Tag Archives: zero trust

WebAuthn API Hijacking: A CISO’s Guide to Nullifying Passkey Phishing

Movie poster-style image of a cracked passkey and fishing hook. Main title: 'WebAuthn API Hijacking', with secondary phrases: 'Passkeys Vulnerability', 'DEF CON 33', and 'Why PassCypher Is Not Vulnerable'. Relevant for cybersecurity in Andorra.

WebAuthn API Hijacking: A critical vulnerability, unveiled at DEF CON 33, demonstrates that synced passkeys can be phished in real time. Indeed, Allthenticate proved that a spoofable authentication prompt can hijack a live WebAuthn session.

Executive Summary — The WebAuthn API Hijacking Flaw

▸ Key Takeaway — WebAuthn API Hijacking

We provide a dense summary (≈ 1 min) for decision-makers and CISOs. For a complete technical analysis (≈ 13 min), however, you should read the full article.

Imagine an authentication method lauded as phishing-resistant — namely, synced passkeys — and then exploited live at DEF CON 33 (August 8–11, 2025, Las Vegas). So what was the vulnerability? It was a WebAuthn API Hijacking flaw (an interception attack on the authentication flow), which allowed for passkeys real-time prompt spoofing.

This single demonstration, in fact, directly challenges the proclaimed security of cloud-synced passkeys and opens the debate on sovereign alternatives. We saw two key research findings emerge at the event: first, real-time prompt spoofing (a WebAuthn interception attack), and second, DOM extension clickjacking. Notably, this article focuses exclusively on prompt spoofing because it undeniably undermines the “phishing-resistant” promise for vulnerable synced passkeys.

▸ Summary

The weak link is no longer cryptography; instead, it is the visual trigger. In short, attackers compromise the interface, not the cryptographic key.

Strategic Insight This demonstration, therefore, exposes a historical flaw: attackers can perfectly abuse an authentication method called “phishing-resistant” if they can spoof and exploit the prompt at the right moment.

Chronique à lire
Article to Read
Estimated reading time: ≈ 13 minutes (+4–5 min if you watch the embedded videos)
Complexity level: Advanced / Expert
Available languages: CAT · EN · ES · FR
Accessibility: Optimized for screen readers
Type: Strategic Article
Author: Jacques Gascuel, inventor and founder of Freemindtronic®, designs and patents sovereign hardware security systems for data protection, cryptographic sovereignty, and secure communications. As an expert in ANSSI, NIS2, GDPR, and SecNumCloud compliance, he develops by-design architectures capable of countering hybrid threats and ensuring 100% sovereign cybersecurity.

Official Sources

TL; DR

  • At DEF CON 33 (August 8–11, 2025), Allthenticate researchers demonstrated a WebAuthn API Hijacking path: attackers can hijack so-called “phishing-resistant” passkeys via real-time prompt spoofing.
  • The flaw does not reside in cryptographic algorithms; rather, it’s found in the user interface—the visual entry point.
  • Ultimately, this revelation demands a strategic revision: we must prioritize device-bound passkeys for sensitive use cases and align deployments with threat models and regulatory requirements.

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 DataShielder Digital Security PassCypher Phishing

Midnight Blizzard Cyberattack Against Microsoft and HPE: What are the consequences?

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2021 Articles Cyberculture Digital Security EviPass EviPass NFC HSM technology EviPass Technology Technical News

766 trillion years to find 20-character code like a randomly generated password

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

In Sovereign Cybersecurity ↑ This article is part of our Digital Security section, continuing our research on zero-trust hardware exploits and countermeasures.

 ▸ Key Points

  • Confirmed Vulnerability: Cloud-synced passkeys (Apple, Google, Microsoft) are not 100% phishing-resistant.
  • New Threat: Real-time prompt spoofing exploits the user interface rather than cryptography.
  • Strategic Impact: Critical infrastructure and government agencies must migrate to device-bound credentials and sovereign offline solutions (NFC HSM, segmented keys).

What is a WebAuthn API Hijacking Attack?

A WebAuthn interception attack via a spoofable authentication prompt (WebAuthn API Hijacking) consists of imitating in real time the authentication window displayed by a system or browser. Consequently, the attacker does not seek to break the cryptographic algorithm; instead, they reproduce the user interface (UI) at the exact moment the victim expects to see a legitimate prompt. Visual lures, precise timing, and perfect synchronization make the deception indistinguishable to the user.

Simplified example:
A user thinks they are approving a connection to their bank account via a legitimate Apple or Google system prompt. In reality, they are interacting with a dialog box cloned by the attacker. As a result, the adversary captures the active session without alerting the victim.
▸ In short: Unlike “classic” phishing attacks via email or fraudulent websites, the real-time prompt spoofing takes place during authentication, when the user is most confident.

History of Passkey / WebAuthn Vulnerabilities

Despite their cryptographic robustness, passkeys — based on the open standards WebAuthn and FIDO2 from the FIDO Alliance — are not invulnerable. The history of vulnerabilities and recent research confirms that the key weakness often lies in the user interaction and the execution environment (browser, operating system). The industry officially adopted passkeys on May 5, 2022, following a commitment from Apple, Google, and Microsoft to extend their support on their respective platforms.

Timeline illustrating the accelerated evolution of Passkey and WebAuthn vulnerabilities from 2012 to 2025, including FIDO Alliance creation, phishing methods, CVEs, and the WebAuthn API Hijacking revealed at DEF CON 33.
Accelerated Evolution of Passkey and WebAuthn Vulnerabilities (2012-2025): A detailed timeline highlighting key security events, from the foundation of the FIDO Alliance to the emergence of AI as a threat multiplier and the definitive proof of the WebAuthn API Hijacking at DEF CON 33.

Timeline of Vulnerabilities

  • SquareX – Compromised Browsers (August 2025):

    At DEF CON 33, a demonstration showed that a malicious extension or script can intercept the WebAuthn flow to substitute keys. See the TechRadar analysis and the SecurityWeek report.

  • CVE-2025-31161 (March/April 2025):

    Authentication bypass in CrushFTP via a race condition. Official NIST Source.

  • CVE-2024-9956 (March 2025):

    Account takeover via Bluetooth on Android. This attack demonstrated that an attacker can remotely trigger a malicious authentication via a FIDO:/ intent. Analysis from Risky.Biz. Official NIST Source.

  • CVE-2024-12604 (March 2025):

    Cleartext storage of sensitive data in Tap&Sign, exploiting poor password management. Official NIST Source.

  • CVE-2025-26788 (February 2025):

    Authentication bypass in StrongKey FIDO Server. Detailed Source.

  • Passkeys Pwned – Browser-based API Hijacking (Early 2025):

    A research study showed that the browser, as a single mediator, can be a point of failure. Read the Security Boulevard analysis.

  • CVE-2024-9191 (November 2024):

    Password exposure via Okta Device Access. Official NIST Source.

  • CVE-2024-39912 (July 2024):

    User enumeration via a flaw in the PHP library web-auth/webauthn-lib. Official NIST Source.

  • CTRAPS-type Attacks (2024):

    These protocol-level attacks (CTAP) exploit authentication mechanisms for unauthorized actions. For more information on FIDO protocol-level attacks, see this Black Hat presentation on FIDO vulnerabilities.

  • First Large-Scale Rollout (September 2022):

    Apple was the first to deploy passkeys on a large scale with the release of iOS 16, making this technology a reality for hundreds of millions of users. Official Apple Press Release.

  • Industry Launch & Adoption (May 2022):

    The FIDO Alliance, joined by Apple, Google, and Microsoft, announced an action plan to extend passkey support across all their platforms. Official FIDO Alliance Press Release.

  • Timing Attacks on keyHandle (2022):

    A vulnerability allowing account correlation by measuring time variations in the processing of keyHandles. See IACR ePrint 2022 article.

  • Phishing of Recovery Methods (since 2017):

    Attackers use AitM proxies (like Evilginx, which appeared in 2017) to hide the passkey option and force a fallback to less secure methods that can be captured. More details on this technique.

AI as a Threat Multiplier

Artificial intelligence is not a security flaw, but a catalyst that makes existing attacks more effective. Since the emergence of generative AI models like GPT-3 (2020) and DALL-E 2 (2022), new capabilities for automating threats have appeared. These developments notably allow for:

  • Large-scale Attacks (since 2022): Generative AI enables attackers to create custom authentication prompts and phishing messages for a massive volume of targets, increasing the effectiveness of phishing of recovery methods.
  • Accelerated Vulnerability Research (since 2023): AI can be used to automate the search for security flaws, such as user enumeration or the detection of logical flaws in implementation code.
Historical Note — The risks associated with spoofable prompts in WebAuthn were already raised by the community in W3C GitHub issue #1965 (before the DEF CON 33 demonstration). This shows that the user interface has long been recognized as a weak link in so-called “phishing-resistant” authentication.

“These recent and historical vulnerabilities highlight the critical role of the browser and the deployment model (device-bound vs. synced). They reinforce the call for sovereign architectures that are disconnected from these vectors of compromise.”

Vulnerability of the Synchronization Model

One of the most debated passkeys security vulnerabilities does not concern the WebAuthn protocol itself, but its deployment model. Most publications on the subject differentiate between two types of passkeys:

  • Device-bound passkeys: Stored on a physical device (like a hardware security key or Secure Enclave). This model is generally considered highly secure because it is not synchronized via a third-party service.
  • Synced passkeys: Stored in a password manager or a cloud service (iCloud Keychain, Google Password Manager, etc.). These passkeys can be synchronized across multiple devices. For more details on this distinction, refer to the FIDO Alliance documentation.

The vulnerability lies here: if an attacker manages to compromise the cloud service account, they could potentially gain access to the synced passkeys across all the user’s devices. This is a risk that device-bound passkeys do not share. Academic research, such as this paper published on arXiv, explores this issue, highlighting that “the security of synced passkeys is primarily concentrated with the passkey provider.”

This distinction is crucial because the implementation of vulnerable synced passkeys contradicts the very spirit of a so-called phishing-resistant MFA, as synchronization introduces an intermediary and an additional attack surface. This justifies the FIDO Alliance’s recommendation to prioritize device-bound passkeys for maximum security.

The DEF CON 33 Demonstration – WebAuthn API Hijacking in Action

WebAuthn API Hijacking is the central thread of this section: we briefly explain the attack path shown at DEF CON 33 and how a spoofable prompt enabled real-time session takeover, before detailing the live evidence and the video highlights.

Passkeys Pwned — DEF CON 33 Talk on WebAuthn

During DEF CON 33, the Allthenticate team presented a talk titled “Passkeys Pwned: Turning WebAuthn Against Itself.”
This session demonstrated how attackers could exploit WebAuthn API Hijacking to
compromise synced passkeys in real time using a spoofable authentication prompt.

By using the provocative phrase “Passkeys Pwned,” the researchers deliberately emphasized that even so-called phishing-resistant credentials can be hijacked when the user interface itself is the weak link.

Evidence of WebAuthn API Hijacking at DEF CON 33

In Las Vegas, at the heart of DEF CON 33 (August 8–11, 2025), the world’s most respected hacker community witnessed a demonstration that made many squirm. In fact, researchers at Allthenticate showed live that a vulnerable synced passkey – despite being labeled “phishing-resistant” – could be tricked. So what did they do? They executed a WebAuthn API Hijacking attack (spoofing the system prompt) of the spoofable authentication prompt type (real-time prompt spoofing). They created a fake authentication dialog box, perfectly timed and visually identical to the legitimate UI. Ultimately, the user believed they were validating a legitimate authentication, but the adversary hijacked the session in real time. This proof of concept makes the “Passkeys WebAuthn Interception Flaw” tangible through a real-time spoofable prompt.

Video Highlights — WebAuthn API Hijacking in Practice

To visualize the sequence, watch the clip below: it shows how WebAuthn API Hijacking emerges from a simple UI deception that aligns timing and look-and-feel with the expected system prompt, leading to seamless session capture.

Official Authors & Media from DEF CON 33
▸ Shourya Pratap Singh, Jonny Lin, Daniel Seetoh — Allthenticate researchers, authors of the demo “Your Passkey is Weak: Phishing the Unphishable”.
Allthenticate Video on TikTok — direct explanation by the team.
DEF CON 33 Las Vegas Video (TikTok) — a glimpse of the conference floor.
Highlights DEF CON 33 (YouTube) — including the passkeys flaw.

▸ Summary

DEF CON 33 demonstrated that vulnerable synced passkeys can be compromised live when a spoofable authentication prompt is inserted into the WebAuthn flow.

Comparison – WebAuthn Interception Flaw: Prompt Spoofing vs. DOM Clickjacking

At DEF CON 33, two major research findings shook confidence in modern authentication mechanisms. Indeed, both exploit flaws related to the user interface (UX) rather than cryptography, but their vectors and targets differ radically.

Architecture comparison of PassCypher vs FIDO WebAuthn authentication highlighting phishing resistance and prompt spoofing risks
Comparison of PassCypher and FIDO WebAuthn architectures showing why Passkeys are vulnerable to WebAuthn API hijacking while PassCypher eliminates prompt spoofing risks.

Real-Time Prompt Spoofing

  • Author: Allthenticate (Las Vegas, DEF CON 33).
  • Target: vulnerable synced passkeys (Apple, Google, Microsoft).
  • Vecteur: spoofable authentication prompt, perfectly timed to the legitimate UI (real-time prompt spoofing).
  • Impact: WebAuthn interception attack that causes “live” phishing; the user unknowingly validates a malicious request.

