital identity management.
The Burden of Passwords: Why Traditional Security Falls Short
This section examines prevalent user password habits, the fatigue they generate, and the resulting risky practices. Understanding these behaviors is crucial for grasping the full extent of the current password security problem and the need for passwordless authentication solutions.
How Many Passwords Do Users Manage?
Individuals typically manage an average of 70 to 80 passwords, with some reports indicating figures as high as 100-150, or even over 250. According to Statista, a 2020 study estimated the average number of online accounts per internet user worldwide to be 90. This proliferation significantly contributes to password fatigue, pushing users towards less secure management methods.
Estimates of the average number of passwords per user, highlighting the scale of password management challenges.
Common & Risky Password Management Methods
Despite known security risks, many users opt for insecure password management methods: 54% rely on memory, 33% use pen and paper, 10% use sticky notes, and 15% use Excel or Notepad files. These practices underscore the urgent need for stronger authentication solutions.
Distribution of password management methods, revealing widespread insecure password habits.
78%
of people admit to reusing passwords across multiple accounts, and 52% use the same one on at least three accounts, a significant security vulnerability.
76%
of users find password management stressful, contributing to password fatigue and poor security practices.
5-7 / 10-15
daily logins for private users and professionals respectively, highlighting the continuous authentication burden.
1 in 3
IT support tickets are related to password resets, indicating a major operational inefficiency.
Password Fatigue and Weakness: A Persistent Cyber Risk
The proliferation of online accounts leads to “password fatigue,” which encourages risky practices such as using weak passwords (e.g., “123456”, “password”, used by over 700,000 people) or widespread reuse. Nearly 60% of employees, including security personnel, admit to reusing passwords, and 48% reuse them on professional platforms. Furthermore, 59% of US adults include personal information in their passwords. This situation is worsened by the fact that 44% of internet users rarely or never change their passwords, creating gaping security flaws. Institutions like ANSSI and CISA consistently emphasize the importance of unique and complex passwords to mitigate these risks and enhance digital security in 2025.
The FBI’s Annual Internet Crime Report consistently highlights the devastating impact of password-related vulnerabilities, linking them to billions in financial losses due to various cybercriminal activities. This data underscores the urgent need for robust cybersecurity solutions beyond traditional passwords.
A related study, Time Spent on Login Method , explores the efficiency and security trade-offs of different authentication methods, underscoring the significant impact of time spent on login processes. User trust often remains disconnected from their actual practices: 60% feel confident in identifying phishing attempts, yet risky behaviors persist, reinforcing the need for phishing-resistant authentication.
Cybersecurity’s Financial Impact and Emerging Threats in 2025
Password-related vulnerabilities have direct and significant financial consequences for organizations and pave the way for increasingly sophisticated cyberattacks. This section explores the rising cost of data breaches and the new tactics cybercriminals are employing, including AI-driven cyber threats.
Rising Cost of Data Breaches and Credential Exposure
Data leaks related to passwords represent a significant financial burden for organizations. The average cost of a data breach in 2025 is projected to be $4.5 million, potentially reaching $7.8 million when including public relations, legal fees, and downtime. These figures highlight the critical need for robust data protection strategies.
Average financial impact of data breaches, illustrating the significant cybersecurity risks
3.8 Billion
credentials leaked in the first half of 2025. A broader study reveals 19 billion exposed passwords, of which 94% are reused or duplicated, creating massive credential stuffing vulnerabilities.
81%
of breaches involve weak or stolen passwords. 68% of breaches are directly attributable to human factors, emphasizing the need for user-centric security solutions.
41%
increase in DDoS attacks in 2024, costing up to $22,000/minute in downtime. SMEs suffer 198% more attacks than large enterprises, highlighting SME cybersecurity challenges.
Emerging Threats: AI, Deepfakes, and Advanced Phishing Attacks
Cybercriminals are increasingly leveraging advanced methods such as AI-assisted phishing and deepfakes to deceive users. Generative AI (GenAI) enables more sophisticated and large-scale attacks, with 47% of organizations citing GenAI-powered adversarial advancements as their primary concern. In 2024, 42% of organizations reported phishing or social engineering incidents. These threats exploit human psychology, making the distinction between legitimate and malicious communications increasingly difficult. Gartner predicts that by 2026, 30% of companieswill consider identity verification solutions unreliable due to AI-generated deepfakes. Furthermore, IoT malware attacks increased by 400% in 2023, signaling growing vulnerabilities in connected devices and the broader IoT security landscape.
Toward a Passwordless Future: Adapting to New Authentication Models
Facing the inherent limitations of traditional passwords, the industry is rapidly moving towards passwordless authentication solutions. This section highlights the significant rise of passkeys, advancements in *biometric security, and the crucial integration of AI for enhanced security and a superior user experience.
Growth of the Passwordless Authentication Market
The global passwordless authentication market is projected to reach $22 billion in 2025and nearly $90 billion over the next decade. A striking 61% of organizations aim to transition to passwordless methods in 2025, and 87% of IT leaders express a strong desire for it. This reflects a clear industry shift towards more robust *digital identity solutions.
Projected growth of the global passwordless authentication market, demonstrating its rapid adoption.
15+ Billion
online accounts are now compatible with passkeys, marking a significant milestone in phishing-resistant authentication adoption.
550%
increase in daily passkey creation (end of 2024, Bitwarden), with over a million new passkeys created in the last quarter of 2024, underscoring rapid user acceptance.
70%
of organizations are planning or implementing passwordless authentication. Furthermore, customer support costs related to passwords can be reduced by 50%, offering substantial operational benefits.
57%
of consumers are now familiar with passkeys, a notable increase from 39% in 2022, indicating growing public awareness of new authentication methods.
Benefits of Passkeys and Biometrics in Passwordless Security
Passkeys, based on FIDO standards, offer inherently superior security as they are phishing-resistant and unique to each site. They significantly improve user experience with faster logins (e.g., Amazon 6 times faster, TikTok 17 times faster) and boast a 98% success rate (Microsoft, compared to 32% for traditional passwords). The NIST updated its guidelines for 2025, now requiring phishing-resistant multi-factor authentication (MFA) for all federal agencies, a critical step towards secure digital identity.
Biometric authentication (facial recognition, fingerprints, voice, behavioral biometrics) is continuously gaining accuracy thanks to AI. Multimodal and contactless approaches are developing rapidly. Behavioral biometrics, which analyzes subtle patterns like typing rhythm or mouse movement, enables continuous background identity verification, offering advanced user authentication capabilities. Privacy protection remains a major concern, leading to designs where biometric data primarily stays on the user’s device or is stored in a decentralized manner (e.g., using blockchain for decentralized identity).
Innovative Solution: PassCypher NFC HSM and HSM PGP – A Secure Alternative for Advanced Passwordless Authentication
The PassCypher NFC HSM and PassCypher HSM PGP solutions represent a major advancement in authentication management. They fundamentally differ from traditional FIDO/Passkey systems in their security architecture, offering a truly secure alternative for digital identity.
Passkeys: Security Model and Potential Vulnerabilities
Passkeys rely on private keys that are encrypted and inherently securely stored in integrated hardware components of the device. These are true hardware security modules (integrated HSMs):
TPM 2.0 (Trusted Platform Module) on Windows and Linux systems.
Secure Enclave (Apple) and TEE (Trusted Execution Environment) on Apple and Android devices. These are dedicated and isolated hardware elements on the SoC, not just software areas of the OS.
Using a passkey requires local user authentication (biometrics or PIN). It is crucial to note that this human authentication is not a direct decryption key for the private key. It serves to authorize the secure hardware component (TPM/Secure Enclave) to use the key internally to sign the authentication request, without ever exposing the private key. More information can be found on Passkeys.com [Source L].
However, a vulnerability remains: if an attacker manages to obtain physical access to the device *and* bypass its local authentication (e.g., via a keylogger for the PIN, or a sophisticated biometric spoofing technique), they could then instruct this same secure component to use the passkeys stored on the device. Furthermore, although TPM 2.0 is used for FIDO keys, its NVRAM memory is limited and not designed to directly store thousands of “master keys,” rather protecting keys linked to user profiles. This highlights a potential area for enhanced authentication security.
PassCypher: A Revolutionary Hybrid Architecture for Advanced Passwordless Security
PassCypher adopts a fundamentally different architecture, offering significant independence from hardware and software flaws of a single device, including zero-days or espionage threats. This system positions itself as a hybrid HSM, combining external physical storage with secure volatile memory computation, making it an ideal next-gen authentication solution.
PassCypher HSM PGP: Ultimate Authentication for PC/Mac/Linux Environments
Operational Diagram: PassCypher HSM PGP for Enhanced PC/Mac/Linux Security
Segmented Keys and Robust Encryption: Uses a pair of 256-bit segmented keys. One is securely stored in the browser’s local storage, the other on a user-preferred external medium (USB drive, SD card, SSD, encrypted cloud, or even an enclave on a partitioned disk secured by BitLocker). Encryption and decryption are performed with a single click via AES-256 CBC secured by PGP, by concatenating the two segmented keys only in volatile memory and only for the duration of direct field auto-filling (without copy-pasting). This ensures robust data protection and key management.
Advanced Protection against Cyberattacks: Integrates an anti-typosquatting URL sandbox and an anti-Browser-in-the-Browser (BITB) attack function, configurable in manual, semi-automatic, or automatic mode. Furthermore, with each connection, the “pwned” API is queried to check if the login and/or password have been compromised, displaying a visual alert message to the user (with a red hacker icon) if so. This provides proactive threat detection.
Speed and Convenience: All these operations are performed in one click, or two clicks if two-factor authentication is required (including for complex accounts like Microsoft 365 with different redirection URLs). This emphasizes user experience in cybersecurity.
PassCypher NFC HSM: Mobile and Connected Passwordless Security
Multi-Segment Encrypted Containers: Stores encrypted containers via multiple segmented keys. By default, this includes a unique pairing key to the Android phone’s NFC device, a secure 128-bit signature key preventing HSM module counterfeiting, and the administrator password. This ensures robust mobile security.
Encapsulation by Trust Criteria: Each container can be re-encrypted by encapsulation through the addition of supplementary trust criteria, such as:
One or more geographical usage zones.
One or more BSSIDs (Wi-Fi network identifiers).
A password or fingerprint.
A segmented key via QR code or barcode.
All this information, including access passwords to secure memory blocks of the EEPROM (e.g., M24LR64K from STM), is encrypted in the module’s memory, providing adaptable contextual authentication.
Connectivity and Interoperability: Enables secure connection from an Android phone defined as a password manager, by filling login/password fields with a simple tap of the PassCypher NFC HSM module. A secure pairing system via the local network between the phone (with the Freemindtronic app embedding PassCypher NFC HSM) and PassCypher HSM PGP also allows auto-login from containers stored in NFC HSM modules, ensuring seamless and secure access.
Secure Communication: All operations are performed in volatile memory via an innovative system of AES 256 segmented key encrypted communication between the phone and the extension, crucial for data integrity and privacy.
These PassCypher solutions, delivered internationally, offer unparalleled security and exceptional convenience, effectively addressing current and future cybersecurity challenges as a complete MFA authentication management solution. This segmented key system is protected by patents issued in the USA, Europe (EU), the United Kingdom (UK), Spain (ES), China, South Korea, and Japan, showcasing its innovative cybersecurity technology..
Global Cybersecurity Challenges in 2025: Beyond Passwordless
Beyond password management, several major interconnected challenges shape the broader cybersecurity landscape: the dual role of AI, growing supply chain risks, the persistent skills shortage, and increasing regulatory complexity. This section explores these critical issues impacting digital security in 2025.
The AI Paradox and Emerging Quantum Threat
AI is both a powerful tool for cybercriminals (GenAI for phishing, deepfakes, malware development) and for defenders (early detection, automation). A significant 66% of organizations expect AI to have the most significant impact on cybersecurity. However, only 37% report having processes in place to assess the security of AI tools before deployment, highlighting a crucial gap in AI security strategy. Nearly 47% of organizations cite GenAI-powered adversarial advancements as their primary concern. The FBI has warned that GenAI significantly reduces the time and effort criminals need to trick their targets. In the long term, quantum computing poses a significant threat to break current encryption, but only 40% of organizations have begun proactive quantum risk assessments, underscoring a critical emerging cyber threat.
Organizational readiness for AI security assessment, revealing areas for improvement in cybersecurity preparedness.
Supply Chain Vulnerabilities and Third-Party Cybersecurity Risks
The increasing complexity of supply chains is now recognized as a primary cyber risk. A concerning 54% of large organizations view it as the biggest obstacle to their cyber resilience. A pervasive lack of visibility and control over supplier security creates systemic failure points, making the entire ecosystem vulnerable. Furthermore, 48% of CISOs cite third-party compliance as a major challenge in implementing crucial cyber regulations, complicating risk management strategies.
48%
of CISOs cite third-party compliance as a major challenge, highlighting the complexity of supply chain security management.
Skills Shortage and Regulatory Fragmentation in Cybersecurity
The global cybersecurity skills gap has grown by 8% in just one year. Two-thirds of organizations report critical shortages in cybersecurity talent, and only 14% feel they have the necessary expertise to address modern threats. In the public sector, 49% of organizations lack the talent required to achieve their cybersecurity goals, exacerbating talent retention issues.
Meanwhile, 76% of CISOs believe regulatory fragmentation significantly affects their ability to maintain compliance, creating “regulatory fatigue” and diverting resources from essential risk-based strategies. For comprehensive cyber threat landscape information, consult ENISA’s official publications. Geopolitical tensions also increasingly impact global cybersecurity strategies, with nearly 60% of organizations reporting such effects, adding another layer of complexity to national cybersecurity efforts.
Strategic Recommendations for Enhanced Passwordless Security in 2025
To effectively navigate this complex and evolving cybersecurity landscape, proactive and strategic measures are essential. Here are key recommendations to strengthen the digital security of individuals and organizations in the face of 2025 challenges, focusing on passwordless solutions and comprehensive threat mitigation.
Actively explore and implement passkeys and advanced biometric authentication solutions. Emphasize the strong security benefits (especially phishing resistance) and improved user experience (faster, easier logins). Position passwordless technology as a strategic necessity to reduce support costs and enhance overall user satisfaction. Crucially, consider dedicated Hardware Security Module (HSM) solutions like PassCypher for optimal private key security and universal compatibility without extensive infrastructure adaptation.
Actively explore and implement passkeys and advanced biometric authentication solutions. Emphasize the strong security benefits (especially phishing resistance) and improved user experience (faster, easier logins). Position passwordless technology as a strategic necessity to reduce support costs and enhance overall user satisfaction. Crucially, consider dedicated Hardware Security Module (HSM) solutions like PassCypher for optimal private key security and universal compatibility without extensive infrastructure adaptation.
Actively explore and implement passkeys and advanced biometric authentication solutions. Emphasize the strong security benefits (especially phishing resistance) and improved user experience (faster, easier logins). Position passwordless technology as a strategic necessity to reduce support costs and enhance overall user satisfaction. Crucially, consider dedicated Hardware Security Module (HSM) solutions like PassCypher for optimal private key security and universal compatibility without extensive infrastructure adaptation.
Invest strategically in AI-driven defenses and thoroughly evaluate the security of all AI tools before deployment. Implement rigorous monitoring and enforce clear security requirements for the entire supply chain. Proactively anticipate and prepare for emerging threats from quantum computing, which could disrupt current encryption standards.
Actively support comprehensive cybersecurity training programs and leverage AI to augment human capabilities, addressing the critical skills shortage. Adopt “identity fabric” approaches to simplify access governance and streamline regulatory compliance, even amidst increasing fragmentation.
Signal Clone Breached: A National Security Wake-Up Call — Discover Jacques Gascuel’s in-depth analysis of TeleMessage, a failed Signal clone used by Trump 2 officials. Learn how a 20-minute breach exposed critical U.S. communications and triggered a federal response.
Signal Clone Breach: The TeleMessage Scandal That Exposed a Foreign Messaging App Inside U.S. Government
Executive Summary
TeleMessage, an Israeli-developed clone of Signal used by U.S. federal agencies, was breached by a hacker in just 20 minutes. This incident compromised diplomatic and government communications, triggered a Senate inquiry, and sparked a national debate about digital sovereignty, encryption trust chains, and FedRAMP reform. As the breach unfolded, it revealed deeper concerns about using foreign-developed, unaudited messaging apps at the highest levels of U.S. government operations.
Impacts U.S. cybersecurity debates ahead of 2028 elections
FedRAMP reform now inevitable
TeleMessage: A Breach That Exposed Cloud Trust and National Security Risks
TeleMessage, marketed as a secure alternative to Signal, became a vector for national compromise after the Signal Clone Breach, which exposed vulnerabilities in sensitive U.S. government environments—including FEMA and White House staff—without proper vetting. In this analysis, Jacques Gascuel reveals how this proprietary messaging platform, breached in just 20 minutes, shattered assumptions about cloud trust, code sovereignty, and foreign influence. Drawing on investigative sources and Senate reactions, this article dissects the TeleMessage breach timeline, identifies key architectural failures, and offers actionable recommendations for U.S. agencies, NATO allies, and cybersecurity policymakers as they prepare for the 2028 elections and a probable FedRAMP overhaul.
Signal Clone Breach in 20 Minutes: The TeleMessage Vulnerability
TeleMessage, pitched as a secure Signal clone for government communications, The app contained critical vulnerabilities. It A hacker compromised it in under twenty minutes by an independent hacker, exposing sensitive conversations from Trump 2 administration officials. This breach raises serious concerns about digital sovereignty, software trust chains, and foreign access to U.S. government data.
Behind the façade of “secure messaging,” TeleMessage offered only a cryptographic veneer with no operational cybersecurity rigor. In an era where trust in communication tools is vital, this case illustrates how a single technical flaw can turn into a diplomatic nightmare.
Context and History of TeleMessage
TeleMessage, founded in 1999, is an Israeli-based company that markets secure messaging solutions for enterprise use. Although widely used in sectors like healthcare and finance for compliance reasons, the app’s use by U.S. federal agencies, including FEMA and White House staff, raises questions about the vetting process for foreign-made software in high-security environments.
Signal Clone Breach Triggered by Trivial Vulnerability
In March 2024, a hacker known as “nat” discovered that TM SGNL—a custom Signal fork built by TeleMessage—exposed an unprotected endpoint: `/heapdump`. This leaked a full memory dump from the server, including credentials, passwords, and message logs.
Unlike Signal, which stores no communication history, TM SGNL logged everything: messages, metadata, phone numbers. Worse, passwords were hashed in MD5, a cryptographic function long considered broken.
The hacker used only open-source tools and a basic methodology: scanning ports, identifying weak endpoints, and downloading the memory dump. This access, which led to the Signal Clone Breach, could have also allowed malicious code injection.