DOM Clickjacking

  • Authors: Another team of researchers (DEF CON 33).
  • Target: Credential managers, extensions, stored passkeys.
  • Vecteur: invisible iframes, Shadow DOM, malicious scripts to hijack autofill.
  • Impact: Silent exfiltration of credentials, passkeys, and crypto-wallet keys.

▸ Key takeaway: This article focuses exclusively on prompt spoofing, which illustrates a major WebAuthn interception flaw and challenges the promise of “phishing-resistant passkeys.” For a complete study on DOM clickjacking, please see the related article.

Strategic Implications – Passkeys and UX Vulnerabilities

As a result, the “Passkeys WebAuthn Interception Flaw” forces us to rethink authentication around prompt-less and cloud-less models.

  • We should no longer consider vulnerable synced passkeys to be invulnerable.
  • We must prioritize device-bound credentials for sensitive environments.
  • We need to implement UX safeguards: detecting anomalies in authentication prompts and using non-spoofable visual signatures.
  • We should train users on the threat of real-time phishing via a WebAuthn interception attack.
▸ Insight
It is not cryptography that is failing, but the illusion of immunity. WebAuthn interception demonstrates that the risk lies in the UX, not the algorithm.

Regulations & Compliance – MFA and WebAuthn Interception

Official documents such as the CISA guide on phishing-resistant MFA or the OMB M-22-09 directive insist on this point: authentication is “phishing-resistant” only if no intermediary can intercept or hijack the WebAuthn flow.
In theory, WebAuthn passkeys respect this rule. In practice, however, the implementation of vulnerable synced passkeys opens an interception flaw that attackers can exploit via a spoofable authentication prompt.

In Europe, both the NIS2 directive and the SecNumCloud certification reiterate the same requirement: no dependence on un-mastered third-party services.

As such, the “Passkeys WebAuthn Interception Flaw” contradicts the spirit of a so-called phishing-resistant MFA, because synchronization introduces an intermediary.

In other words, a US cloud managing your passkeys falls outside the scope of strict digital sovereignty.

▸ Summary

A vulnerable synced passkey can compromise the requirement for phishing-resistant MFA (CISA, NIS2) when a WebAuthn interception attack is possible.

European & Francophone Statistics – Real-time Phishing and WebAuthn Interception

Public reports confirm that advanced phishing attacks — including real-time techniques — represent a major threat in the European Union and the Francophone area.

  • European Union — ENISA: According to the Threat Landscape 2024 report, phishing and social engineering account for 38% of reported incidents in the EU, with a notable increase in Adversary-in-the-Middle methods and real-time prompt spoofing, associated with WebAuthn interception. Source: ENISA Threat Landscape 2024
  • France — Cybermalveillance.gouv.fr: In 2023, phishing generated 38% of assistance requests, with over 1.5M consultations related to this type of attack. Fake bank advisor scams jumped by +78% vs. 2022, often via spoofable authentication prompts. Source: 2023 Activity Report
  • Canada (Francophone) — Canadian Centre for Cyber Security: The National Cyber Threat Assessment 2023-2024 indicates that 65% of businesses expect to experience a phishing or ransomware attack. Phishing remains a preferred vector for bypassing MFA, including via WebAuthn flow interception. Source: Official Assessment
▸ Strategic Reading
Real-time prompt spoofing is not a lab experiment; it is part of a trend where phishing targets the authentication interface rather than algorithms, with increasing use of the WebAuthn interception attack.

Sovereign Use Case – Neutralizing WebAuthn Interception

In a practical scenario, a regulatory authority reserves synced passkeys for low-risk public portals. Conversely, the PassCypher choice eliminates the root cause of the “Passkeys WebAuthn Interception Flaw” by removing the prompt, the cloud, and any DOM exposure.
For critical systems (government, sensitive operations, vital infrastructure), it deploys PassCypher in two forms:

  • PassCypher NFC HSM — offline hardware authentication, with no server and BLE AES-128-CBC keyboard emulation. Consequently, no spoofable authentication prompt can exist.
  • PassCypher HSM PGP — sovereign management of inexportable segmented keys, with cryptographic validation that is cloud-free and synchronization-free.
    ▸ Result
    In this model, the prompt vector exploited during the WebAuthn interception attack at DEF CON 33 is completely eliminated from critical pathways.

Why PassCypher Eliminates the WebAuthn Interception Risk

PassCypher solutions stand in radical contrast to FIDO passkeys that are vulnerable to the WebAuthn interception attack:

  • No OS/browser prompt — thus no spoofable authentication prompt.
  • No cloud — no vulnerable synchronization or third-party dependency.
  • No DOM — no exposure to scripts, extensions, or iframes.
✓ Sovereignty: By removing the prompt, cloud, and DOM, PassCypher eliminates any anchor point for the WebAuthn interception flaw (prompt spoofing) revealed at DEF CON 33.

PassCypher NFC HSM — Eliminating the WebAuthn Prompt Spoofing Attack Vector

Allthenticate’s attack at DEF CON 33 proves that attackers can spoof any system that depends on an OS/browser prompt. PassCypher NFC HSM removes this vector: there is no prompt, no cloud sync, secrets are encrypted for life in a nano-HSM NFC, and validated by a physical tap. User operation:

  • Mandatory NFC tap — physical validation with no software interface.
  • HID BLE AES-128-CBC Mode — out-of-DOM transmission, resistant to keyloggers.
  • Zero-DOM Ecosystem — no secret ever appears in the browser.

▸ Summary

Unlike vulnerable synced passkeys, PassCypher NFC HSM neutralizes the WebAuthn interception attack because a spoofable authentication prompt does not exist.

WebAuthn API Hijacking Neutralized by PassCypher NFC HSM

Attack Type Vector Status
Prompt Spoofing Fake OS/browser dialog Neutralized (zero prompt)
Real-time Phishing Live-trapped validation Neutralized (mandatory NFC tap)
Keystroke Logging Keyboard capture Neutralized (encrypted HID BLE)

PassCypher HSM PGP — Segmented Keys Against Phishing

The other pillar, PassCypher HSM PGP, applies the same philosophy: no exploitable prompt.
Secrets (credentials, passkeys, SSH/PGP keys, TOTP/HOTP) reside in AES-256 CBC PGP encrypted containers, protected by a patented system of segmented keys.

  • No prompt — so there is no window to spoof.
  • Segmented keys — they are inexportable and assembled only in RAM.
  • Ephemeral decryption — the secret disappears immediately after use.
  • Zero cloud — there is no vulnerable synchronization.

▸ Summary

PassCypher HSM PGP eliminates the attack surface of the real-time spoofed prompt: it provides hardware authentication, segmented keys, and cryptographic validation with no DOM or cloud exposure.

Attack Surface Comparison

Criterion Synced Passkeys (FIDO) PassCypher NFC HSM PassCypher HSM PGP
Authentication Prompt Yes No No
Synchronization Cloud Yes No No
Exportable Private Key No (attackable UI) No No
WebAuthn Hijacking/Interception Present Absent Absent
FIDO Standard Dependency Yes No No
▸ Insight By removing the spoofable authentication prompt and cloud synchronization, the WebAuthn interception attack demonstrated at DEF CON 33 disappears completely.

Weak Signals – Trends Related to WebAuthn Interception

▸ Weak Signals Identified

  • The widespread adoption of real-time UI attacks, including WebAuthn interception via a spoofable authentication prompt.
  • A growing dependency on third-party clouds for identity, which increases the exposure of vulnerable synced passkeys.
  • A proliferation of bypasses through AI-assisted social engineering, applied to authentication interfaces.

Strategic Glossary

A review of the key concepts used in this article, for both beginners and advanced readers.

  • Passkey / Passkeys

    A passwordless digital credential based on the FIDO/WebAuthn standard, designed to be “phishing-resistant.

    • Passkey (singular): Refers to a single digital credential stored on a device (e.g., Secure Enclave, TPM, YubiKey).
    • Passkeys (plural): Refers to the general technology or multiple credentials, including synced passkeys stored in Apple, Google, or Microsoft clouds. These are particularly vulnerable to WebAuthn API Hijacking (real-time prompt spoofing demonstrated at DEF CON 33).
  • Passkeys Pwned

    Title of the DEF CON 33 talk by Allthenticate (“Passkeys Pwned: Turning WebAuthn Against Itself”). It highlights how WebAuthn API Hijacking can compromise synced passkeys in real time, proving that they are not 100% phishing-resistant.

  • Vulnerable synced passkeys

    Stored in a cloud (Apple, Google, Microsoft) and usable across multiple devices. They offer a UX advantage but a strategic weakness: dependence on a spoofable authentication prompt and the cloud.

  • Device-bound passkeys

    Linked to a single device (TPM, Secure Enclave, YubiKey). More secure because they lack cloud synchronization.

  • Prompt

    A system or browser dialog box that requests a user’s validation (Face ID, fingerprint, FIDO key). This is the primary target for spoofing.

  • WebAuthn Interception Attack

    Also known as WebAuthn API Hijacking, this attack manipulates the authentication flow by spoofing the system/browser prompt and imitating the user interface in real time. The attacker does not break cryptography, but intercepts the WebAuthn process at the UX level (e.g., a cloned fingerprint or Face ID prompt). See the official W3C WebAuthn specification and FIDO Alliance documentation.

  • Real-time prompt spoofing

    The live spoofing of an authentication window, which is indistinguishable to the user.

  • DOM Clickjacking

    An attack using invisible iframes and Shadow DOM to hijack autofill and steal credentials.

  • Zero-DOM

    A sovereign architecture where no secret is exposed to the browser or the DOM.

  • NFC HSM

    A secure hardware module that is offline and compatible with HID BLE AES-128-CBC.

  • Segmented keys

    Cryptographic keys that are split into segments and only reassembled in volatile memory.

  • Device-bound credential

    A credential attached to a physical device that is non-transferable and non-clonable.

▸ Strategic Purpose: This glossary shows why the WebAuthn interception attack targets the prompt and UX, and why PassCypher eliminates this vector by design.

Technical FAQ (Integration & Use Cases)

  • Q: Are there any solutions for vulnerable passkeys?

    A: Yes, in a hybrid model. Keep FIDO for common use cases and adopt PassCypher for critical access to eliminate WebAuthn interception vectors.

  • Q: What is the UX impact without a system prompt?

    A: The action is hardware-based (NFC tap or HSM validation). There is no spoofable authentication prompt or dialog box to impersonate, resulting in a total elimination of the real-time phishing risk.

  • Q: How can we revoke a compromised key?

    A: You simply revoke the HSM or the key itself. There is no cloud to purge and no third-party account to contact.

  • Q: Does PassCypher protect against real-time prompt spoofing?

    A: Yes. The PassCypher architecture completely eliminates the OS/browser prompt, thereby removing the attack surface exploited at DEF CON 33.

  • Q: Can we integrate PassCypher into a NIS2-regulated infrastructure?

    A: Yes. The NFC HSM and HSM PGP modules comply with digital sovereignty requirements and neutralize the risks associated with vulnerable synced passkeys.

  • Q: Are device-bound passkeys completely inviolable?

    A: No, but they do eliminate the risk of cloud-based WebAuthn interception. Their security then depends on the hardware’s robustness (TPM, Secure Enclave, YubiKey) and the physical protection of the device.

  • Q: Can a local malware reproduce a PassCypher prompt?

    A: No. PassCypher does not rely on a software prompt; the validation is hardware-based and offline, so no spoofable display exists.

  • Q: Why do third-party clouds increase the risk?

    A: Vulnerable synced passkeys stored in a third-party cloud can be targeted by Adversary-in-the-Middle or WebAuthn interception attacks if the prompt is compromised.

CISO/CSO Advice – Universal & Sovereign Protection

To learn how to protect against WebAuthn interception, it’s important to know that EviBITB (Embedded Browser-In-The-Browser Protection) is a built-in technology in PassCypher HSM PGP, including its free version. t automatically or manually detects and removes redirection iframes used in BITB and prompt spoofing attacks, thereby eliminating the WebAuthn interception vector.

  • Immediate Deployment: It is a free extension for Chromium and Firefox browsers, scalable for large-scale use without a paid license.
  • Universal Protection: It works even if the organization has not yet migrated to a prompt-free model.
  • Sovereign Compatibility: It works with PassCypher NFC HSM Lite (99 €) and the full PassCypher HSM PGP (129 €/year).
  • Full Passwordless: Both PassCypher NFC HSM and HSM PGP can completely replace FIDO/WebAuthn for all authentication pathways, with zero prompts, zero cloud, and 100% sovereignty.

Strategic Recommendation:
Deploy EviBITB immediately on all workstations to neutralize BITB/prompt spoofing, then plan the migration of critical access to a full-PassCypher model to permanently remove the attack surface.

Frequently Asked Questions for CISOs/CSOs

Q: What is the regulatory impact of a WebAuthn interception attack?

A: This type of attack can compromise compliance with “phishing-resistant” MFA requirements defined by CISA, NIS2, and SecNumCloud. In case of personal data compromise, the organization faces GDPR sanctions and a challenge to its security certifications.

Q: Is there a universal and free protection against BITB and prompt spoofing?

A: Yes. EviBITB is an embedded technology in PassCypher HSM PGP, including its free version. It blocks redirection iframes (Browser-In-The-Browser) and removes the spoofable authentication prompt vector exploited in WebAuthn interception. It can be deployed immediately on a large scale without a paid license.

Q: Are there any solutions for vulnerable passkeys?