Immediate Response to the Signal Clone Breach and Actions Taken
In response to the breach, TeleMessage quickly suspended its services for government users, and a Department of Justice investigation was launched. Additionally, some government agencies began reevaluating their use of non-U.S. developed platforms, considering alternatives with more robust security audits and controlled code environments. This incident has accelerated discussions around the adoption of sovereign encryption solutions within government agencies.
Comparison with Other Major Breaches
This breach is reminiscent of previous high-profile incidents such as the Pegasus spyware attack and the SolarWinds hack, where foreign-developed software led to massive exposure of sensitive information. Like these cases, the breach of TeleMessage underscores the vulnerabilities of relying on third-party, foreign-made solutions for secure communications in critical government operations.
Leaked TeleMessage Data Reveals Scope of the Signal Clone Breach Impact
The breach, a direct result of the Signal Clone Breach, exposed names, phone numbers, and logs of over 60 users, including FEMA personnel, U.S. diplomats, White House staff, and U.S. Secret Service members:
FEMA personnel
U.S. diplomats abroad
White House staff
U.S. Secret Service members
Logs contained details about high-level travel, diplomatic event coordination, and crisis response communications. Some metadata even exposed GPS locations of senders.
Although Mike Waltz, a senior Trump 2 official, wasn’t listed directly in the compromised logs, his staffers used the app. This breach jeopardized the confidentiality of state-level communications.
Impact on Government Agencies
The breach affected more than 60 users, including FEMA personnel, U.S. diplomats, White House staff, and U.S. Secret Service members. Exposed messages contained details about diplomatic event coordination and high-level travel logistics, further compromising national security communications.
Long-Term Impact on U.S. Security Policies
This breach has long-lasting implications for U.S. cybersecurity policy, especially in the context of government procurement practices. As foreign-made solutions increasingly enter high-security environments, the call for **greater scrutiny** and **mandatory independent audits** will become louder. This incident could lead to sweeping reforms that demand **full code transparency** for all communication platforms used by the government.
Long-Term Solutions for Securing Government Communications Post Signal Clone Breach
While the breach exposed critical vulnerabilities in TeleMessage, it also emphasizes the need for sovereign encryption solutions that assume breach resilience by design. Platforms like DataShielder offer offline encryption and segmented key architecture, ensuring that even in the event of a server or app breach, data remains cryptographically protected and inaccessible to unauthorized parties.
Authorities’ Response: CISA and CVE Inclusion
The Cybersecurity and Infrastructure Security Agency (CISA) has added TeleMessage’s vulnerability, discovered during the Signal Clone Breach, to its list of Known Exploited Vulnerabilities (KEV), under CVE-2025-47729. This inclusion mandates that federal agencies take corrective actions within three weeks, underscoring the urgency of addressing the breach and securing communications platforms used by government officials.
Call to Action: Strengthening Cybersecurity Measures
As the 2028 U.S. elections approach, it’s crucial that digital sovereignty becomes a central part of national security policies. The breach of TeleMessage serves as a stark reminder that reliance on foreign-made, unaudited platforms jeopardizes the security of government communications. It is time for policymakers to take decisive action and prioritize secure, sovereign encryption solutions to safeguard the future of national security.
Signal Clone Breached: A Deep Dive into the Data Exfiltration and the Attackers Behind the Incident
The breach of TeleMessage revealed alarming details about the extent of the data exfiltrated and the attacker responsible. Here’s a closer look at what was stolen and who was behind the attack:
Types and Volume of Data Exfiltrated
The hacker was able to extract a vast amount of sensitive data from TeleMessage, compromising not only personal information but also highly confidential government communications:
User Personal Information: Over 60 individuals’ names, phone numbers, and other personal identifiers were exposed, including senior U.S. officials and diplomats.
Communication Logs: Sensitive logs containing high-level communications about diplomatic events, travel coordination, and crisis response were compromised.
Metadata: Metadata revealed GPS locations of senders, potentially endangering individuals’ safety and security.
Credentials and Passwords: The breach exposed passwords stored in MD5 hashes, a cryptographic function known to be vulnerable to attacks.
Who Was Behind the Attack?
The hacker known as “nat” is believed to be the one behind the breach. Using basic open-source tools, nat discovered a critical vulnerability in TeleMessage’s system. The vulnerability was an unprotected endpoint, , which allowed access to the server’s full memory dump. This dump included sensitive data, such as passwords, message logs, and credentials./heapdump
With a simple scanning technique, nat was able to download the full memory dump, bypassing the security measures in place. This attack underscores the need for robust penetration testing, regular audits, and a more resilient approach to securing sensitive communications in government environments.
Consequences of the Data Exfiltration
The exposure of this data has had significant national security implications. Government personnel, including those at FEMA, the U.S. Department of State, and even the White House, were affected. The breach jeopardized not only their personal data but also the confidentiality of state-level communications.
Flawed Architecture Behind the Signal Clone Breach
TeleMessage’s system relied on:
A Spring Boot server with unprotected default endpoints
Logs sent in plaintext
No segmentation or access control for sensitive services
Poor JWT token management (predictable and insecure)
On the day of the attack, TeleMessage TeleMessage continued to use expired TLS certificates for some subdomains, undermining even HTTPS trust.
The lack of auditing, pentesting, or security reviews was evident. The incident reveals a platform more focused on marketing than technical resilience.
Figure: This simplified architecture diagram highlights how the proprietary TeleMessage platform was structured before the Signal clone breach. Key vulnerabilities such as unprotected endpoints and poor token handling are clearly marked.
How DataShielder Prevents Damage from a Signal Clone Breach
A Sovereign Encryption Strategy That Assumes Breach — and Renders It Harmless
By contrast, in the context of the Signal clone breached scandal, even the most catastrophic server-level vulnerabilities — such as the exposed endpoint in TeleMessage — would have had zero impact on message confidentiality if users had encrypted their communications using a sovereign encrypted messaging solution using segmented AES-256 CBC like DataShielder NFC HSM or DataShielder HSM PGP./heapdump
With DataShielder NFC HSM, users encrypt messages and files directly on their NFC-enabled Android phones using segmented AES-256 CBC keys stored in a contactless hardware security module (HSM). Messages sent via any messaging app — including Signal, TeleMessage, LinkedIn, or email — remain encrypted end-to-end and are decrypted only locally and temporarily in volatile memory. No server, device, or cloud infrastructure ever handles unencrypted data.
Meanwhile, DataShielder HSM PGP offers equivalent protection on desktop environments. Operating on Windows and macOS, it enables users to encrypt and decrypt messages and files in one click using AES-256 CBC PGP based on a segmented key pair. Even if an attacker exfiltrated logs or memory snapshots — as occurred with TeleMessage — the content would remain cryptographically inaccessible.
Ultimately, if FEMA staffers, diplomats, or White House personnel had used these offline sovereign encryption tools, the fallout would have been limited to unreadable encrypted blobs. No plaintext messages, credentials, or attachments would have been accessible — regardless of how deep the server compromise went.
✅ Key Benefits of Using DataShielder NFC HSM and HSM PGP:
AES-256 CBC encryption with segmented key architecture
Fully offline operation — no servers, no cloud, no identifiers
One-click encryption/decryption on phone or PC
Compatible with any messaging system, even those already compromised
Designed for GDPR, national sovereignty, and defense-grade use cases
Ultimately, the Signal clone breached narrative exposes the need for encryption strategies that assume breach — and neutralize it by design. DataShielder offers precisely that kind of sovereign-by-default resilience.
🔍 Secure Messaging Comparison: Signal vs TeleMessage vs DataShielder
Feature
Signal
TeleMessage
DataShielder NFC HSM / HSM PGP
AES-256 CBC Encryption (Segmented or Not)
❌
(uses Curve25519 / X3DH + Double Ratchet)
❌
(used MD5 and logged messages)
✅
(AES-256 CBC with segmented keys)
Segmented Key Architecture
❌
❌
✅
(with RSA 4096 or PGP sharing)
Offline Encryption (No server/cloud)
❌
❌
✅
Private Keys Stored in Terminal
✅
✅
(and exposed in heap dumps)
❌
(never stored, only in volatile memory)
Survives Server or App Breaches
⚠️
(depends on OS/hardware)
❌
✅
(designed for breach resilience)
Compatible with Any Messaging App
❌
(limited to Signal protocol)
❌
✅
(works with email, LinkedIn, SMS, RCS, etc.)
Open Source / Auditable
✅
❌
✅
(uses patented & auditable architecture)
This side-by-side comparison shows why DataShielder offers unmatched security and operational independence—even in catastrophic breach scenarios like the Signal clone breached incident. Its patented segmented key system, end-to-end AES-256 CBC encryption, and absence of local key storage form a resilient framework that neutralizes even advanced threats.
Note brevet
The segmented key system implemented in all DataShielder solutions is protected by an international patent, including United States patent registration.
This unique approach ensures non-residency of private keys, offline protection, and trust-chain fragmentation — rendering even deep breaches ineffective.
Political Fallout of the Signal Clone Breach: Senate Response
In response to the breach, Senator Ron Wyden immediately called for a Department of Justice investigation. He argued that the app’s use by federal agencies potentially constitutes a violation of the False Claims Act.
Moreover, Wyden raised a serious national security concern by questioning whether the Israeli government could have accessed the compromised data, given that TeleMessage is based in Israel. If proven true, such a breach could escalate into a full-fledged diplomatic crisis.
Crucially, Wyden emphasized a fundamental failure: no U.S. authority ever formally validated the app’s security before its deployment to federal agents—a lapse that may have opened the door to foreign intrusion and legal consequences.
Legal Note: Experts say retaining logs of high-level official communications could violate the Presidential Records Act, and even the Espionage Act, if classified material was exposed.
Unlike Signal, whose codebase is open and auditable, TM SGNL TeleMessage created a proprietary fork that lacked transparency. Archiving messages eliminated Signal’s core benefit: ephemeral communication.
Experts stress that a secure messaging app must be publicly verifiable. Closed and unreviewed implementations create critical blind spots in the trust chain.
Political Reactions: Senator Ron Wyden’s Call for Investigation
Senator Ron Wyden called for a Department of Justice investigation, raising serious concerns about national security and potential violations of the False Claims Act. Wyden emphasized the need for transparency and accountability regarding the use of foreign-made communication tools in U.S. government operations.
Black Box Encryption in Signal Clone Breaches: A Dangerous Illusion
An app can claim end-to-end encryption and still be utterly vulnerable if it logs messages, exposes traffic, or retains keys. Encryption is only one link in a broader security chain involving architecture and implementation.
This mirrors the lessons of the Pegasus spyware case: secret code is often the enemy of real security.
Geostrategic Fallout from the Signal Clone Breach: A Wake-Up Call
Far beyond a mere technical failure, this breach represents a critical chapter in a broader influence war—one where the ability to intercept or manipulate state communications serves as a strategic advantage. Consequently, adversarial nations such as Russia, China, or Iran may weaponize the TeleMessage affair to highlight and exploit American dependency on foreign-developed technologies.
Furthermore, in a post-Snowden world shaped by heightened surveillance awareness, this case underscores a troubling paradox: a national security strategy that continues to rely on unverified, foreign-controlled vendors to handle sensitive communications. As a result, digital sovereignty emerges not just as a policy option—but as a strategic imperative.
Lessons for NATO and the EU
European and NATO states must learn from this:
Favor open-source, vetted messaging tools with mandatory audits
Ban apps where code and data flows aren’t 100% controlled
Develop sovereign messaging standards via ENISA, ANSSI, or the BSI
This also calls for investing in decentralized, offline encryption platforms—without cloud reliance or commercial capture—like NFC HSM or PGP HSM technologies.
Impact on Government Communication Practices
This breach highlights the risks of using unverified messaging apps for sensitive government communications. It underscores the importance of strengthening security protocols and compliance in the tools used by government agencies to ensure that national security is not compromised by foreign-made, unaudited platforms.
Signal Clone Breach Fallout: Implications for 2028 Elections and FedRAMP Reform
As the 2028 presidential race rapidly approaches, this scandal is poised to profoundly influence the national conversation around cybersecurity. In particular, candidates will face urgent questions: How will they protect U.S. government communications from future breaches?
Simultaneously, FedRAMP (Federal Risk and Authorization Management Program) reform appears imminent. Given recent failures, traditional cloud certifications will no longer suffice. Instead, the next generation of federal security baselines will need to ensure:
Verified backend sovereignty
Independent third-party auditability
Full Zero Trust compliance
In light of these developments, this incident could fast-track federal adoption of open-source, sovereign solutions hosted within tightly controlled environments.
Who Develops TeleMessage?
TeleMessage is developed by TeleMessage Ltd., an Israeli-based software company headquartered in Petah Tikva, Israel. Founded in 1999, the company specializes in enterprise mobile messaging and secure communication solutions. Its core business includes SMS gateways, mobile archiving, and secure messaging services.
Despite offering features tailored to compliance-heavy sectors like healthcare and finance, TeleMessage is not an American company and operates under Israeli jurisdiction. This legal and operational reality introduces potential security and sovereignty concerns when its services are deployed by foreign governments.
Why Is a Foreign-Made Messaging App Used in U.S. Government Agencies?
The fact that a foreign-developed proprietary messaging platform was adopted in sensitive parts of the U.S. government is surprising—and concerning. Several critical risks emerge:
Sovereignty Risk: U.S. agencies cannot fully verify, audit, or control TeleMessage’s software or data-handling practices.
Legal Exposure: As an Israeli entity, TeleMessage could be subject to local laws and intelligence cooperation requirements, including secret court orders.
Backdoor Possibilities: Without full code transparency or U.S.-based auditing, the platform may contain vulnerabilities—intentional or not—that compromise national communications.
🛑 Bottom line: No matter the claims of encryption, a messaging tool built and controlled abroad inherently places U.S. national security at risk—especially if deployed in White House staff or federal emergency agencies.
Strategic Misstep: TeleMessage and the Sovereignty Paradox
This case illustrates a paradox in modern cybersecurity: a nation with vast technical capacity outsources secure messaging to foreign-made, unaudited platforms. This paradox becomes especially dangerous when used in political, diplomatic, or military contexts.
Trust Chains Broken: Without control over source code and hosting infrastructure, U.S. officials place blind trust in a black-box system.
Supply Chain Vulnerability: Foreign-controlled tech stacks are harder to verify, patch, and secure against insider or state-level threats.
Diplomatic Fallout: If foreign governments accessed U.S. data via TeleMessage, the breach could escalate into a full diplomatic crisis.
Lessons Learned
Adopt only auditable, sovereign solutions for national security messaging.
Enforce Zero Trust by default, assuming breach potential even in “secure” tools.
Mandate domestic code ownership, cryptographic control, and infrastructure localization for all federal communication systems.
Final Word
The Signal clone breach is not just a cautionary tale of poor technical design—it’s a wake-up call about digital sovereignty. Governments must control the full lifecycle of sensitive communication platforms—from source code to cryptographic keys.
DataShielder, by contrast, embodies this sovereignty-by-design approach with offline, segmented key encryption and patented trust-chain fragmentation. It’s not just a messaging enhancement—it’s an insurance policy against the next breach.
2023 — TM SGNL launched by TeleMessage, marketed as a secure alternative to Signal for government use.
January 2024 — Deployed across FEMA, diplomatic missions, and White House staff without formal cybersecurity audit.
March 20, 2024 — Independent hacker “nat” discovers an open endpoint leaking full memory contents./heapdump
March 22, 2024 — Full dump including messages, credentials, and phone logs is extracted using public tools.
April 1, 2024 — Leaked data shared anonymously in private cybercrime forums and OSINT channels.
May 2, 2025 — First major media coverage by CyberScoop and WIRED reveals breach to the public.
May 6, 2025 — Senator Ron Wyden demands DOJ investigation, citing espionage and FedRAMP violations.
May 21, 2025 — Reuters confirms breach included classified communications of senior U.S. officials.
This visual timeline highlights the rapid descent from unchecked deployment to full-scale data compromise—with unresolved strategic consequences.
Final Thoughts: A Hard Lesson in Cyber Sovereignty
This case clearly illustrates the dangers of poor implementation in critical tools. Unlike robust platforms like Signal, which is designed to leave no trace, TM SGNL demonstrated the exact opposite behavior, logging sensitive data and exposing communications. Consequently, this breach underscores the urgent need to rely on secure, sovereign, and auditable platforms—not commercial black boxes driven by opacity.
Beyond the technical flaws, this incident also raises a fundamental question: Who really controls the technology securing a nation’s most sensitive data? In an era of escalating digital threats, especially in today’s volatile geopolitical climate, digital sovereignty isn’t optional—it’s an essential pillar of national strategy. The Signal clone breached in this case now serves as a cautionary tale for any government outsourcing secure communications to opaque or foreign-built platforms.
Recent reports confirm the data leak, with Reuters revealing more details about the exposed data. DDoSecrets has published a 410 GB dataset containing messages and metadata from the breach, further fueling the controversy surrounding TeleMessage’s security flaws. TeleMessage has since suspended its services and removed references to the app from its website, signaling the severity of the breach.
The content provided herein is for informational and educational use only. Freemindtronic S.L. Andorra disclaims all liability for direct or indirect consequences arising from the use or interpretation of this document. The information is shared without any warranty, and its use is under the full responsibility of the reader. Any reproduction, adaptation, or redistribution must preserve the original attribution to Freemindtronic Andorra and include this legal disclaimer.
APT36 Cyberespionage Group Documentation
APT36 Cyberespionage Group is the focus of this technical reference, designed as a public documentation annexed to related posts published by Freemindtronic.
This document is a comprehensive technical reference on the APT36 Cyberespionage Group, freely downloadable for research and awareness purposes.It is part of Freemindtronic’s ongoing commitment to sharing threat intelligence and promoting proactive defense practices against advanced persistent threats (APT).
APT36 (Transparent Tribe / Mythic Leopard) Cyberespionage Group
Last Updated: May 16, 2025 Version: 1.1 Source: Freemindtronic Andorra
Introduction to the APT36 Cyberespionage Group
The Advanced Persistent Threat (APT) group known as APT36, Transparent Tribe, and Mythic Leopard has been an active cyber espionage actor for several years. Primarily targeted at India, APT36 is notorious for its persistent campaigns to collect sensitive intelligence from a variety of organizations, including government, military, and potentially the research and education sectors. Their operations are often characterized by the use of sophisticated spearphishing techniques and bespoke malware, such as Poseidon, Crimson RAT, ElizaRAT, and CapraRAT. The purpose of this reference document is to compile and analyze the available information about APT36, its tactics, techniques, and procedures (TTPs), infrastructure, and recommended mitigation measures.