A: Yes. PassCypher NFC HSM and PassCypher HSM PGP are complete sovereign passwordless solutions: they allow authentication, signing, and encryption without FIDO infrastructure, with zero spoofable prompts, zero third-party clouds, and a 100% controlled architecture.

Q: What is the average budget and ROI of a migration to a prompt-free model?

A: According to the Time Spent on Authentication study, a professional loses an average of 285 hours/year on classic authentications, representing an annual cost of about $8,550 (based on $30/h). PassCypher HSM PGP reduces this time to ~7 h/year, and PassCypher NFC HSM to ~18 h/year. Even with the full model (129 €/year) or the NFC HSM Lite (99 € one-time purchase), the breakeven point is reached in a few days to a few weeks, and net savings exceed 50 times the annual cost in a professional context.

Q: How can we manage a hybrid fleet (legacy + modern)?

A: Keep FIDO for low-risk uses while gradually replacing them with PassCypher NFC HSM and/or PassCypher HSM PGP in critical environments. This transition removes exploitable prompts and maintains application compatibility.

Q: What metrics should we track to measure the reduction in attack surface?

A: The number of authentications via system prompts vs. hardware authentication, incidents related to WebAuthn interception, average remediation time, and the percentage of critical accesses migrated to a sovereign prompt-free model.

CISO/CSO Action Plan

Priority Action Expected Impact
Implement solutions for vulnerable passkeys by replacing them with PassCypher NFC HSM (99 €) and/or PassCypher HSM PGP (129 €/year) Eliminates the spoofable prompt, removes WebAuthn interception, and enables sovereign passwordless access with a payback period of days according to the study on authentication time
Migrate to a full-PassCypher model for critical environments Removes all FIDO/WebAuthn dependency, centralizes sovereign management of access and secrets, and maximizes productivity gains measured by the study
Deploy EviBITB (embedded technology in PassCypher HSM PGP, free version included) Provides immediate, zero-cost protection against BITB and real-time phishing via prompt spoofing
Harden the UX (visual signatures, non-cloneable elements) Complicates UI attacks, clickjacking, and redress
Audit and log authentication flows Detects and tracks any attempt at flow hijacking or Adversary-in-the-Middle attacks
Align with NIS2, SecNumCloud, and GDPR Reduces legal risk and provides proof of compliance
Train users on spoofable interface threats Strengthens human vigilance and proactive detection

Strategic Outlook

The message from DEF CON 33 is clear: authentication security is won or lost at the interface. In other words, as long as the user validates graphical authentication prompts synchronized with a network flow, real-time phishing and WebAuthn interception will remain possible.

Thus, prompt-free and cloud-free models — embodied by sovereign HSMs like PassCypher — radically reduce the attack surface.

In the short term, generalize the use of device-bound solutions for sensitive applications. In the medium term, the goal is to eliminate the spoofable UI from critical pathways. Ultimately, the recommended trajectory will permanently eliminate the “Passkeys WebAuthn Interception Flaw” from critical pathways through a gradual transition to a full-PassCypher model, providing a definitive solution for vulnerable passkeys in a professional context.

Passkeys Faille Interception WebAuthn | DEF CON 33 & PassCypher

Image type affiche de cinéma: passkey cassée sous hameçon de phishing. Textes: "Passkeys Faille Interception WebAuthn", "DEF CON 33 Révélation", "Pourquoi votre PassCypher n'est pas vulnérable API Hijacking". Contexte cybersécurité Andorre.

Passkeys Faille Interception WebAuthn : une vulnérabilité critique dévoilée à DEF CON 33 démontre que les passkeys synchronisées sont phishables en temps réel. Allthenticate a prouvé qu’un prompt d’authentification falsifiable permettait de détourner une session WebAuthn en direct.

Résumé exécutif — Passkeys Faille Interception WebAuthn

⮞ Note de lecture

Un résumé dense (≈ 1 min) pour décideurs et RSSI. Pour l’analyse technique complète (≈ 13 min), consultez la chronique intégrale.

Imaginez : une authentification vantée comme phishing-resistant — les passkeys synchronisées — exploitée en direct lors de DEF CON 33 (8–11 août 2025, Las Vegas). La vulnérabilité ? Une faille d’interception du flux WebAuthn, permettant un prompt falsifié en temps réel (real-time prompt spoofing).

Cette démonstration remet frontalement en cause la sécurité proclamée des passkeys cloudisées et ouvre le débat sur les alternatives souveraines. Deux recherches y ont marqué l’édition : le spoofing de prompts en temps réel (attaque d’interception WebAuthn) et, distincte, le clickjacking des extensions DOM. Cette chronique est exclusivement consacrée au spoofing de prompts, car il remet en cause la promesse de « phishing-resistant » pour les passkeys synchronisées vulnérables.

⮞ Résumé

Le maillon faible n’est plus la cryptographie, mais le déclencheur visuel. C’est l’interface — pas la clé — qui est compromise.

Note stratégique Cette démonstration creuse une faille historique : une authentification dite “résistante au phishing” peut parfaitement être abusée, dès lors que le prompt peut être falsifié et exploité au bon moment.

Chronique à lire
Temps de lecture estimé : ≈ 13 minutes (+4–5 min si vous visionnez les vidéos intégrées)
Niveau de complexité : Avancé / Expert
Langues disponibles : CAT · EN · ES · FR
Accessibilité : Optimisée pour lecteurs d’écran
Type : Chronique stratégique
Auteur : Jacques Gascuel, inventeur et fondateur de Freemindtronic®, conçoit et brevète des systèmes matériels de sécurité souverains pour la protection des données, la souveraineté cryptographique et les communications sécurisées. Expert en conformité ANSSI, NIS2, RGPD et SecNumCloud, il développe des architectures by design capables de contrer les menaces hybrides et d’assurer une cybersécurité 100 % souveraine.

Sources officielles

• Talk « Your Passkey is Weak : Phishing the Unphishable » (Allthenticate) — listé dans l’agenda officiel DEF CON 33 • Présentation « Passkeys Pwned : Turning WebAuthn Against Itself » — disponible sur le serveur média DEF CON • Article « Phishing-Resistant Passkeys Shown to Be Phishable at DEF CON 33 » — relayé par MENAFN / PR Newswire, rubrique Science & Tech

TL; DR
• À DEF CON 33 (8–11 août 2025), les chercheurs d’Allthenticate ont démontré que les passkeys dites « résistantes au phishing » peuvent être détournées via des prompts falsifiés en temps réel.
• La faille ne réside pas dans les algorithmes cryptographiques, mais dans l’interface utilisateur — le point d’entrée visuel.
• Cette révélation impose une révision stratégique : privilégier les passkeys liées au périphérique (device-bound) pour les usages sensibles, et aligner les déploiements sur les modèles de menace et les exigences réglementaires.

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 DataShielder Digital Security PassCypher Phishing

Midnight Blizzard Cyberattack Against Microsoft and HPE: What are the consequences?

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2021 Articles Cyberculture Digital Security EviPass EviPass NFC HSM technology EviPass Technology Technical News

766 trillion years to find 20-character code like a randomly generated password

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

En cybersécurité souveraine ↑ Cette chronique s’inscrit dans la rubrique Digital Security, dans la continuité des recherches menées sur les exploits et les contre-mesures matérielles zero trust.

⮞ Points Clés

  • Vulnérabilité confirmée : les passkeys synchronisées dans le cloud (Apple, Google, Microsoft) ne sont pas 100 % résistantes au phishing.
  • Nouvelle menace : le prompt falsifié en temps réel (real‑time prompt spoofing) exploite l’interface utilisateur plutôt que la cryptographie.
  • Impact stratégique : infrastructures critiques et administrations doivent migrer vers des credentials device-bound et des solutions hors-ligne souveraines (NFC HSM, clés segmentées).

Qu’est-ce qu’une attaque Passkeys Faille Interception WebAuthn ?

Une attaque d’interception WebAuthn via prompt d’authentification falsifiable (WebAuthn API Hijacking) consiste à imiter en temps réel la fenêtre d’authentification affichée par un système ou un navigateur. L’attaquant ne cherche pas à casser l’algorithme cryptographique : il reproduit l’interface utilisateur (UI) au moment exact où la victime s’attend à voir un prompt légitime. Leurres visuels, timing précis et synchronisation parfaite rendent la supercherie indiscernable pour l’utilisateur.

Exemple simplifié :
Un utilisateur pense approuver une connexion sur son compte bancaire via un prompt système Apple ou Google. En réalité, il interagit avec une boîte de dialogue clonée par l’attaquant. Le résultat : l’adversaire récupère la session active sans alerter la victime.
⮞ En clair : contrairement aux attaques « classiques » de phishing par e‑mail ou site frauduleux, le prompt falsifié en temps réel (real‑time prompt spoofing) se déroule pendant l’authentification, là où l’utilisateur est le plus confiant.

Historique des vulnérabilités Passkeys / WebAuthn

Malgré leur robustesse cryptographique, les passkeys — basés sur les standards ouverts WebAuthn et FIDO2 de la FIDO Alliance — ne sont pas invulnérables. L’historique des vulnérabilités et des recherches récentes confirme que la faiblesse clé réside souvent au niveau de l’interaction utilisateur et de l’environnement d’exécution (navigateur, système d’exploitation). C’est le 5 mai 2022 que l’industrie a officialisé leur adoption, suite à l’engagement d’Apple, Google et Microsoft d’étendre leur support sur leurs plateformes respectives.

Chronologie des vulnérabilités Passkey et WebAuthn de 2017 à 2025 montrant les failles de sécurité et les interceptions.
Cette chronologie illustre les failles de sécurité et les vulnérabilités découvertes dans les technologies Passkey et WebAuthn entre 2017 et 2025.

Chronologie des vulnérabilités

  • SquareX – Navigateurs compromis (août 2025) :

    Lors du DEF CON 33, une démonstration a montré qu’une extension ou un script malveillant peut intercepter le flux WebAuthn pour substituer des clés. Voir l’analyse de TechRadar et le report de SecurityWeek.

  • CVE-2025-31161 (mars/avril 2025) :

    Contournement d’authentification dans CrushFTP via une condition de concurrence. Source officielle NIST.

  • CVE-2024-9956 (mars 2025) :

    Prise de contrôle de compte via Bluetooth sur Android. Cette attaque a démontré qu’un attaquant peut déclencher une authentification malveillante à distance via un intent FIDO:/. Analyse de Risky.Biz. Source officielle NIST.

  • CVE-2024-12604 (mars 2025) :

    Stockage en clair de données sensibles dans Tap&Sign, exploitant une mauvaise gestion des mots de passe. Source officielle NIST.

  • CVE-2025-26788 (février 2025) :

    Contournement d’authentification dans StrongKey FIDO Server. Source détaillée.

  • Passkeys Pwned – API Hijacking basé sur le navigateur (début 2025) :

    Une recherche a démontré que le navigateur, en tant que médiateur unique, peut être un point de défaillance. Lire l’analyse de Security Boulevard.

  • CVE-2024-9191 (novembre 2024) :

    Exposition de mots de passe via Okta Device Access. Source officielle NIST.

  • CVE-2024-39912 (juillet 2024) :

    Énumération d’utilisateurs via une faille dans la bibliothèque PHP web-auth/webauthn-lib. Source officielle NIST.

  • Attaques de type CTRAPS (courant 2024) :

    Ces attaques au niveau du protocole (CTAP) exploitent les mécanismes d’authentification pour des actions non autorisées.

  • Première mise à disposition (septembre 2022) :

    Apple a été le premier à déployer des passkeys à grande échelle avec la sortie d’iOS 16, faisant de cette technologie une réalité pour des centaines de millions d’utilisateurs.

  • Lancement et adoption par l’industrie (mai 2022) :

    L’Alliance FIDO, rejointe par Apple, Google et Microsoft, a annoncé un plan d’action pour étendre le support des clés d’accès sur toutes leurs plateformes.

  • Attaques de Timing sur keyHandle (2022) :

    Vulnérabilité permettant de corréler des comptes en mesurant les variations temporelles dans le traitement des keyHandles. Voir article IACR ePrint 2022.

  • Phishing des méthodes de secours (depuis 2017) :

    Les attaquants utilisent des proxys AitM (comme Evilginx, apparu en 2017) pour masquer l’option passkey et forcer le recours à des méthodes moins sécurisées, qui peuvent être capturées. Plus de détails sur cette technique.

Note historique — Les risques liés aux prompts falsifiables dans WebAuthn étaient déjà soulevés par la communauté dans le W3C GitHub issue #1965 (avant la démonstration du DEF CON 33). Cela montre que l’interface utilisateur a longtemps été reconnue comme un maillon faible dans l’authentification dite “phishing-resistant“.

Ces vulnérabilités, récentes et historiques, soulignent le rôle critique du navigateur et du modèle de déploiement (device-bound vs. synced). Elles renforcent l’appel à des architectures **souveraines** et déconnectées de ces vecteurs de compromission.

Vulnérabilité liée au modèle de synchronisation

Une des vulnérabilités les plus débattues ne concerne pas le protocole WebAuthn lui-même, mais son modèle de déploiement. La plupart des publications sur le sujet font la distinction entre deux types de passkeys :

  • Passkeys liés à l’appareil (device-bound) : Stockés sur un appareil physique (comme une clé de sécurité ou un Secure Enclave). Ce modèle est généralement considéré comme très sécurisé, car il n’est pas synchronisé via un service tiers.
  • Passkeys synchronisés dans le cloud : Stockés dans un gestionnaire de mots de passe ou un service cloud (iCloud Keychain, Google Password Manager, etc.). Ces passkeys peuvent être synchronisés sur plusieurs appareils. Pour plus de détails sur cette distinction, consultez la documentation de la FIDO Alliance.