History and Evolution of the APT36 Cyberespionage Group
Freemindtronic Andorra focuses its initial analysis on recent IOCs (2023-2025), but APT36 has been active for several years. Reports from other security organizations confirm that cyber espionage campaigns targeting Indian entities began as early as 2016. Over time, APT36 has continuously adapted its TTPs, refining techniques to bypass security measures and develop new infiltration tools. For example, the emergence of Android RATs like CapraRAT expands their reach to mobile devices, increasing the risk for smartphone users. Meanwhile, leveraging platforms such as Telegram for C2 operations (ElizaRAT) indicates an attempt to exploit less monitored communication channels, enhancing their stealth capabilities.
Cybersecurity experts continue to debate APT36’s precise attribution. Although its primary targets are in India, certain indicators suggest possible connections to Pakistani state interests. The choice of decoy themes and the sectors under attack reinforce this hypothesis. However, formal attribution remains challenging, requiring deeper analysis and more conclusive evidence. In the complex world of cyber threat intelligence, determining the true origin of APT groups demands a meticulous and multi-layered approach.
Techniques, Tactics and Procedures (TTPs) Employed by APT36
Reconnaissance: APT36 likely conducts careful reconnaissance of its targets, collecting publicly available information (OSINT) on employees, organizational structures, and sensitive projects. Social media profiles and official websites are potential sources of information. Social engineering can also be used to obtain information from employees.
Initial point of entry:
Spearphishing: This is APT36’s preferred attack vector. Emails are meticulously designed to mimic legitimate communications (e.g., government notifications, invitations to academic events, security app updates). Malicious attachments (Word documents, PDFs, executables, RTF files, screensavers) or links to compromised websites are used to distribute the initial payloads. Identified filenames (e.g., Briefing_MoD_April25.docx, Alert_Kavach_Update.exe) illustrate this tactic by targeting topical themes or topics relevant to potential victims.
Exploiting Vulnerabilities: Although not explicitly mentioned in the initial IOCs, it is possible that APT36 could exploit known software vulnerabilities in commonly used applications (e.g., Microsoft Office) to gain initial access. RTF files are often used in such attempts.
Website Compromise: It is possible, although not directly proven by IOCs, that APT36 could compromise legitimate websites to host payloads or to redirect victims to phishing pages.
Persistence:
Once a system is compromised, APT36 puts mechanisms in place to maintain access even after a reboot. IOCs reveal the use of specific Windows registry keys (HKEY_CURRENT_USERSoftwareCrimsonRAT, HKEY_LOCAL_MACHINESYSTEMElizaRATPersistence, HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionRunCapraStart) to ensure the automatic execution of malware. On Android, persistence is often achieved by masquerading as legitimate app updates (com.kavach.update.apk).
Lateral Movement:
After obtaining an initial foothold, APT36 attempts to move laterally within the victim’s network to reach more sensitive systems. This can involve exploiting network shares, using stolen credentials (potentially obtained via keylogging), and executing remote commands via deployed RATs.
Command and Control (C2)
The malware used by APT36 communicates with attacker-controlled C2 servers to receive instructions and exfiltrate data. The identified IP addresses (45.153.241.15, 91.215.85.21, etc.) potentially represent this C2 infrastructure. ElizaRAT’s use of TelegramBot suggests leveraging popular messaging platforms for C2, which can make detection more difficult. HTTP and HTTPS are likely used for C2 traffic, potentially hidden within legitimate web traffic.
Data exfiltration
Since APT36’s primary focus is espionage, data exfiltration is a crucial step. The types of data targeted likely include sensitive documents (military, government, research), credentials (usernames, passwords), and other strategic information. Data can be exfiltrated through established C2 channels, potentially compressed, or encrypted to avoid detection.
APT36 Malware and Tools
The APT36 Cyberespionage Group relies on various Remote Access Trojans (RATs) for espionage operations, especially on Indian targets.
Poseidon malware: A sophisticated RAT with extensive espionage and data theft capabilities. Its hash (3c2cfe5b94214b7fdd832e00e2451a9c3f2aaf58f6e4097f58e8e5a2a7e6fa34) allows it to be identified on compromised systems.
Crimson RAT: Another RAT commonly associated with APT36, offering keylogging, screen capture, and remote command execution features. Its mutex (GlobalCrimsonRAT_Active) and registry key (HKEY_CURRENT_USERSoftwareCrimsonRAT) are important indicators.
ElizaRAT: This RAT appears to be using Telegram for C2 communication, which is a potential evasion tactic. Its loader (9f3a5c7b5d3f83384e2ef98347a6fcd8cde6f7e19054f640a6b52e61672dbd8f) and its mutex (LocalElizaRATSession) are key IOCs.
CapraRAT (Android): Indicates APT36’s ability to target mobile devices. Its features can include stealing SMS, contacts, audio recording, and location tracking. Its package name (com.kavach.update.apk) and mutex (SessionsBaseNamedObjectsCapraMobileMutex) are specific flags.
Obfuscation and Evasion: APT36 uses a variety of techniques to make its malware and communications more difficult to detect and analyze. Examples of these tactics include Base64 encoding of sensitive information (bXlQYXNzd29yZDEyMw==, JAB1c2VyID0gIkFkbWluIg==) and obfuscation of JavaScript code (eval(decodeURIComponent(‘%75%70%64%61%74%65’))) are examples of these tactics.
APT36 Cyberespionage Group Infrastructure
APT36’s infrastructure includes the command and control (C2) servers used to direct malware deployed on victims’ systems. The identified IP addresses (45.153.241.15, 91.215.85.21, 185.140.53.206, 192.241.207.45, 103.145.13.187) are focal points for blocking and monitoring. Analysis of these IP addresses can reveal information about the hosting providers used and potentially other related activities. Malicious domains (kavach-app[.]com, indiapost-gov[.]org, gov-inportal[.]org, indian-ministry[.]com, securekavach[.]in) are used in phishing campaigns to host fake login pages or to distribute malware. These domains often imitate legitimate websites to trick victims. Analyzing the registration information of these domains can sometimes provide clues about the actors behind these activities. It is also possible that APT36 is using compromised servers as relays to hide the origin of its attacks and make tracing more difficult.
Motivations and Targets of the APT36 Cyberespionage Group
The main motivation for APT36 appears to be cyber espionage, with a particular interest in gathering strategic intelligence related to India. Typical targets include:
Indian government entities (ministries, agencies).
Military and defense organizations.
Research institutes and universities.
Telecommunications companies.
Potentially other sectors considered strategically important.
The themes of phishing lures (defense, foreign affairs, security updates of government applications) reinforce this assessment of targets and motivations.
Indicators of Compromise (IOCs) Associated with APT36
IP addresses of C2 Servers (2023–2025):
45.153.241.15: Observed in C2 communications related to APT36 malware samples.
91.215.85.21: Frequently associated with command and control activities for Crimson and Eliza RATs.
185.140.53.206: Used as a point of contact for data exfiltration.
192.241.207.45: Server potentially hosting malicious web infrastructure components (phishing pages).
103.145.13.187: IP address involved in the distribution of malicious payloads.
File Hashes (SHA-256):
3c2cfe5b94214b7fdd832e00e2451a9c3f2aaf58f6e4097f58e8e5a2a7e6fa34 (Poseidon malware): Identifies a specific strain of the Poseidon RAT.
bd5602fa41e4e7ad8430fc0c6a4c5d11252c61eac768835fd9d9f4a45726c748 (Crimson RAT) : Signature unique d’une variante de Crimson RAT.
9f3a5c7b5d3f83384e2ef98347a6fcd8cde6f7e19054f640a6b52e61672dbd8f (ElizaRAT loader): Allows you to detect the initial ElizaRAT deployment program.
2d06c1488d3b8f768b9e36a1a5897cc6f87a2f37b8ea8e8d0e3e5aebf9d7c987 (CapraRAT APK) : Hash de l’application Android malveillante CapraRAT.
Malicious domains:
kavach-app[.]com: Imitation of the security application “Kavach”, probably used to distribute CapraRAT.
indiapost-gov[.]org: Impersonates the Indian Postal Service site, used for phishing or distributing malicious attachments.
gov-inportal[.]org: Attempt to imitate an Indian government portal to target civil servants.
Indian-Ministry[.]com: Generic but credible domain name to target Indian ministries.
securekavach[.]in: Another attempt to imitate “Kavach”, aimed at appearing legitimate to Indian users.
Suspicious URLs:
http://kavach-app.com/update: Fake update URL for the “Kavach” app, potential distribution point for CapraRAT.
http://gov-inportal.org/download/defense-docs.exe: Link to a malicious executable disguised as a defense document.
http://securekavach.in/assets/login.php: Potential phishing page to steal credentials.
https://indiapost-gov.org/track/status.aspx: A sophisticated phishing page that mimics package tracking to trick sensitive information into entering or downloading malware.
Phishing File Names:
Briefing_MoD_April25.docx: Decoy potentially targeting the Ministry of Defense.
Alert_Kavach_Update.exe: False update alert for “Kavach” probably distributing a RAT.
IndiaDefense2025_strategy.pdf: Decoy containing strategic information on Indian defense.
MoEA_internal_memo_23.rtf: Fake internal memo from the Ministry of Foreign Affairs.
academic-research-invite.scr: Malicious screensaver masquerading as an academic invite.
Fake Android Application Package Names:
com.kavach.update.apk: Malicious package masquerading as an update of “Kavach”.
com.defensebriefing.alert.apk: Malicious Android app related to defense.
com.india.education.portal.apk: Fake app linked to an Indian educational portal.
Mutexes:
GlobalCrimsonRAT_Active: Indicates the active presence of the Crimson RAT on a Windows system.
LocalElizaRATSession: Indicates an active Eliza RAT session.