La vulnérabilité réside ici : si un attaquant parvient à compromettre le compte du service cloud, il pourrait potentiellement accéder aux passkeys synchronisés sur l’ensemble des appareils de l’utilisateur. C’est un risque que les passkeys liés à l’appareil ne partagent pas. Des recherches universitaires comme celles publiées sur arXiv approfondissent cette problématique, soulignant que “la sécurité des passkeys synchronisés est principalement concentrée chez le fournisseur de la passkey”.

Cette distinction est cruciale, car l’implémentation de **passkeys synchronisés vulnérables** contrevient à l’esprit d’une MFA dite résistante au phishing dès lors que la synchronisation introduit un intermédiaire et une surface d’attaque supplémentaire. Cela justifie la recommandation de la FIDO Alliance de privilégier les passkeys liés à l’appareil pour un niveau de sécurité maximal.

Démonstration – Passkeys Faille Interception WebAuthn (DEF CON 33)

À Las Vegas, au cœur du DEF CON 33 (8–11 août 2025), la scène hacker la plus respectée a eu droit à une démonstration qui a fait grincer bien des dents. Les chercheurs d’Allthenticate ont montré en direct qu’une passkey synchronisée vulnérable – pourtant labellisée « phishing-resistant » – pouvait être trompée. Comment ? Par une attaque d’interception WebAuthn de type prompt d’authentification falsifiable (real‑time prompt spoofing) : une fausse boîte de dialogue d’authentification, parfaitement calée dans le timing et l’UI légitime. Résultat : l’utilisateur croit valider une authentification légitime, mais l’adversaire récupère la session en direct.
La preuve de concept rend tangible “Passkeys Faille Interception WebAuthn” via un prompt usurpable en temps réel.

🎥 Auteurs & Médias officiels DEF CON 33
⮞ Shourya Pratap Singh, Jonny Lin, Daniel Seetoh — chercheurs Allthenticate, auteurs de la démo « Your Passkey is Weak: Phishing the Unphishable ».
• Vidéo Allthenticate sur TikTok — explication directe par l’équipe.
• Vidéo DEF CON 33 Las Vegas (TikTok) — aperçu du salon.
• Vidéo Highlights DEF CON 33 (YouTube) — incluant la faille passkeys.

⮞ Résumé

DEF CON 33 a démontré que les passkeys synchronisées vulnérables pouvaient être compromises en direct, dès lors qu’un prompt d’authentification falsifiable s’insère dans le flux WebAuthn.

Contexte technique – Passkeys Faille Interception WebAuthn

Pour comprendre la portée de cette vulnérabilité passkeys, il faut revenir aux deux familles principales :

  • Les passkeys synchronisées vulnérables : stockées dans un cloud Apple, Google ou Microsoft, accessibles sur tous vos appareils. Pratiques, mais l’authentification repose sur un prompt d’authentification falsifiable — un point d’ancrage exploitable.
  • Les passkeys device‑bound : la clé privée reste enfermée dans l’appareil (Secure Enclave, TPM, YubiKey). Aucun cloud, donc moins de surface d’attaque.

Dans ce cadre, “Passkeys Faille Interception WebAuthn” résulte d’un enchaînement où l’UI validée devient le point d’ancrage de l’attaque.

Le problème est simple : tout mécanisme dépendant d’un prompt système est imitable. Si l’attaquant reproduit l’UI et capture le timing, il peut effectuer une attaque d’interception WebAuthn et détourner l’acte d’authentification. Autrement dit, le maillon faible n’est pas la cryptographie mais l’interface utilisateur.

Risque systémique : L’effet domino en cas de corruption de Passkeys

Le risque lié à la corruption d’une passkey est particulièrement grave lorsqu’une seule passkey est utilisée sur plusieurs sites et services (Google, Microsoft, Apple, etc.). Si cette passkey est compromise, cela peut entraîner un effet domino où l’attaquant prend le contrôle de plusieurs comptes utilisateur liés à ce service unique.

Un autre facteur de risque est l’absence de mécanisme pour savoir si une passkey a été compromise. Contrairement aux mots de passe, qui peuvent être vérifiés dans des bases de données comme “Have I Been Pwned”, il n’existe actuellement aucun moyen standardisé pour qu’un utilisateur sache si sa passkey a été corrompue.

Le risque est d’autant plus élevé si la passkey est centralisée et synchronisée via un service cloud, car un accès malveillant à un compte pourrait potentiellement donner accès à d’autres services sensibles sans que l’utilisateur en soit immédiatement informé.

⮞ Résumé

La faille n’est pas dans les algorithmes FIDO, mais dans l’UI/UX : le prompt d’authentification falsifiable, parfait pour un phishing en temps réel.

Comparatif – Faille d’interception WebAuthn : spoofing de prompts vs. clickjacking DOM

À DEF CON 33, deux recherches majeures ont ébranlé la confiance dans les mécanismes modernes d’authentification. Toutes deux exploitent des failles liées à l’interface utilisateur (UX) plutôt qu’à la cryptographie, mais leurs vecteurs et cibles diffèrent radicalement.

Architecture PassCypher vs FIDO WebAuthn — Schéma comparatif des flux d’authentification
✪ Illustration : Comparaison visuelle des architectures d’authentification : FIDO/WebAuthn (prompt falsifiable) vs PassCypher (sans cloud, sans prompt).

Prompt falsifié en temps réel

  • Auteur : Allthenticate (Las Vegas, DEF CON 33).
  • Cible : passkeys synchronisées vulnérables (Apple, Google, Microsoft).
  • Vecteur : prompt d’authentification falsifiable, calé en temps réel sur l’UI légitime (real‑time prompt spoofing).
  • Impact : attaque d’interception WebAuthn provoquant un phishing « live » ; l’utilisateur valide à son insu une demande piégée.

Détournement de clic DOM

  • Auteurs : autre équipe de chercheurs (DEF CON 33).
  • Cible : gestionnaires d’identifiants, extensions, passkeys stockées.
  • Vecteur : iframes invisibles, Shadow DOM, scripts malveillants pour détourner l’autoremplissage.
  • Impact : exfiltration silencieuse d’identifiants, passkeys et clés de crypto‑wallets.

⮞ À retenir : cette chronique se concentre exclusivement sur le spoofing de prompts, qui illustre une faille d’interception WebAuthn majeure et remet en cause la promesse de « passkeys résistantes au phishing ». Pour l’étude complète du clickjacking DOM, voir la chronique connexe.

Implications stratégiques – Passkeys et vulnérabilités UX

En conséquence, “Passkeys Faille Interception WebAuthn” oblige à repenser l’authentification autour de modèles hors prompt et hors cloud.

      • Ne plus considérer les passkeys synchronisées vulnérables comme inviolables.
      • Privilégier les device‑bound credentials pour les environnements sensibles.
      • Mettre en place des garde‑fous UX : détection d’anomalies dans les prompts d’authentification, signatures visuelles non falsifiables.
      • Former les utilisateurs à la menace de phishing en temps réel par attaque d’interception WebAuthn.
⮞ Insight
Ce n’est pas la cryptographie qui cède, mais l’illusion d’immunité. L’interception WebAuthn démontre que le risque réside dans l’UX, pas dans l’algorithme.
[/ux_text]

Chronique connexe — Clickjacking des extensions DOM à DEF CON 33

Une autre recherche présentée à DEF CON 33 a mis en lumière une méthode complémentaire visant les gestionnaires d’identités et les passkeys : le clickjacking des extensions DOM. Si cette technique n’implique pas directement une attaque d’interception WebAuthn, elle illustre un autre vecteur UX critique où des iframes invisibles, du Shadow DOM et des scripts malveillants peuvent détourner l’autoremplissage et voler des identifiants, des passkeys et des clés de crypto‑wallets.

Langues disponibles :
CAT · EN · ES · FR

[ux_text font_size=”1.2″ line_height=”1.35″>

Réglementation & conformité – MFA et interception WebAuthn

Les textes officiels comme le guide CISA sur la MFA résistante au phishing ou la directive OMB M-22-09 insistent : une authentification n’est « résistante au phishing » que si aucun intermédiaire ne peut intercepter ou détourner le flux WebAuthn.

En théorie, les passkeys WebAuthn respectent cette règle. En pratique, l’implémentation des passkeys synchronisées vulnérables ouvre une faille d’interception exploitable via un prompt d’authentification falsifiable.

En Europe, la directive NIS2 et la certification SecNumCloud rappellent la même exigence : pas de dépendance à des services tiers non maîtrisés.

 

Risque lié à la synchronisation cloud

Une des vulnérabilités les plus débattues ne concerne pas le protocole lui-même, mais son modèle de déploiement. Les passkeys synchronisés via des services cloud (comme iCloud Keychain ou Google Password Manager) sont potentiellement vulnérables si le compte cloud de l’utilisateur est compromis. Ce risque n’existe pas pour les passkeys liés à l’appareil (via une clé de sécurité matérielle ou un Secure Enclave), ce qui souligne l’importance du choix de l’architecture de déploiement.

 

À ce titre, “Passkeys Faille Interception WebAuthn” contrevient à l’esprit d’une MFA dite résistante au phishing dès lors que la synchronisation introduit un intermédiaire.

Autrement dit, un cloud US gérant vos passkeys sort du cadre d’une souveraineté numérique stricte.

⮞ Résumé

Une passkey synchronisée vulnérable peut compromettre l’exigence de MFA résistante au phishing (CISA, NIS2) dès lors qu’une attaque d’interception WebAuthn est possible.

Statistiques francophones et européennes – Phishing en temps réel et interception WebAuthn

Les rapports publics confirment que les attaques de phishing avancé — notamment les techniques en temps réel — constituent une menace majeure dans l’Union européenne et l’espace francophone.

  • Union européenne — ENISA : selon le rapport Threat Landscape 2024, le phishing et l’ingénierie sociale représentent 38 % des incidents signalés dans l’UE, avec une hausse notable des méthodes Adversary‑in‑the‑Middle et prompt falsifié en temps réel (real‑time prompt spoofing), associées à l’interception WebAuthn. Source : ENISA Threat Landscape 2024
  • France — Cybermalveillance.gouv.fr : en 2023, le phishing a généré 38 % des demandes d’assistance, avec plus de 1,5 M de consultations liées à l’hameçonnage. Les arnaques au faux conseiller bancaire ont bondi de +78 % vs 2022, souvent via des prompts d’authentification falsifiables. Source : Rapport d’activité 2023
  • Canada (francophone) — Centre canadien pour la cybersécurité : l’Évaluation des cybermenaces nationales 2023‑2024 indique que 65 % des entreprises s’attendent à subir un phishing ou ransomware. Le phishing reste un vecteur privilégié pour contourner la MFA, y compris via l’interception de flux WebAuthn. Source : Évaluation officielle
⮞ Lecture stratégique
Le prompt falsifié en temps réel n’est pas une expérimentation de laboratoire : il s’inscrit dans une tendance où le phishing cible l’interface d’authentification plutôt que les algorithmes, avec un recours croissant à l’attaque d’interception WebAuthn.

Cas d’usage souverain – Neutralisation de l’interception WebAuthn

Dans un scénario concret, une autorité régulatrice réserve les passkeys synchronisées aux portails publics à faible risque. Le choix PassCypher supprime la cause de “Passkeys Faille Interception WebAuthn” en retirant le prompt, le cloud et toute exposition DOM.
Pour les systèmes critiques (administration, opérations sensibles, infrastructures vitales), elle déploie PassCypher sous deux formes :

PassCypher NFC HSM — authentification matérielle hors‑ligne, sans serveur, avec émulation clavier BLE AES‑128‑CBC. Aucun prompt d’authentification falsifiable n’existe.
PassCypher HSM PGP — gestion souveraine de clés segmentées inexportables, validation cryptographique sans cloud ni synchronisation.

⮞ Résultat
Dans ce modèle, le vecteur prompt exploité lors de l’attaque d’interception WebAuthn à DEF CON 33 est totalement éliminé des parcours critiques.

Pourquoi PassCypher élimine le risque d’interception WebAuthn

Les solutions PassCypher se distinguent radicalement des passkeys FIDO vulnérables à l’attaque d’interception WebAuthn :

  • Pas de prompt OS/navigateur — donc aucun prompt d’authentification falsifiable.
  • Pas de cloud — pas de synchronisation vulnérable ni dépendance à un tiers.
  • Pas de DOM — aucune exposition aux scripts, extensions ou iframes.
✓ Souveraineté : en supprimant prompt, cloud et DOM, PassCypher retire tout point d’accroche à la faille d’interception WebAuthn (spoofing de prompts) révélée à DEF CON 33.

PassCypher NFC HSM — Neutralisation matérielle de l’interception

L’attaque d’Allthenticate à DEF CON 33 prouve que tout système dépendant d’un prompt OS/navigateur peut être falsifié.
PassCypher NFC HSM supprime ce vecteur : aucun prompt, aucune synchro cloud, secrets chiffrés à vie dans un nano‑HSM NFC et validés par un tap physique.

Fonctionnement utilisateur :

  • Tap NFC obligatoire — validation physique sans interface logicielle.
  • Mode HID BLE AES‑128‑CBC — transmission hors DOM, résistante aux keyloggers.
  • Écosystème Zero‑DOM — aucun secret n’apparaît dans le navigateur.

⮞ Résumé

Contrairement aux passkeys synchronisées vulnérables, PassCypher NFC HSM neutralise l’attaque d’interception WebAuthn car il n’existe pas de prompt d’authentification falsifiable.

Attaques neutralisées par PassCypher NFC HSM

Type d’attaque Vecteur Statut
Spoofing de prompts Faux dialogue OS/navigateur Neutralisé (zéro prompt)
Phishing en temps réel Validation piégée en direct Neutralisé (tap NFC obligatoire)
Enregistrement de frappe Capture de frappes clavier Neutralisé (HID BLE chiffré)

PassCypher HSM PGP — Clés segmentées contre le phishing

L’autre pilier, PassCypher HSM PGP, applique la même philosophie : aucun prompt exploitable.
Les secrets (identifiants, passkeys, clés SSH/PGP, TOTP/HOTP) résident dans des conteneurs chiffrés AES‑256 CBC PGP, protégés par un système de clés segmentées brevetées.

  • Pas de prompt — donc pas de fenêtre à falsifier.
  • Clés segmentées — inexportables, assemblées uniquement en RAM.
  • Déchiffrement éphémère — le secret disparaît aussitôt utilisé.
  • Zéro cloud — pas de synchronisation vulnérable.

⮞ Résumé

PassCypher HSM PGP supprime le terrain d’attaque du prompt falsifié en temps réel : authentification matérielle, clés segmentées et validation cryptographique sans exposition DOM ni cloud.

Comparatif de surface d’attaque

Critère Passkeys synchronisées (FIDO) PassCypher NFC HSM PassCypher HSM PGP
Prompt d’authentification Oui Non Non
Cloud de synchronisation Oui Non Non
Clé privée exportable Non (UI attaquable) Non Non
Usurpation / interception WebAuthn Présent Absent Absent
Dépendance standard FIDO Oui Non Non
⮞ Insight
En retirant le prompt d’authentification falsifiable et la synchronisation cloud, l’attaque d’interception WebAuthn démontrée à DEF CON 33 disparaît complètement.

Signaux faibles – tendances liées à l’interception WebAuthn

⮞ Weak Signals Identified
– Généralisation des attaques UI en temps réel, y compris l’interception WebAuthn via prompt d’authentification falsifiable.
– Dépendance croissante aux clouds tiers pour l’identité, augmentant l’exposition des passkeys synchronisées vulnérables.
– Multiplication des contournements via ingénierie sociale assistée par IA, appliquée aux interfaces d’authentification.

Glossaire des termes stratégiques

Un rappel des notions clés utilisées dans cette chronique, pour lecteurs débutants comme confirmés.

  • Passkey / Passkeys

    Un identifiant numérique sans mot de passe basé sur le standard FIDO/WebAuthn, conçu pour être “résistant au phishing”.

    • Passkey (singulier) : Se réfère à un identifiant numérique unique stocké sur un appareil (par exemple, le Secure Enclave, TPM, YubiKey).
    • Passkeys (pluriel) : Se réfère à la technologie générale ou à plusieurs identifiants, y compris les *passkeys synchronisés* stockés dans les clouds d’Apple, Google ou Microsoft. Ces derniers sont particulièrement vulnérables à l’**Attaque d’Interception WebAuthn** (falsification de prompt en temps réel démontrée au DEF CON 33).
  • Passkeys Pwned

    Titre de la présentation au DEF CON 33 par Allthenticate (« Passkeys Pwned: Turning WebAuthn Against Itself »). Elle met en évidence comment une attaque d’interception WebAuthn peut compromettre les passkeys synchronisés en temps réel, prouvant qu’ils ne sont pas 100% résistants au phishing.

  • Passkeys synchronisées vulnérables

    Stockées dans un cloud (Apple, Google, Microsoft) et utilisables sur plusieurs appareils. Avantage en termes d’UX, mais faiblesse stratégique : dépendance à un **prompt d’authentification falsifiable** et au cloud.

  • Passkeys device-bound

    Liées à un seul périphérique (TPM, Secure Enclave, YubiKey). Plus sûres car sans synchronisation cloud.

  • Prompt

    Boîte de dialogue système ou navigateur demandant une validation (Face ID, empreinte, clé FIDO). Cible principale du spoofing.

  • Attaque d’interception WebAuthn

    Également connue sous le nom de *WebAuthn API Hijacking*. Elle manipule le flux d’authentification en falsifiant le prompt système/navigateur et en imitant l’interface utilisateur en temps réel. L’attaquant ne brise pas la cryptographie, mais intercepte le processus WebAuthn au niveau de l’UX. Voir la spécification officielle W3C WebAuthn et la documentation de la FIDO Alliance.

  • Real-time prompt spoofing

    Falsification en direct d’une fenêtre d’authentification, qui est indiscernable pour l’utilisateur.

  • Clickjacking DOM

    Attaque utilisant des *iframes invisibles* et le *Shadow DOM* pour détourner l’autoremplissage et voler des identifiants.

  • Zero-DOM

    Architecture souveraine où aucun secret n’est exposé au navigateur ni au DOM.

  • NFC HSM

    Module matériel sécurisé hors ligne, compatible HID BLE AES-128-CBC.

  • Clés segmentées

    Clés cryptographiques découpées en segments, assemblées uniquement en mémoire volatile.

  • Device-bound credential

    Identifiant attaché à un périphérique physique, non transférable ni clonable.

▸ Utilité stratégique : ce glossaire montre pourquoi l’**attaque d’interception WebAuthn** cible le prompt et l’UX, et pourquoi PassCypher élimine ce vecteur par conception.

FAQ technique (intégration & usages)

  • Q : Peut‑on migrer d’un parc FIDO vers PassCypher ?

    R : Oui, en modèle hybride. Conservez FIDO pour les usages courants, adoptez PassCypher pour les accès critiques afin d’éliminer les vecteurs d’interception WebAuthn.

  • Q : Quel impact UX sans prompt système ?

    R : Le geste est matériel (tap NFC ou validation HSM). Aucun prompt d’authentification falsifiable, aucune boîte de dialogue à usurper : suppression totale du risque de phishing en temps réel.

  • Q : Comment révoquer une clé compromise ?

    R : On révoque simplement l’HSM ou la clé cycle. Aucun cloud à purger, aucun compte tiers à contacter.

  • Q : PassCypher protège-t-il contre le real-time prompt spoofing ?

    R : Oui. L’architecture PassCypher supprime totalement le prompt OS/navigateur, supprimant ainsi la surface d’attaque exploitée à DEF CON 33.

  • Q : Peut‑on intégrer PassCypher dans une infrastructure réglementée NIS2 ?

    R : Oui. Les modules NFC HSM et HSM PGP sont conformes aux exigences de souveraineté numérique et neutralisent les risques liés aux passkeys synchronisées vulnérables.

  • Q : Les passkeys device‑bound sont‑elles totalement inviolables ?

    R : Non, mais elles éliminent le risque d’interception WebAuthn via cloud. Leur sécurité dépend ensuite de la robustesse matérielle (TPM, Secure Enclave, YubiKey) et de la protection physique de l’appareil.

  • Q : Un malware local peut‑il reproduire un prompt PassCypher ?

    R : Non. PassCypher ne repose pas sur un prompt logiciel : la validation est matérielle et hors‑ligne, donc aucun affichage falsifiable n’existe.

  • Q : Pourquoi les clouds tiers augmentent‑ils le risque ?

    R : Les passkeys synchronisées vulnérables stockées dans un cloud tiers peuvent être ciblées par des attaques d’Adversary‑in‑the‑Middle ou d’interception WebAuthn si le prompt est compromis.

Conseil RSSI / CISO – Protection universelle & souveraine

EviBITB (Embedded Browser‑In‑The‑Browser Protection) est une technologie embarquée dans PassCypher HSM PGP, y compris dans sa version gratuite.
Elle détecte et supprime automatiquement ou manuellement les iframes de redirection utilisées dans les attaques BITB et prompt spoofing, éliminant ainsi le vecteur d’interception WebAuthn.

  • Déploiement immédiat : extension gratuite pour navigateurs Chromium et Firefox, utilisable à grande échelle sans licence payante.
  • Protection universelle : agit même si l’organisation n’a pas encore migré vers un modèle hors‑prompt.
  • Compatibilité souveraine : fonctionne avec PassCypher NFC HSM Lite (99 €) et PassCypher HSM PGP complet (129 €/an).
  • Full passwordless : PassCypher NFC HSM et HSM PGP peuvent remplacer totalement FIDO/WebAuthn pour tous les parcours d’authentification, avec zéro prompt, zéro cloud et 100 % de souveraineté.

Recommandation stratégique :
Déployer EviBITB dès maintenant sur tous les postes pour neutraliser le BITB/prompt spoofing, puis planifier la migration des accès critiques vers un modèle full‑PassCypher pour supprimer définitivement la surface d’attaque.

Questions fréquentes côté RSSI / CISO

Q : Quel est l’impact réglementaire d’une attaque d’interception WebAuthn ?

R : Ce type d’attaque peut compromettre la conformité aux exigences de MFA « résistante au phishing » définies par la CISA, NIS2 et SecNumCloud. En cas de compromission de données personnelles, l’organisation s’expose à des sanctions RGPD et à une remise en cause de ses certifications sécurité.

Q : Existe-t-il une protection universelle et gratuite contre le BITB et le prompt spoofing ?

R : Oui. EviBITB est une technologie embarquée dans PassCypher HSM PGP, y compris dans sa version gratuite. Elle bloque les iframes de redirection (Browser-In-The-Browser) et supprime le vecteur du prompt d’authentification falsifiable exploité dans l’interception WebAuthn. Elle peut être déployée immédiatement à grande échelle sans licence payante.

Q : Peut-on se passer totalement de FIDO/WebAuthn ?

R : Oui. PassCypher NFC HSM et PassCypher HSM PGP sont des solutions passwordless souveraines complètes : elles permettent d’authentifier, signer et chiffrer sans infrastructure FIDO, avec zéro prompt falsifiable, zéro cloud tiers et une architecture 100 % maîtrisée.

Q : Quel est le budget moyen et le ROI d’une migration vers un modèle hors-prompt ?

R : Selon l’étude Time Spent on Authentication, un professionnel perd en moyenne 285 heures/an en authentifications classiques, soit environ 8 550 $ de coût annuel (base 30 $/h). PassCypher HSM PGP ramène ce temps à ~7 h/an, PassCypher NFC HSM à ~18 h/an. Même avec le modèle complet (129 €/an) ou le NFC HSM Lite (99 € achat unique), le point mort est atteint en quelques jours à quelques semaines, et les économies nettes dépassent 50 fois le coût annuel dans un contexte professionnel.

Q : Comment gérer un parc hybride (legacy + moderne) ?

R : Conserver FIDO pour les usages à faible risque tout en remplaçant progressivement par PassCypher NFC HSM et/ou PassCypher HSM PGP dans les environnements critiques. Cette transition supprime les prompts exploitables et conserve la compatibilité applicative.

Q : Quels indicateurs suivre pour mesurer la réduction de surface d’attaque ?

R : Nombre d’authentifications via prompt système vs. authentification matérielle, incidents liés à l’interception WebAuthn, temps moyen de remédiation et pourcentage d’accès critiques migrés vers un modèle souverain hors-prompt.

Plan d’action RSSI / CISO

Action prioritaire Impact attendu
Remplacer les passkeys synchronisées vulnérables par PassCypher NFC HSM (99 €) et/ou PassCypher HSM PGP (129 €/an) Élimine le prompt falsifiable, supprime l’interception WebAuthn, passage en passwordless souverain avec amortissement en jours selon l’étude sur le temps d’authentification
Migrer vers un modèle full‑PassCypher pour les environnements critiques Supprime toute dépendance FIDO/WebAuthn, centralise la gestion souveraine des accès et secrets, et maximise les gains de productivité mesurés par l’étude
Déployer EviBITB (technologie embarquée dans PassCypher HSM PGP, version gratuite incluse) Protection immédiate sans coût contre BITB et phishing en temps réel par prompt spoofing
Durcir l’UX (signatures visuelles, éléments non clonables) Complexifie les attaques UI, clickjacking et redress
Auditer et journaliser les flux d’authentification Détecte et trace toute tentative de détournement de flux ou d’Adversary-in-the-Middle
Aligner avec NIS2, SecNumCloud et RGPD Réduit le risque juridique et apporte une preuve de conformité
Former les utilisateurs aux menaces d’interface falsifiable Renforce la vigilance humaine et la détection proactive

Perspectives stratégiques

Le message de DEF CON 33 est clair : la sécurité de l’authentification se joue à l’interface.
Tant que l’utilisateur validera des prompts d’authentification graphiques synchronisés avec un flux réseau, le phishing en temps réel et l’interception WebAuthn resteront possibles.
Les modèles hors prompt et hors cloud — matérialisés par des HSM souverains comme PassCypherréduisent radicalement la surface d’attaque.
À court terme : généraliser le device‑bound pour les usages sensibles ; à moyen terme : éliminer l’UI falsifiable des parcours critiques. La trajectoire recommandée élimine durablement “Passkeys Faille Interception WebAuthn” des parcours critiques par un passage progressif au full‑PassCypher.

Clickjacking des extensions DOM : DEF CON 33 révèle 11 gestionnaires vulnérables

Affiche cyberpunk illustrant DOM Based Extension Clickjacking présenté au DEF CON 33 avec extraction de secrets du navigateur

Résumé Exécutif — clickjacking des extensions DOM

⮞ Note de lecture

Si vous souhaitez seulement retenir l’essentiel, le Résumé Exécutif (≈4 minutes) suffit. Pour une vision complète et technique, poursuivez avec la lecture intégrale de la chronique (≈35 minutes).