SessionsBaseNamedObjectsCapraMobileMutex: A Mutex specific to the Android version of CapraRAT.
Registry Keys (Windows):
HKEY_CURRENT_USERSoftwareCrimsonRAT: Key used by Crimson RAT to store its configuration.
HKEY_LOCAL_MACHINESYSTEMElizaRATPersistence: A key indicating a persistence mechanism for ElizaRAT.
HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionRunCapraStart: Automatic startup key for CapraRAT.
Known User-Agents:
Mozilla/5.0 (Windows NT 10.0; Win64; x64) APT36Client/1.0: User-agent potentially used by a communication tool or an APT36-specific implant.
TelegramBot-ElizaRAT/2.5: Indicates the use of the Telegram API by the Eliza RAT for C2 communication.
CapraAndroidAgent/1.4: User-agent identifying the Capra malicious agent on Android devices.
Encoded/Obfuscated Strings Used in Payloads:
bXlQYXNzd29yZDEyMw==: A Base64-encoded string, decoding as “myPassword123”, potentially hard-coded identifiers or configuration strings.
JAB1c2VyID0gIkFkbWluIg==: Another Base64 string, decoding to $user=”Admin”, suggesting the use of PowerShell for malicious operations.
eval(decodeURIComponent(‘%75%70%64%61%74%65’)): Obfuscated JavaScript code that, when de-encoded and evaluated, executes the “update” function, potentially indicating a malicious update or dynamic code execution feature.
Mitigation and Detection Measures Against the APT36 Cyberespionage Group
Mitigating threats from the APT36 Cyberespionage Group requires layered defenses, active monitoring, and awareness training.
General recommendations:
Awareness of the threat of spearphishing: Train employees to identify suspicious emails, verify the authenticity of senders, and not click on links or open attachments from unknown or unsolicited sources.
Implement multi-factor authentication (MFA): Strengthen account security by requiring a second form of authentication in addition to the password.
Keeping systems and software up to date: Regularly apply security patches for operating systems, applications, and web browsers to reduce the risk of vulnerability exploitation.
Network segmentation: Limit the spread of threats by segmenting the network and enforcing strict access control policies.
Network traffic and log monitoring: Implement monitoring systems to detect suspicious network activity, communications to known IP addresses and C2 domains, and unusual access attempts. Regularly analyze system and application logs.
Use robust security solutions: Deploy and maintain anti-virus solutions, endpoint detection and response (EDR) systems, and intrusion prevention and detection (IDS/IPS) systems.
Specific measures based on IOCs:
IOC Blocking: Integrate identified IP addresses, domains, and file hashes into firewalls, DNS servers, antivirus solutions, and web filtering systems to block communications and malware associated with APT36.
Rule-Based Detection: Implement Yara and Sigma rules (if available) to identify patterns and characteristics of malware and APT36 activities on systems and in logs.
Traffic Inspection: Configure security systems to inspect network traffic for suspicious user agents (APT36Client/1.0, TelegramBot-ElizaRAT/2.5, CapraAndroidAgent/1.4).
Registry and Mutex Monitoring: Use endpoint monitoring tools to detect the creation of registry keys and mutexes associated with RATs used by APT36.
Email Scanning: Implement spam filters and email scanning solutions to identify and block messages containing known file names and phishing URLs.
Mobile device security: Deploy mobile security solutions and educate users about the risks of installing apps from unknown sources. Monitor Android devices for the presence of malicious package names.
Incident response strategies:
Response Plan: Develop and maintain a cybersecurity incident response plan specific to APT threats, including steps to follow in the event of detection of APT36-related activity.
Isolation: In the event of a suspected compromise, immediately isolate the affected systems from the network to prevent the spread of the attack.
Forensic Analysis: Perform in-depth forensic analysis to determine the scope of the breach, identify compromised data, and understand the tactics used by attackers.
Eradication: Completely remove malware, persistence mechanisms, and tools used by attackers from compromised systems.
Restore: Restore systems and data from clean, verified backups.
Lessons learned: After an incident, analyze causes and processes to improve security measures and response procedures.
Strengthening Security Posture: The Freemindtronic HSM Ecosystem Against APT36
The table below summarizes how each threat vector used by APT36 is mitigated by Freemindtronic’s sovereign tools — whether mobile or desktop, fixed or remote, civilian or military-grade. It compares threat by threat how DataShielder and PassCypher mitigate attacks — whether on mobile, desktop, or air-gapped infrastructure.
To facilitate adoption and use by organizations in India, the interfaces and documentation for our DataShielder and PassCypher solutions are also available in Hindi.
Comparison of APT36 Threat Mitigation by the Freemindtronic HSM Ecosystem
APT36 Tactic / Malware
DataShielder NFC HSM (Lite/Auth/M-Auth)
DataShielder HSM PGP (Win/macOS)
PassCypher NFC HSM (Android)
PassCypher HSM PGP (Win/macOS)
Spearphishing (India Post, Kavach)
✔ QR-code encryption + sandbox
✔ Signature check + offline PGP
✔ URL sandbox + no injection
✔ Sandboxed PGP container
Crimson RAT
✔ NFC avoids infected OS
✔ No system-stored keys
✔ Secrets off-device
✔ No memory exposure
CapraRAT
✘
✘
✔ Not stored in app
✔ Desktop-paired use only
Telegram C2
✔ 100% offline
✔ No cloud
✔ Offline
✔ Offline
ApolloStealer
✔ Credentials never exposed
✔ Key never loaded in system
✔ Immune to clipboard steal
✔ Phishing-proof login
Poseidon (Fake Kavach on Linux)
✔ NFC-only: bypasses compromised OS
✘ Not Linux-compatible
✘ Not on Android
✔ No OS dependency
ClickFix (command injection)
✔ No shell interaction possible
✔ PGP validation
✔ No typing / no pasting
✔ No terminal interaction
CEO Fraud / BEC
✔ Auth/M-Auth modules encrypt orders
✔ Digital signature protection
✔ No spoofing possible
✔ Prevents impersonation
Outlook and Next Steps Regarding APT36
APT36 (Transparent Tribe / Mythic Leopard) embodies a persistent and structured threat, primarily targeting strategic Indian entities for cyberespionage purposes. Its campaigns rely on sophisticated decoys, custom RATs, and an agile C2 infrastructure. A thorough understanding of their tactics, techniques, and procedures (TTPs), as well as the currently known Indicators of Compromise (IOCs), provides a solid foundation to guide detection, defense, and response policies. Faced with the constant evolution of the techniques used by this group, a posture of continuous vigilance is essential. This document is produced in an evolving manner. We believe it is essential to keep it up to date with new threats and tools observed in order to maintain a proactive security posture aligned with the latest available APT36 intelligence.
APT36 SpearPhishing India is one of the most persistent cyberespionage threats targeting India. This article by Jacques Gascuel investigates its methods and how to protect against them.
APT36 SpearPhishing India represents a serious and persistent cyber threat targeting Indian entities. This article explores their spear-phishing techniques, malware arsenal, and defensive responses.
Understanding Targeted Attacks of APT36 SpearPhishing India
APT36 cyberespionage campaigns against India represent a focused and enduring threat. Actors likely linked to Pakistan orchestrate these attacks. This group, also known as Transparent Unit, ProjectM, Mythic Leopard, and Earth Karkaddan, has been active since at least 2013. Throughout its operations, APT36 has consistently targeted Indian government entities, military personnel, defense organizations, research institutions, diplomats, and critical infrastructure.
Unlike threat actors with broader targets, APT36’s operations primarily focus on gathering intelligence relevant to Pakistani strategic interests, especially concerning its relationship with India. This article analyzes APT36’s attack methods, its specific targeting of Indian entities, technical indicators, and proactive security measures for defense. Understanding their evolving tactics allows cybersecurity professionals to develop tailored countermeasures and strengthen resilience against persistent threats.
Purpose of this Brief: This report aims to provide a detailed understanding of APT36’s tactics, their priority targets in India, and their evolving malware arsenal (e.g., Crimson RAT, Poseidon, ElizaRAT, CapraRAT). It also covers recent techniques such as ClickFix attacks and the abuse of legitimate cloud services, offering insights into how Indian organizations can strengthen their cyber defense against this persistent cyberespionage threat.
The Espionage Model of APT36 SpearPhishing India: Focused Infiltration
The operational model of APT36 features a specific focus on Indian targets, persistence, and adaptability. Their main goal isn’t widespread disruption. Instead, they aim for sustained infiltration of Indian networks to exfiltrate sensitive information over time. Their campaigns often last a significant duration, showing a commitment to long-term access. While they may not always use the most advanced zero-day exploits, their consistent refinement of social engineering and malware deployment proves effective against Indian organizations.
Furthermore, APT36 frequently uses publicly available or slightly modified tools. Alongside these, they also deploy custom-developed malware. This malware is specifically tailored to evade common detection mechanisms within Indian organizations.
Main Targets of APT36 SpearPhishing India
APT36 primarily focuses its attacks on a range of Indian entities, including:
Indian government ministries, with a particular emphasis on the Ministry of Defence and the Ministry of External Affairs.
The Indian armed forces and organizations within the defense industrial sector.
Educational institutions and students.
Users of government services, such as those utilizing the Kavach authentication application.
These targets align with recent warnings, such as the May 2025 advisory from the Chandigarh Police citing government institutions, defense personnel, research centers, diplomats, and critical infrastructure as primary targets.
The group frequently employs social engineering techniques, including the use of lure documents and the creation of fake websites mimicking legitimate portals, to trick victims into downloading and executing their malware.