⚡ La découverte

Las Vegas, début août 2025. Le DEF CON 33 bat son plein au Las Vegas Convention Center. Entre dômes de hackers, villages IoT, Adversary Village et compétitions CTF, l’air est saturé de passion, de badges et de soudures improvisées. Sur scène, Marek Tóth n’a pas besoin d’artifices : il branche son laptop, lance la démo et appuie sur Enter.

L’attaque star : clickjacking des extensions DOMfacile à coder, dévastatrice à exécuter : une page piégée, des iframes invisibles, un focus() malveillant… et les gestionnaires d’autofill déversent identifiants, TOTP et passkeys dans un formulaire fantôme. Ce clickjacking des extensions DOM s’impose comme une menace structurelle.

✦ L’impact immédiat du clickjacking des extensions DOM sur les gestionnaires de mots de passe vulnérables

Résultat ? Sur les 11 gestionnaires de mots de passe testés, tous se sont révélés vulnérables par conception au DOM-Based Extension Clickjacking, et 10 sur 11 ont effectivement permis l’exfiltration d’identifiants et de secrets. Au total, près de 40 millions d’installations se retrouvent exposées selon SecurityWeek. Cette vague de clickjacking des extensions DOM ne se limite pas aux gestionnaires : même les crypto-wallets laissent échapper leurs clés privées comme un robinet mal fermé, exposant directement des actifs financiers.

⧉ Seconde démonstration ⟶ Exfiltration de passkeys par overlay à DEF CON 33

Juste après la démonstration de Marek Tóth, une seconde démonstration indépendante a révélé une faille critique dans les passkeys dites « résistantes au phishing ». Présentées comme inviolables, ces identifiants ont été exfiltrés via une technique aussi simple qu’efficace : un overlay visuel trompeur combiné à une redirection piégée. Cette attaque ne repose pas sur le DOM — elle exploite la confiance de l’utilisateur dans des interfaces familières et la validation via extensions de navigateur. Conséquence directe : même les passkeys synchronisées validées par des extensions peuvent être détournées silencieusement dans des environnements non souverains. Nous analysons cette méthode dans notre chronique dédiée : Passkeys phishables à DEF CON 33. Même FIDO/WebAuthn peut être abusé dans des environnements non souverains, lorsque la validation s’effectue via des interfaces manipulées qui simulent un contexte légitime.

⚠ Le message stratégique : risques systémiques du clickjacking des extensions DOM

En deux démos — l’une visant les gestionnaires de mots de passe et wallets, l’autre ciblant directement les passkeys — deux piliers de la cybersécurité s’effondrent de leur piédestal. Le message est limpide : tant que vos secrets résident dans le DOM, ils sont vulnérables. Et tant que la cybersécurité repose sur le navigateur et le cloud, un simple clic peut tout renverser. Comme le rappelle OWASP, le clickjacking est un classique — mais ici, c’est la couche extension qui se retrouve pulvérisée.

⎔ L’alternative souveraine : contre-mesures Zero DOM

Saviez-vous qu’il existe une autre voie depuis plus de dix ans — une voie qui ne passe pas par le DOM ? Avec PassCypher HSM PGP, PassCypher NFC HSM et SeedNFC pour la sauvegarde matérielle des clés cryptographiques, vos identifiants, mots de passe et secrets TOTP/HOTP ne passent jamais par le DOM. Ils restent chiffrés dans des HSM hors ligne — injectés de manière sécurisée via sandbox d’URL ou saisis manuellement via l’application Android (NFC), toujours protégés par l’anti-attaque BITB. Ce n’est pas une rustine, mais une architecture brevetée passwordless souveraine, décentralisée, sans serveur ni base de données, sans mot de passe maître — qui libère la gestion des secrets des dépendances centralisées comme FIDO/WebAuthn.

Chronique à lire
Temps de lecture estimé : 35 minutes
Niveau de complexité : Avancé / Expert
Spécificité linguistique : Lexique souverain — densité technique élevée
Langues disponibles :CAT · EN · ES · FR
Accessibilité : Optimisé pour les lecteurs d’écran — ancres sémantiques intégrées
Type éditorial : Chronique stratégique
À propos de l’auteur : Jacques Gascuel, inventeur et fondateur de Freemindtronic®, conçoit et brevète des systèmes matériels de sécurité souverains pour la protection des données, la souveraineté cryptographique et les communications sécurisées. Expert en conformité ANSSI, NIS2, RGPD et SecNumCloud, il développe des architectures by design capables de contrer les menaces hybrides et d’assurer une cybersécurité 100 % souveraine.
TL;DR — Au DEF CON 33, 10 gestionnaires de mots de passe sur 11 tombent sous le DOM-Based Extension Clickjacking.
Exfiltration : logins, TOTP, passkeys, clés crypto.
Techniques : iframes invisibles, Shadow DOM, Browser-in-the-Browser.
Impact : ~40M d’installations exposées, et encore ~32,7M vulnérables au 23 août 2025 faute de patch.
Contre-mesure : PassCypher NFC/PGP et SeedNFC — secrets (TOTP, identifiant et mot de passe, diverses clés privées (crypto, PGP, etc.) en HSM hors-DOM, activation physique, injection sécurisée via NFC, HID ou canaux RAM chiffrés.
Principe : zéro DOM, zéro surface d’attaque.
Anatomy of DOM extension clickjacking attack with hidden iframe, Shadow DOM and stealth credential exfiltration
Anatomy of DOM extension clickjacking: a malicious page, hidden iframe and autofill hijack exfiltrating credentials, passkeys and crypto-wallet keys.

2025 Digital Security

Chrome V8 Zero-Day: CVE-2025-6554 Actively Exploited

2025 Digital Security

APT29 Exploits App Passwords to Bypass 2FA

2025 Digital Security

Signal Clone Breached: Critical Flaws in TeleMessage

2025 Digital Security

APT29 Spear-Phishing Europe: Stealthy Russian Espionage

2024 Digital Security

Why Encrypt SMS? FBI and CISA Recommendations

2025 Digital Security

APT44 QR Code Phishing: New Cyber Espionage Tactics

2023 Digital Security

WhatsApp Hacking: Prevention and Solutions

2024 Digital Security

BitLocker Security: Safeguarding Against Cyberattacks

2024 Digital Security

French Minister Phone Hack: Jean-Noël Barrot’s G7 Breach

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

Digital Security Technical News

Brute Force Attacks: What They Are and How to Protect Yourself

2023 Digital Security

Predator Files: The Spyware Scandal That Shook the World

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2024 Digital Security

Europol Data Breach: A Detailed Analysis

Digital Security EviToken Technology Technical News

EviCore NFC HSM Credit Cards Manager | Secure Your Standard and Contactless Credit Cards

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 DataShielder Digital Security PassCypher Phishing

Midnight Blizzard Cyberattack Against Microsoft and HPE: What are the consequences?

2024 Digital Security

Cybersecurity Breach at IMF: A Detailed Investigation

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2024 Digital Security

PrintListener: How to Betray Fingerprints

2021 Articles Cyberculture Digital Security EviPass EviPass NFC HSM technology EviPass Technology Technical News

766 trillion years to find 20-character code like a randomly generated password

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2024 Digital Security Spying

Ivanti Zero-Day Flaws: Comprehensive Guide to Secure Your Systems Now

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security

Chinese hackers Cisco routers: how to protect yourself?

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Digital Security

What is Juice Jacking and How to Avoid It?

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

En cybersécurité souveraine ↑ Cette chronique s’inscrit dans la rubrique Digital Security, dans la continuité des recherches menées sur les exploits et les contre-mesures matérielles zero trust.

⮞ Points Clés :

    • 11 gestionnaires de mots de passe prouvés vulnérables — identifiants, TOTP et passkeys exfiltrés par redressing DOM.
    • Les extensions de portefeuilles crypto (MetaMask, Phantom, TrustWallet) exposées au même type d’attaques.
    • Exploitation en un seul clic via iframes invisibles, Shadow DOM encapsulé et overlays BITB.
    • Le sandbox du navigateur n’est pas un sanctuaire souverain — BITB trompe la perception utilisateur.
    • Les solutions PassCypher NFC / HSM PGP et SeedNFC offrent des flux matériels sans DOM, ancrés dans des enclaves, avec kill-switch anti-BITB.
    • Dix années de R&D souveraine avaient anticipé ce risque : conteneurs AES-256 segmentés, canaux hybrides RAM NFC↔PGP et injection HID constituent l’alternative native.

Qu’est-ce que le clickjacking des extensions DOM ?

Le Clickjacking d’extensions basé sur le DOM est une variante du clickjacking où l’attaquant manipule le Document Object Model (DOM) du navigateur afin de détourner la couche de confiance des extensions. Contrairement au clickjacking classique, il ne se limite pas à superposer une page piégée : il exploite des iframes invisibles et des appels focus() pour forcer les extensions à injecter identifiants, TOTP ou passkeys dans un formulaire fantôme. Résultat : les secrets sont exfiltrés directement du DOM, à l’insu de l’utilisateur.

⮞ Point clé : Tant que les secrets transitent par le DOM, ils restent vulnérables. Les contre-mesures matérielles Zero DOM (PassCypher NFC HSM, PassCypher HSM PGP, SeedNFC) éliminent ce risque en gardant les secrets chiffrés hors ligne.

🚨 Signal fort DEF CON 33 — Double KO en direct

À Vegas, deux démos coup de massue font basculer la confiance numérique :

  • Extensions piégées Marek Tóth révèle que les gestionnaires et wallets peuvent être forcés à livrer identifiants, TOTP, passkeys et même clés privées, via un simple redressing DOM.
  • Passkeys en défaut — Relayée par MENAFN / Yahoo Finance, une autre démo prouve que les passkeys “phishing-resistant” cèdent à un overlay trompeur. WebAuthn/FIDO vacille en direct.

Lecture stratégique : si les gestionnaires logiciels chutent et que les passkeys s’effondrent,
la faille n’est pas l’utilisateur, c’est l’architecture.
Les technologies brevetées PassCypher NFC HSM, PassCypher HSM PGP et SeedNFC déplacent le combat hors navigateur :

  • Conteneurs AES-256 CBC — coffres hors-ligne, clés segmentées.
  • Injection HID sécurisée — NFC ou Bluetooth, sans exposition DOM.
  • Canaux RAM éphémères — déchiffrement volatil, destruction instantanée.

En clair : PassCypher n’est pas un gestionnaire de mots de passe, mais une architecture  passwordless souveraine. Quand FIDO/WebAuthn se fait piéger, PassCypher reste hors d’atteinte — by design.

Historique du Clickjacking (2002–2025)

Clickjacking, c’est un peu le parasite tenace du web moderne. Le terme apparaît au début des années 2000, quand Jeremiah Grossman et Robert Hansen décrivent un scénario sournois : pousser un internaute à cliquer sur quelque chose qu’il ne voit pas vraiment. Une illusion d’optique appliquée au code, vite devenue une technique d’attaque incontournable (OWASP).

  • 2002–2008 : émergence du “UI redressing” : calques HTML + iframes transparentes piégeant l’utilisateur (Hansen Archive).
  • 2009 : Facebook victime du Likejacking (OWASP).
  • 2010 : apparition du Cursorjacking : décalage du pointeur pour tromper le clic (OWASP).
  • 2012–2015 : exploitation via iframes, publicité et malvertising (MITRE CVE) (Infosec)
  • 2016–2019 : le tapjacking sévit sur mobile (Android Security Bulletin).
  • 2020–2024 : montée du “hybrid clickjacking” mêlant XSS et phishing (OWASP WSTG).
  • 2025 : au DEF CON 33, Marek Tóth dévoile un nouveau palier : DOM-Based Extension Clickjacking (DEF CON Archive). Désormais, ce ne sont plus seulement les sites web, mais les extensions navigateur (gestionnaires de mots de passe, wallets) qui injectent les formulaires invisibles.

Aujourd’hui, l’histoire du clickjacking bascule : ce n’est plus une farce graphique, mais une faille structurelle des navigateurs et de leurs extensions. Les gestionnaires testés — 1Password, Bitwarden, iCloud Keychain, LastPass — apparaissent vulnérables (Bitwarden Release Notes).

Au DEF CON 33, le clickjacking des extensions DOM a été révélé publiquement, marquant un basculement structurel : on passe d’une simple illusion visuelle à une faille systémique touchant les gestionnaires de mots de passe et les portefeuilles crypto.

❓Depuis quand étiez-vous exposés ?

Les gestionnaires logiciels avaient tous les signaux d’alerte.
L’OWASP parle de clickjacking depuis 2002, les iframes invisibles sont documentées depuis plus de 15 ans, et le Shadow DOM n’a rien d’un secret de hacker ésotérique.
Bref, tout le monde savait.
Et pourtant, la majorité a continué à bâtir son château de sable sur l’autofill DOM. Pourquoi ? Parce que ça faisait joli sur les slides marketing : UX fluide, clic magique, adoption massive… et sécurité en option.

Le DOM-Based Extension Clickjacking montré au DEF CON 33 n’est donc pas une révélation sortie du chapeau en 2025.
C’est l’aboutissement d’une erreur de design vieille d’une décennie.
Chaque extension qui a « fait confiance au DOM » pour injecter vos logins, TOTP ou passkeys était déjà vulnérable.

⮞ Réflexion critique : combien de temps ces failles ont-elles été exploitées en silence ?

La vraie question qu’il conviendrait de se poser : combien de temps ces vulnérabilités ont-elles été exploitées en silence par des attaquants discrets — espionnage ciblé, vol d’identités, siphonnage de wallets et de crypto-actifs ?

Pendant que les gestionnaires logiciels fermaient les yeux, PassCypher et SeedNFC de Freemindtronic Andorre ont emprunté une autre voie. Pensés hors du DOM, hors du cloud et sans mot de passe maître, ils prouvent qu’une alternative souveraine existait déjà : la sécurité by design.

Résultat : une décennie de vulnérabilité silencieuse pour les uns, et une décennie d’avance technologique pour ceux qui ont misé sur le matériel souverain.

Synthèse :
En 20 ans, le clickjacking est passé d’une simple illusion visuelle à un sabotage systémique des gestionnaires d’identité. Le DEF CON 33 marque un point de bascule : la menace n’est plus seulement le site web, mais le cœur des extensions et de l’autofill. D’où l’urgence d’approches hors DOM, ancrées dans le matériel souverain comme PassCypher.

DOM-Based Extension Clickjacking — Anatomie de l’attaque

Le DOM-Based Extension Clickjacking n’est pas une variante anodine : il détourne la logique même des gestionnaires d’autofill. Ici, l’attaquant ne se contente pas de recouvrir un bouton par une iframe ; il force l’extension à remplir un faux formulaire comme si de rien n’était.

Schéma du clickjacking des extensions DOM en trois étapes : Préparation, Appât et Exfiltration avec extension d’autocomplétion vulnérable
Schéma du clickjacking des extensions DOM : une page malveillante avec iframe invisible (Préparation), un élément Shadow servant d’appât (Appât) et l’exfiltration d’identifiants, TOTP et clés via l’extension d’autocomplétion (Exfiltration).

Déroulé type d’une attaque :

  1. Préparation — La page piégée embarque une iframe invisible et un Shadow DOM qui masque le véritable contexte. Des champs sont rendus invisibles (opacity:0; pointer-events:none;).
  2. Appât — L’utilisateur clique sur un élément anodin ; des appels focus() répétés et des redirections détournent l’événement vers le champ fantôme contrôlé par l’attaquant.
  3. Exfiltration — L’extension croit remplir un champ légitime et y injecte identifiants, TOTP, passkeys, voire clés privées. Les données sensibles sont aussitôt exfiltrées.

Cette mécanique contourne les défenses classiques (CSP, X-Frame-Options, frame-ancestors) et brouille les signaux visuels. Résultat : l’autofill devient un canal d’exfiltration invisible et transforme une faille UX en faille systémique de confiance.

⮞ Résumé

Le clickjacking des extensions DOM combine iframes invisibles, Shadow DOM et redirections par focus() pour détourner les gestionnaires de mots de passe et crypto-wallets. Les secrets ne sont pas injectés dans le site attendu mais dans un formulaire fantôme, offrant à l’attaquant un accès direct aux données sensibles.

Gestionnaires de mots de passe vulnérables

Au DEF CON 33, les tests menés par Marek Tóth ont révélé que la majorité des gestionnaires sont exposés à une faille structurelle : le clickjacking des extensions DOM.

Sur les 11 gestionnaires évalués, 10 exposent des identifiants, 9 des TOTP et 8 des passkeys.

En clair : même le coffre-fort logiciel le plus réputé devient vulnérable dès qu’il délègue ses secrets au DOM.

  • Encore vulnérables : 1Password, LastPass, iCloud Passwords, LogMeOnce
  • Correctifs publiés : Bitwarden, Dashlane, NordPass, ProtonPass, RoboForm, Enpass, Keeper (partiel)
  • Correctifs en cours : Bitwarden, Enpass, iCloud Passwords
  • Classés “informatifs” (pas de correctif prévu) : 1Password, LastPass

Tableau de statut (mis à jour le 27 août 2025)

Gestionnaire Identifiants TOTP Passkeys Statut Patch officiel
1Password Yes Yes Yes Vulnérable
Bitwarden Yes Yes Partial Corrigé (v2025.8.0) Release
Dashlane Yes Yes Yes Corrigé Release
LastPass Yes Yes Yes Vulnérable
Enpass Yes Yes Yes Corrigé (v6.11.6) Release
iCloud Passwords Yes No Yes Vulnérable
LogMeOnce Yes No Yes Vulnérable
NordPass Yes Yes Partial Corrigé Release
ProtonPass Yes Yes Partial Corrigé Releases
RoboForm Yes Yes Yes Corrigé Update
Keeper Partial No No En cours de révision (v17.2.0) Release
⮞ À retenir : même avec des patchs rapides, la logique reste la même : tant que les secrets transitent par le DOM, ils peuvent être détournés.
À l’inverse, les solutions matérielles comme PassCypher HSM PGP, PassCypher NFC HSM et SeedNFC neutralisent la menace par conception : aucun identifiant, mot de passe, code TOTP/HOTP ou clé privée ne touche le navigateur.
Zéro DOM, zéro surface d’attaque.

Technologies de correction utilisées

Depuis la révélation du DOM Extension Clickjacking à DEF CON 33, plusieurs éditeurs ont publié des correctifs. Toutefois, ces patchs restent hétérogènes et, le plus souvent, se limitent à des ajustements d’interface ou de contexte. Aucun n’a refondu la logique d’injection.

Objectif

Expliquer comment les gestionnaires tentent de corriger la faille, distinguer les patchs cosmétiques des solutions structurelles, et mettre en lumière les approches réellement souveraines (Zero DOM, matériel).

🛠️ Méthodes de correction recensées (août 2025)

Méthode Description Gestionnaires concernés
Restriction d’auto-remplissage Mode “on click” / désactivation par défaut Bitwarden, Dashlane, Keeper
Filtrage de sous-domaines Blocage sur domaines non explicitement autorisés ProtonPass, RoboForm
Détection de Shadow DOM Refus d’injection si champ encapsulé NordPass, Enpass
Isolation contextuelle Contrôles iframe/visibilité/focus avant injection Bitwarden, ProtonPass
Solutions matérielles (Zero DOM) Aucun secret dans le DOM (NFC HSM, HSM PGP, SeedNFC) PassCypher, EviKey, SeedNFC (non vulnérables par design)

📉 Limites observées

  • Les patchs ne modifient pas le moteur d’injection, ils en limitent seulement le déclenchement.
  • Aucune séparation structurelle interface ↔ flux de secrets.
  • Tant que l’injection reste dans le DOM, de nouvelles variantes de clickjacking sont possibles.
⮞ Transition
Ces correctifs réagissent aux symptômes sans traiter la cause. Pour discerner la rustine de la refonte doctrinale, poursuivez avec l’analyse ci-dessous.

Technologies de correction face au DOM Extension Clickjacking : analyse technique et doctrinale

📌 Constat

La faille n’est pas un bug ponctuel mais une erreur de conception : injecter des secrets dans un DOM manipulable, sans séparation structurelle ni contrôle contextuel robuste.

Avant d’examiner les typologies de correctifs, voici une vue d’ensemble des principales technologies de défense contre le clickjacking des extensions DOM. Cette image illustre les approches les plus répandues.

Infographie des défenses contre le clickjacking DOM : X-Frame-Options, CSP, retards d’autofill, boîtes de dialogue flottantes
Quatre technologies de défense contre le clickjacking DOM : politiques de sécurité, délais d’injection, et isolation de l’interface.

⚠️ Ce que les correctifs ne font pas

  • Pas de refonte du moteur d’injection.
  • Mesures limitées : désactivation par défaut, filtrage de sous-domaines, détection partielle d’éléments invisibles.
  • Pas d’architecture Zero DOM garantissant l’inviolabilité by design.

🧠 Ce que ferait un correctif structurel

  • Supprimer toute dépendance au DOM pour l’injection de secrets.
  • Isoler le moteur d’injection hors navigateur.
  • Exiger une authentification matérielle (NFC, PGP, biométrie).
  • Tracer chaque injection (journal auditable, local/optionnellement distant).
  • Interdire l’interaction avec des champs invisibles/encapsulés.

Typologie des correctifs

Niveau Type Description
Cosmétique UI/UX, désactivation par défaut Ne change pas la logique d’injection, seulement son déclenchement.
Contextuel Filtrage DOM, Shadow DOM, sous-domaines Ajoute des conditions, mais reste prisonnier du DOM.
Structurel Zero DOM, matériel (PGP, NFC, HSM) Élimine l’usage du DOM pour les secrets, sépare interface et flux sensibles.

🧪 Tests doctrinaux (vérifier un vrai correctif)

  • Injecter un champ invisible (opacity:0) dans une iframe.
  • Simuler un Shadow DOM encapsulé.
  • Observer si l’extension injecte malgré tout.
  • Vérifier si l’événement est tracé/rejeté comme non légitime.

📜 Absence de norme industrielle

Aucune norme (NIST/OWASP/ISO) n’encadre aujourd’hui :
(1) la logique d’injection des extensions,
(2) la séparation UI ↔ flux secrets,
(3) la traçabilité des auto-remplissages.

⮞ Résumé
Les patchs actuels sont des rustines. Seules les architectures Zero DOM — PassCypher HSM PGP, PassCypher NFC HSM, SeedNFC — constituent une correction structurelle et souveraine.

Révélations CVE et réponses éditeurs (août–septembre 2025)

La découverte par Marek Tóth lors de DEF CON 33 n’a pas pu rester confidentielle :
les vulnérabilités de clickjacking des extensions DOM font désormais l’objet d’attributions officielles de références CVE.
Mais comme souvent en matière de divulgation de vulnérabilités, le processus reste lent.
Plusieurs failles ont été signalées dès le printemps 2025, mais à la mi-août, certains éditeurs n’avaient toujours pas publié de correctif public.

Réactions des éditeurs et calendrier de publication :

  • Bitwarden — a réagi rapidement avec le correctif v2025.8.0 (août 2025), limitant les fuites de TOTP et d’identifiants.
  • Dashlane — a publié un correctif (v6.2531.1, début août 2025), confirmé dans les notes officielles.
  • RoboForm — a déployé des correctifs entre juillet et août 2025 sur Windows et macOS.
  • NordPass & ProtonPass — ont annoncé des mises à jour officielles en août 2025, atténuant partiellement les risques d’exfiltration DOM.
  • Keeper — a reconnu l’impact mais reste en statut “en cours d’examen”, sans correctif confirmé.
  • 1Password, LastPass, Enpass, iCloud Passwords, LogMeOnce — toujours non corrigés début septembre 2025, exposant des millions d’utilisateurs.

Le problème ne réside pas uniquement dans le retard de correctifs, mais aussi dans la manière dont certains éditeurs ont minimisé la gravité.
Selon les divulgations de sécurité, certains fournisseurs ont initialement qualifié de faille “informative, réduisant sa portée.
Autrement dit : la fuite était reconnue, mais reléguée dans une zone grise jusqu’à ce que la pression médiatique et communautaire impose une réaction.

⮞ Résumé

Les CVE liées au clickjacking des extensions DOM sont encore en cours de traitement.
Tandis que des éditeurs comme Bitwarden, Dashlane, NordPass, ProtonPass et RoboForm ont publié des correctifs officiels entre août et septembre 2025, d’autres (1Password, LastPass, Enpass, iCloud Passwords, LogMeOnce) accusent un retard critique, laissant des millions d’utilisateurs exposés. Certains ont même préféré le silence à la transparence, traitant une faille structurelle comme un simple incident jusqu’à y être contraints.

Risques systémiques & vecteurs d’exploitation

Le DOM-Based Extension Clickjacking n’est pas un bug isolé : c’est une faille systémique. Quand une extension cède, ce n’est pas seulement un mot de passe qui fuit — c’est tout un modèle de confiance numérique qui implose.

Scénarios critiques :

  • Accès persistant — Un TOTP cloné suffit pour enregistrer un appareil “de confiance” et garder la main, même après réinitialisation du compte.
  • Rejeu de passkeys — L’exfiltration d’une passkey équivaut à un jeton maître utilisable hors contrôle. Le Zero Trust devient un mythe.
  • Compromission SSO — Une extension piégée en entreprise = fuite de tokens OAuth/SAML, compromettant l’ensemble du SI.
  • Chaîne d’approvisionnement — Les extensions, mal régulées, deviennent une surface d’attaque structurelle pour les navigateurs.
  • Crypto-assets — Les wallets (MetaMask, Phantom, TrustWallet) réutilisent le DOM pour injecter des clés : seed phrases et clés privées siphonnées comme de simples credentials.

⮞ Résumé

Les risques dépassent le simple vol de mots de passe : TOTP clonés, passkeys rejouées, SSO compromis, seed phrases siphonnées. Tant que le DOM reste l’interface de l’autofill, il reste aussi l’interface de l’exfiltration.

Comparatif de menace souverain

Attaque Cible Secrets visés Contre-mesure souveraine
ToolShell RCE SharePoint / OAuth Certificats SSL, tokens SSO PassCypher HSM PGP (stockage + signature hors-DOM)
eSIM hijack Identité mobile Profils opérateurs, SIM intégrée SeedNFC HSM (ancrage matériel des identités mobiles)
DOM Clickjacking Extensions navigateurs Credentials, TOTP, passkeys PassCypher NFC HSM + PassCypher HSM PGP (OTP sécurisés, auto-remplissage sandbox, anti-BITB)
Crypto-wallet hijack Extensions wallets Clés privées, seed phrases SeedNFC HSM + Couplage NFC↔HID BLE (injection matérielle sécurisée multi-support)
Atomic Stealer macOS clipboard Clés PGP, wallets crypto PassCypher NFC HSM ↔ HID BLE (canaux chiffrés, injection sans clipboard)

Le clickjacking des extensions DOM démontre ainsi la fragilité des modèles de confiance numérique.