APT36’s Malware Arsenal: Types and Evolution (2013–2025)
APT36 relies on a diverse and evolving malware arsenal tailored to espionage operations against Indian entities. Their tools include widely-used Remote Access Trojans (RATs) and more recent, customized malware. ElizaRAT malware analysis highlights its evolution into a stealthy .NET-based trojan leveraging Telegram for covert C2, as seen in multiple campaigns since late 2023.
Crimson RAT: In use since 2013 for data exfiltration and surveillance.
ElizaRAT: A .NET-based RAT communicating via Telegram, with enhanced C2 capabilities.
Poseidon: Targets Linux via fake Kavach app installations.
CapraRAT: Android malware for mobile surveillance.
ApolloStealer: Data harvester targeting government systems.
ClickFix: APT36’s Deceptive New Attack Technique
APT36 has adopted “ClickFix”-style campaigns to trick users into copying malicious commands from websites that impersonate legitimate Indian portals. This bypasses email filters and endpoint protections by relying on user interaction via terminal or shell.
Exploitation of Cloud Services for C2: A Detection Challenge
APT36 leverages popular platforms like Telegram, Google Drive, and Slack for Command & Control. These services allow attackers to blend in with normal encrypted traffic and evade firewall detection.
Why India is APT36’s Primary Target
The cyber activities of APT36 are deeply intertwined with the complex geopolitical dynamics between Pakistan and India. Their consistent focus on targeting Indian government, military, and strategic assets strongly suggests their role in directly supporting Pakistan’s intelligence-gathering efforts.
Furthermore, APT36’s operations often show increased activity during periods of heightened tension or significant political events between the two nations. Their primary objectives appear to center on acquiring sensitive information. This includes data related to India’s defense capabilities, its foreign policy decisions, and its internal security measures.
To illustrate, notable examples of their activity include:
Sustained campaigns specifically target Indian military personnel. These campaigns often involve sophisticated social engineering combined with malware-laden documents.
Attacks directed against Indian government organizations involved in policy making and national security. The aim is likely to gain insights into strategic decision-making and sensitive communications.
Targeting of research institutions and defense contractors. This suggests an interest in acquiring knowledge about India’s technological advancements in defense.
The strategic use of topical lures in their phishing campaigns. These lures often relate to current events, such as cross-border incidents or diplomatic discussions, to make their malicious emails more relevant.
In essence, APT36 functions as a significant cyber arm within the broader geopolitical context. The intelligence they successfully gather can be leveraged for strategic planning, diplomatic maneuvering, and potentially to gain an advantage in the intricate relationship between India and Pakistan. Therefore, a thorough understanding of this geopolitical context is crucial for developing effective cyber defense strategies within India.
Indian Government and Security Responses to APT36 Cyberespionage
India’s layered response to APT36 SpearPhishing campaigns — from real-time monitoring to public cybersecurity advisories and professional capacity building.
The Indian government and its security agencies have increasingly focused on detecting, attributing, and mitigating the persistent threats posed by APT36 cyberespionage. Indian government phishing alerts, such as those issued by CERT-In and regional cyber cells, underscore the urgency of countering targeted APT36 spearphishing attacks.
Responses often include:
Issuing public advisories and alerts regarding APT36’s tactics and indicators of compromise (IOCs).
Enhancing monitoring and detection capabilities within government and critical infrastructure networks.
Conducting forensic analysis of attacks to understand APT36’s evolving TTPs and develop better defenses.
Collaboration between different security agencies and sharing of threat intelligence.
Efforts to raise cybersecurity awareness among potential targets, particularly within government and military sectors.
Capacity building initiatives to train cybersecurity professionals within India to better defend against sophisticated threats like APT36.
While direct legal or retaliatory actions are less publicly discussed, the focus remains on strengthening India’s cyber resilience and deterring future attacks through enhanced detection and response.
Potential Impact of Undetected APT36 Cyberespionage
The prolonged and undetected operations of APT36 cyberespionage could have significant ramifications for India’s national security and strategic interests:
Loss of Sensitive Information: Unfettered access could lead to the exfiltration of classified military plans, diplomatic communications, and sensitive government policies.
Compromise of Critical Infrastructure: Persistent access to critical infrastructure networks could potentially be exploited for disruptive purposes in the future.
Erosion of Trust: Successful and undetected breaches could undermine trust in the security of government and defense systems.
Strategic Disadvantage: The intelligence gathered could provide Pakistan with a strategic advantage in diplomatic negotiations or during times of conflict.
Impact on International Relations: Compromise of diplomatic communications could strain relationships with other nations.
This underscores the critical importance of robust cybersecurity measures and proactive threat hunting to detect and neutralize APT36’s activities before they can cause significant harm through their cyberespionage.
Notable APT36 Cyberespionage Incidents Targeting India
Date (Approximate)
Campaign/Malware
Target
Observed Tactics
2013 onwards
Crimson RAT
Indian Government, Military
Spearphishing with malicious attachments.
2018-2019
Transparent Group Campaigns
Defense Personnel, Government Officials
Social engineering, weaponized documents.
2020-2021
Abuse of Cloud Services
Various Indian Entities
C2 via Telegram, Google Drive.
2022-2023
ElizaRAT
Government, Research Institutions
Evolved RAT with enhanced evasion techniques.
2024-2025
ClickFix Campaigns
Government Portals
Tricking users into executing malicious commands.
Timeline Sources & Attribution of APT36 SpearPhishing India Attacks
APT36 SpearPhishing India: Visual timeline of APT36 cyberespionage campaigns and malware used against Indian entities from 2013 to 2025.
This infographic is based on analysis and reports from various cybersecurity firms, threat intelligence sources, and official advisories, including:
These sources collectively indicate that APT36 remains a persistent and adaptive threat actor with a clear focus on espionage against Indian interests through cyber means.
APT36 vs. APT29, APT41, APT33: Strategic Comparison of Cyberespionage Groups
Tactic/Group
APT36 (also known as ProjectM, Mythic Leopard, Earth Karkaddan, “Transparent Tribe” — researcher-assigned alias)
Other APT Groups (e.g., APT29, APT41, APT33)
Primary Target
Predominantly focuses on entities within India.
Employs a broader targeting strategy, often including Europe, the United States, and various other regions depending on the group’s objectives.
Suspected Affiliation
Believed to have strong links to Pakistan.
Attributed to various state-sponsored actors, including Russia (e.g., APT29), China (e.g., APT41), and Iran (e.g., APT33).
Main Objective
Primarily cyberespionage with a specific focus on gathering intelligence relevant to Indian affairs.
Objectives can vary widely, including espionage, disruptive attacks, and financially motivated cybercrime, depending on the specific group.
Favored Techniques
Relies heavily on spearphishing attacks, the use of commodity Remote Access Trojans (RATs) such as Crimson and ElizaRAT, social engineering tactics, abuse of cloud services, malicious Office documents, fake websites, and “ClickFix” campaign techniques.
Often employs more sophisticated and custom-developed malware, and in some cases, utilizes zero-day exploits to gain initial access. The level of sophistication varies significantly between different APT groups.
Stealth and Sophistication
While their social engineering tactics can be quite effective, their malware development is generally considered less sophisticated compared to some other advanced persistent threat groups. However, they continuously adapt their existing tools for their cyberespionage efforts.
Varies significantly. Some groups utilize highly advanced and stealthy custom malware with sophisticated command and control infrastructure, while others may rely on more readily available tools.
Resource Allocation
Likely operates with fewer resources compared to state-sponsored groups from larger nations.
Variable, with some groups having significant state backing and extensive resources, enabling more complex and persistent campaigns.
Geopolitical Context
Primarily driven by the geopolitical relationship and tensions between India and Pakistan.
Driven by broader national interests and complex geopolitical strategies that extend beyond a single bilateral relationship.
Key Indicators and Detection of APT36 Cyberespionage
Security teams targeting APT36 should be vigilant for the following indicators:
Spearphishing emails with themes relevant to the Indian government, military, or current affairs.
Network traffic to known C2 infrastructure associated with APT36.
Unusual use of cloud services (Telegram, Google Drive, Slack) for data transfer.
Execution of suspicious commands via command-line interfaces, potentially linked to ClickFix attacks.
Presence of known APT36 malware like Crimson RAT, ElizaRAT, ApolloStealer, Poseidon (particularly on Linux systems), and CapraRAT (on Android devices).
Use of domains and URLs mimicking legitimate Indian government or military websites.
Use of domains and URLs mimicking legitimate Indian government or military websites.
Suspicious emails with subject lines or content related to recent sensitive events like the April 2025 Pahalgam terror attack.
Network traffic to or from websites mimicking the India Post portal or other legitimate Indian government services.
◆ Known Indicators of Compromise (IOCs) – APT36
The following Indicators of Compromise have been observed across multiple APT36 campaigns, including those involving Crimson RAT, ElizaRAT, Poseidon, and CapraRAT. Use them to improve detection and defense mechanisms:
Sources: Brandefense, Zscaler ThreatLabz, Reco AI, CYFIRMA, Check Point Research
◆ Download the Full IOC Report for APT36
To strengthen your spearphishing defense in India and enhance detection capabilities against APT36 cyberespionage, you can download the full list of enriched Indicators of Compromise (IOCs) used by the group.
This includes:
Command & Control (C2) IP addresses
SHA-256 hashes of known malware samples (e.g. Crimson RAT, ElizaRAT, Poseidon)
Fake domains and URLs (Kavach, India Post…)
Malicious file names and Android package names
Registry keys, mutexes, user-agents and encoded payload strings
◆ APT36 साइबर जासूसी समूह तकनीकी दस्तावेज़ डाउनलोड करें
भारत में अपने स्पीयरफ़िशिंग बचाव को मजबूत करने और APT36 साइबर जासूसी के खिलाफ पहचान क्षमताओं को बढ़ाने के लिए, आप समूह द्वारा उपयोग किए गए समृद्ध संकेतकों की पूरी सूची डाउनलोड कर सकते हैं।
Compiled from: Brandefense, Zscaler, Check Point, Reco AI, SentinelOne, CYFIRMA, and CERT-In reports
APT36 SpearPhishing India in 2025: Updated Arsenal and Emerging Linux Threats
APT36 continues to evolve its tactics in 2025, expanding its targeting scope beyond Windows environments. Recent reports highlight sophisticated ClickFix-style attacks on Linux systems, where users are tricked into pasting terminal commands disguised as harmless instructions. This represents a critical shift, bypassing traditional endpoint security solutions.
ClickFix Linux Variant: In 2025, APT36 began testing ClickFix-style social engineering attacks on Linux by embedding dangerous commands inside fake support messages and screenshots. [BleepingComputer Report]
New Linux-based Payloads: Building on their 2023 campaigns, APT36 now weaponizes .desktop files with inflated size (1MB+), obfuscated base64 commands, and deceptive PDF decoys. These payloads deploy cross-platform backdoors with persistence via cron jobs.
Advanced C2 Infrastructure: They continue to abuse trusted cloud services like Telegram, Google Drive, and now Indian TLDs (e.g., .in domains) to mask origins and evade attribution. These deceptive techniques align with past OPSEC failures such as the “Nand Kishore” Google Drive account.
Countering APT36 with Sovereign Zero-Trust Solutions
APT36 targets India through spearphishing, remote access malware, and cloud abuse. To counter such advanced persistent threats, Freemindtronic offers patented, sovereign, and fully offline security tools that eliminate traditional attack surfaces.
To further support organizations in India against threats like APT36, the user interfaces and relevant documentation for our DataShielder and PassCypher solutions are also available in Hindi, ensuring ease of use and accessibility.
DataShielder NFC HSM (Lite, Auth, Master, M-Auth)
Offline AES-256 encryption with RSA 4096 key exchange (M-Auth), ideal for fixed (Auth) and mobile (M-Auth) use. No RAM, no OS access, no server.
DataShielder HSM PGP
Browser-integrated, offline PGP encryption/decryption. Compatible with air-gapped systems. Private keys never leave the HSM.
PassCypher NFC HSM
Offline password & OTP manager (TOTP/HOTP) using a contactless HSM. Injects credentials only on verified domains. No clipboard, no RAM exposure.
PassCypher HSM PGP
Secure, passwordless login + PGP + OTP autofill, browser-integrated. 100% offline. No secrets exposed to the system.
Sandboxed URL validation; no credential injection on spoofed sites
PassCypher NFC HSM, PassCypher HSM PGP
Credential Theft (ElizaRAT, ApolloStealer)
No copy/paste, no secrets in RAM, no browser storage
All products
Remote Access Tools (Crimson RAT, Poseidon)
100% offline operation, NFC/QR key exchange, no OS exposure
DataShielder NFC HSM Lite, Auth, Master, M-Auth
Fake Apps & ClickFix Commands
Credential injection via NFC or container — no terminal input
PassCypher NFC HSM, PassCypher HSM PGP
Cloud-based C2 (Telegram, Google Drive)
No connectivity, no browser plug-in, no C2 callbacks possible
All NFC HSM and HSM PGP solutions
🛡️ Why Choose These Solutions?
🛠 No server • No database • No RAM exposure • No clipboard
⚖️ GDPR / NIS2 / ISO 27001 compliant
🎖️ Built for air-gapped and sovereign systems (civil + defense use)
🔐 Licensed HSM PGP on Windows/macOS, NFC HSM works on all OS (via Android NFC)
Comparative Threat Mitigation Table: APT36 vs. Freemindtronic HSM Ecosystem
This table summarizes how each threat vector used by APT36 is mitigated by Freemindtronic’s sovereign tools — whether mobile or desktop, fixed or remote, civilian or defense-grade.
🧩 How does each solution stand against APT36’s arsenal?
The table below compares threat-by-threat how DataShielder and PassCypher mitigate attacks — whether on mobile, desktop, or air-gapped infrastructure.
APT36 Tactic / Malware
DataShielder NFC HSM (Lite/Auth/M-Auth)
DataShielder HSM PGP (Win/macOS)
PassCypher NFC HSM (Android)
PassCypher HSM PGP (Win/macOS)
Spearphishing (India Post, Kavach)
✔ QR-code encryption + sandbox
✔ Signature check + offline PGP
✔ URL sandbox + no injection
✔ Sandboxed PGP container
Crimson RAT
✔ NFC avoids infected OS
✔ No system-stored keys
✔ Secrets off-device
✔ No memory exposure
ElizaRAT
✔ No cloud or RAM access
✔ PGP keys isolated in HSM
✔ No RAM / no clipboard
✔ OTP only if URL matches
ApolloStealer
✔ Credentials never exposed
✔ Key never loaded in system
✔ Immune to clipboard steal
✔ Phishing-proof login
Poseidon (Fake Kavach on Linux)
✔ NFC-only: bypasses compromised OS
✘ Not Linux-compatible
✔ No OS dependency
✘ Desktop only
CapraRAT (Android)
✘ (Not on Android)
✘
✔ Secrets never stored in app
✔ With desktop pair only
ClickFix (command injection)
✔ No shell interaction possible
✔ PGP validation
✔ No typing / no pasting
✔ No terminal interaction
Telegram / Cloud C2 Abuse
✔ No cloud usage at all
✔ Fully offline
✔ 100% offline
✔ 100% offline
CEO Fraud / BEC
✔ Auth/M-Auth modules encrypt orders
✔ Digital signature protection
✔ No spoofing possible
✔ Prevents impersonation
Understanding Targeted Attacks of APT36 SpearPhishing India
APT36 cyberespionage campaigns against India represent a focused and enduring threat. Actors likely linked to Pakistan orchestrate these attacks. This group, also known as Transparent Unit, ProjectM, Mythic Leopard, and Earth Karkaddan, has been active since at least 2013. Throughout its operations, APT36 has consistently targeted Indian government entities, military personnel, defense organizations, research institutions, diplomats, and critical infrastructure.
Unlike threat actors with broader targets, APT36’s operations primarily focus on gathering intelligence relevant to Pakistani strategic interests, especially concerning its relationship with India. This article analyzes APT36’s attack methods, its specific targeting of Indian entities, technical indicators, and proactive security measures for defense. Understanding their evolving tactics allows cybersecurity professionals to develop tailored countermeasures and strengthen resilience against persistent threats.
Purpose of this Brief: This report aims to provide a detailed understanding of APT36’s tactics, their priority targets in India, and their evolving malware arsenal (e.g., Crimson RAT, Poseidon, ElizaRAT, CapraRAT). It also covers recent techniques such as ClickFix attacks and the abuse of legitimate cloud services, offering insights into how Indian organizations can strengthen their cyber defense against this persistent cyberespionage threat.
⇨ Implement comprehensive security awareness training focused on identifying and avoiding sophisticated spearphishing attacks and social engineering tactics.
⇨ Deploy robust email security solutions with advanced threat detection capabilities to filter out malicious emails and attachments.
⇨ Utilize strong endpoint detection and response (EDR) solutions to detect and block malware execution and suspicious activities.
⇨ Enforce strict access controls and the principle of least privilege to limit the impact of compromised accounts.
⇨ Ensure regular patching and updating of all systems and software to mitigate known vulnerabilities.
⇨ Implement network segmentation to limit lateral movement in case of a breach.
⇨ Monitor network traffic for unusual patterns and communication with known malicious infrastructure.
⇨ Implement multi-factor authentication (MFA) to protect against credential theft.
⇨ Conduct regular security audits and penetration testing to identify and address potential weaknesses.
Security Recommendations Against APT36 SpearPhishing India
To enhance protection against APT36 attacks, organizations and individuals in India should implement the following security measures:
Regularly update operating systems, applications, and security software to patch known vulnerabilities.
Deploy robust and up-to-date security solutions, including antivirus, anti-malware, and intrusion detection/prevention systems, capable of identifying and blocking malicious behavior.
Provide comprehensive security awareness training to employees and users, educating them on how to recognize and avoid phishing attempts, social engineering tactics, and suspicious documents or links.
Implement multi-factor authentication (MFA) for all sensitive accounts and services to prevent unauthorized access even if credentials are compromised.
Monitor network traffic for unusual patterns and connections to known command and control (C2) infrastructure associated with APT groups.
Sovereign Security Considerations for Cyberespionage Defense
For organizations with stringent security requirements, particularly within the Indian government and defense sectors, considering sovereign security solutions can add an extra layer of protection against advanced persistent threats. While the provided APT29 article highlights specific products, the underlying principles of offline, hardware-based security for critical authentication and data protection can be relevant in the context of defending against APT36 cyberespionage as well.
Toward a National Cyber Defense Posture
APT36’s sustained focus on India highlights the urgent need for a resilient and sovereign cybersecurity posture. Strengthening national cyber defense requires not only advanced technologies but also strategic policy coordination, inter-agency threat intelligence sharing, and continuous capacity-building efforts. As threat actors evolve, so must the institutions that protect democratic, economic, and military integrity. The fight against APT36 is not a technical issue alone — it’s a matter of national sovereignty and strategic foresight.