Statistiques régionales & impact cyber francophone

Le clickjacking des extensions DOM frappe différemment selon les régions. Voici l’exposition estimée des populations francophones en Europe et dans la francophonie globale, là où les risques numériques sont concentrés — et où les réponses souveraines doivent être pensées en priorité.

🌍 Exposition estimée — Aire francophone (août 2025)

Zone Population francophone % en Europe Contre-mesures disponibles
Francophonie mondiale (OIF) ≈321 millions PassCypher HSM PGP, NFC HSM, SeedNFC (docs FR)
Europe (UE + Europe entière) ≈210 millions 20 % de l’UE PassCypher HSM PGP (compatible RGPD, ANSSI)
France (locuteurs natifs) ≈64 millions ≈95 % de la population PassCypher HSM PGP (version FR)

⮞ Lecture stratégique

Les populations francophones en Europe représentent une cible prioritaire : entre 210 millions en Europe et 321 millions dans le monde, une part significative est exposée au clickjacking des extensions DOM.
En France, avec près de 64 millions de locuteurs natifs, l’enjeu est national. Seules des contre-mesures souveraines en Zero DOM — comme PassCypher HSM PGP, NFC HSM et SeedNFC, toutes documentées en français — garantissent une défense indépendante et résiliente.

Sources : Organisation Internationale de la Francophonie (OIF), données Europe (Liste des langues en Europe), France (WorldData).

Extensions crypto-wallets exposées au clickjacking des extensions DOM

Les gestionnaires de mots de passe ne sont pas les seuls à tomber dans le piège du DOM-Based Extension Clickjacking.
Les wallets crypto les plus répandus — MetaMask, Phantom, TrustWallet — reposent sur le même principe d’injection DOM pour afficher ou signer des transactions. Résultat : un overlay bien placé, une iframe invisible, et l’utilisateur croit valider une opération légitime… alors qu’il signe en réalité un transfert malveillant ou qu’il révèle sa seed phrase.

Implication directe : contrairement aux credentials ou TOTP, les fuites ici concernent des actifs financiers immédiats. Des milliards de dollars de liquidités reposent sur ces extensions. Le DOM devient donc non seulement un risque d’identité, mais un vecteur d’exfiltration monétaire.

⮞ Résumé

Les extensions de portefeuilles crypto réutilisent le DOM pour interagir avec l’utilisateur.
Ce choix architectural les expose aux mêmes failles que les gestionnaires de mots de passe : seed phrases, clés privées et signatures de transactions peuvent être interceptées via redressing.

Contre-mesure souveraine : SeedNFC HSM — sauvegarde matérielle des clés privées et seed phrases, hors DOM, avec injection sécurisée via NFC↔HID BLE.
Les clés ne sortent jamais du HSM, l’utilisateur active physiquement chaque opération, et le redressing DOM devient inopérant.
En complément, PassCypher HSM PGP et PassCypher NFC HSM protègent les OTP et credentials liés aux comptes d’accès aux plateformes, évitant ainsi la compromission latérale.

Sandbox navigateur faillible & attaques BITB

Les navigateurs présentent leur sandbox comme une forteresse, pourtant les attaques DOM-Based Extension Clickjacking et Browser-in-the-Browser (BITB) prouvent le contraire. Un simple overlay et un faux cadre d’authentification suffisent à piéger l’utilisateur et à lui faire croire qu’il échange avec Google, Microsoft ou sa banque, alors qu’il livre ses secrets à une page frauduleuse. Même frame-ancestors ou certaines politiques CSP ne parviennent pas à empêcher ces illusions d’interface.

C’est ici que les technologies souveraines changent l’équation. Avec EviBITB (IRDR), Freemindtronic intègre dans PassCypher HSM PGP un moteur de détection et destruction d’iframes de redirection, capable de neutraliser en temps réel les tentatives de BITB. Activable en un clic, utilisable en mode manual, semi-automatique ou automatique, il fonctionne sans serveur, sans base de données et agit instantanément. (explications · guide détaillé)

Mais la clef de voûte reste le sandbox URL. Chaque identifiant ou clé est lié à une URL de référence stockée dans le HSM chiffré. Lorsqu’une page tente un autofill, l’URL active est comparée à celle du HSM. Si elle ne correspond pas, aucune donnée n’est injectée. Ainsi, même si un iframe passait sous les radars, le sandbox URL bloque l’exfiltration.

Cette double barrière s’étend également aux usages sur ordinateur, grâce à l’appairage sécurisé NFC entre un smartphone Android NFC et l’application Freemindtronic intégrant PassCypher NFC HSM. Dans ce contexte, l’utilisateur bénéficie aussi de la protection anti-BITB (EviBITB) sur ordinateur : les secrets demeurent chiffrés dans le NFC HSM et ne sont déchiffrés que pendant quelques millisecondes en mémoire volatile (RAM), juste le temps nécessaire à l’auto-remplissage — sans jamais transiter ni résider dans le DOM.

⮞ Résumé technique (attaque défendue par EviBITB + sandbox URL)

L’attaque DOM-Based Extension Clickjacking exploite des overlay CSS invisibles (opacity:0, pointer-events:none) pour rediriger les clics vers un champ masqué injecté depuis le Shadow DOM (ex. protonpass-root). Par un jeu de focus() répétés et de suivi du curseur, l’extension déclenche son autofill, déposant identifiants, TOTP ou passkeys dans un formulaire invisible aussitôt exfiltré.
Avec EviBITB (IRDR), ces iframes et overlays sont détruits en temps réel, supprimant le vecteur de clic malicieux. En parallèle, le sandbox URL vérifie l’authenticité de la destination par rapport à l’URL stockée chiffrée dans le HSM (PassCypher HSM PGP ou NFC HSM). Si l’URL ne correspond pas, l’autofill est bloqué. Résultat : pas de clic piégé, pas d’injection, pas de fuite. Les secrets restent hors-DOM, y compris en usage desktop via un NFC HSM appairé à un smartphone Android. Cette combinaison d’overlays invisibles et de redirections focus() illustre parfaitement la puissance du clickjacking des extensions DOM.

Illustration de la protection anti-BitB et anti-clickjacking par EviBITB et Sandbox URL intégrés à PassCypher HSM PGP / NFC HSM
✪ Illustration – Le bouclier EviBITB et le cadenas Sandbox URL empêchent l’exfiltration des identifiants depuis un formulaire piégé par clickjacking.

⮞ Leadership technique mondial

À ce jour, PassCypher HSM PGP, même dans sa version gratuite, demeure la seule solution connue capable de neutraliser en pratique les attaques Browser-in-the-Browser (BITB) et DOM-Based Extension Clickjacking.
Là où les gestionnaires concurrents (1Password, LastPass, Dashlane, Bitwarden, Proton Pass…) continuent d’exposer leurs utilisateurs à des overlays invisibles et à des injections Shadow DOM, PassCypher s’appuie sur une double barrière souveraine :

  • EviBITB, moteur anti-iframe qui détruit en temps réel les cadres de redirection malveillants (voir guide détaillé et article explicatif) ;
  • Sandbox URL, ancrage des identifiants à une URL de référence
    dans un conteneur chiffré en AES-256 CBC PGP, bloquant toute exfiltration en cas de mismatch.

Cette combinaison place Freemindtronic, en Andorre, en position de pionnier : pour l’utilisateur final, l’installation de l’extension gratuite PassCypher HSM PGP suffit déjà à élever le niveau de sécurité au-delà des standards actuels, sur tous les navigateurs Chromium.

Signaux stratégiques DEF CON 33

Dans les couloirs survoltés de DEF CON 33, ce ne sont pas seulement les badges qui clignotent : ce sont nos certitudes.
Entre une bière tiède et un CTF endiablé, les conversations convergent : le navigateur a cessé d’être une zone de confiance.

  • Le DOM devient un champ de mines : il n’héberge plus seulement du XSS de bas étage, mais les clés d’identité elles-mêmes — gestionnaires, passkeys, wallets.
  • La promesse « phishing-resistant » vacille : voir une passkey se faire phisher en live, c’est comme regarder Neo se faire planter par un script-kiddie.
  • Lenteur industrielle : certains patchent en 48h, d’autres se perdent en comités et communiqués. Résultat : des millions d’utilisateurs restent à poil.
  • Doctrine Zero Trust renforcée : tout secret qui effleure le DOM est à considérer comme déjà compromis.
  • Retour du matos souverain : à force de voir le cloud s’effriter, les regards se tournent vers des solutions hors-DOM :PassCypher NFC HSM, PassCypher HSM PGP, SeedNFC pour la sauvegarde chiffrée des clés crypto. Zéro DOM, zéro illusion.

⮞ Résumé

DEF CON 33 envoie un message clair : les navigateurs ne sont plus des bastions de protection.
La sortie de crise ne viendra pas d’un patch cosmétique, mais de solutions basées sur des supports matériels hors navigateur et hors ligne — là où les secrets demeurent chiffrés, à l’abri et sous contrôle d’accès souverain.

PassCypher HSM PGP — La technologie Zero DOM brevetée depuis 2015

Bien avant la révélation du DOM Extension Clickjacking à DEF CON 33, Freemindtronic avait fait un choix radical : ne jamais utiliser le DOM pour transporter des secrets. Dès 2015, cette approche Zero Trust s’est matérialisée dans une architecture Zero DOM brevetée (by design) : identifiants, TOTP/HOTP, mots de passe et clés (PGP/SSH/crypto) restent confinés dans un HSM matériel, jamais injectés dans un environnement manipulable.

🚀 Avantages clés

  • Zero DOM natif — aucune donnée sensible ne transite par le navigateur.
  • HSM PGP intégré — conteneurs AES-256 CBC + clés segmentées brevetées.
  • Souverain & privé — sans serveur, sans base de données, sans cloud.

🛡️ Anti-BITB intégré (gratuit)

Depuis 2020, PassCypher HSM PGP inclut EviBITB, un moteur anti-Browser-in-the-Browser : destruction d’iframes malveillants, détection d’overlays, sans serveur, sans base de données, en temps réel, totalement anonyme. Guide d’activation détaillé : comment fonctionne EviBITB.

⚡ Mise en œuvre immédiate

Installez l’extension PassCypher HSM PGP, activez EviBITB dans les paramètres, et bénéficiez instantanément d’une protection souveraine Zero DOM :

Interface PassCypher HSM PGP avec EviBITB activé, supprimant automatiquement les iFrames de redirection malveillants
EviBITB embarqué dans PassCypher HSM PGP détecte et détruit en temps réel toutes les iFrames de redirection, neutralisant les attaques BITB et les détournements DOM invisibles.

Contre-mesures Zero DOM — sécurité matérielle hors navigateur

Les patchs correctifs des éditeurs rassurent sur le moment… mais ils ne changent rien au problème de fond : le DOM reste une passoire.
La seule parade durable, c’est de retirer les secrets de son emprise.
C’est ce que nous appelons le principe Zero DOM : aucune donnée sensible ne doit résider, transiter ou dépendre du navigateur.

Schéma Zero DOM Flow montrant l’arrêt de l’exfiltration DOM et l’injection sécurisée via HSM PGP / NFC HSM avec Sandbox URL
height=”533″ /> Zero DOM Flow : les secrets restent en HSM, injection HID en RAM éphémère, exfiltration DOM impossible

Dans ce paradigme, les secrets (identifiants, TOTP, passkeys, clés privées) sont conservés dans des HSM matériels hors ligne.
L’accès n’est possible que par activation physique (NFC, HID, appairage sécurisé) et ne laisse qu’une empreinte éphémère en RAM.

Fonctionnement souverain : NFC HSM, HID BLE et HSM PGP

Activation NFC HSM ↔ Android ↔ navigateur :
Dans le cas du NFC HSM, l’activation ne s’effectue pas par clic sur le téléphone, mais par présentation physique du module NFC HSM sous un smartphone Android NFC.
L’application Freemindtronic reçoit la requête depuis l’ordinateur appairé (via PassCypher HSM PGP), active le module sécurisé, et transmet le secret chiffré sans contact vers l’ordinateur.
Tout le processus est chiffré de bout en bout, et le déchiffrement s’effectue uniquement en mémoire volatile (RAM), sans jamais transiter ni résider dans le DOM.

Activation NFC HSM ↔ HID BLE :
Lorsque l’application Android NFC Freemindtronic est appairée à un émulateur de clavier Bluetooth HID (type InputStick), elle peut injecter les identifiants et mots de passe directement dans les champs de connexion, via un canal BLE chiffré en AES-128 CBC.
Cette méthode permet un auto-remplissage sécurisé hors DOM, même sur des ordinateurs non appairés via navigateur, tout en neutralisant les keyloggers et les attaques DOM classiques.</p>

Activation HSM PGP local :
Avec PassCypher HSM PGP sur ordinateur, l’utilisateur clique simplement sur un bouton intégré au champ d’identification pour déclencher l’auto-remplissage. Le secret est déchiffré localement depuis le conteneur chiffré AES-256 CBC PGP, uniquement en mémoire volatile (RAM), sans intervention NFC et sans jamais transiter par le DOM. Cette architecture garantit un auto-remplissage souverain, inattaquable par design, même face aux extensions malveillantes ou aux overlays invisibles.

Contrairement aux gestionnaires cloud ou aux passkeys FIDO, ces solutions ne patchent pas après coup : elles éliminent la surface d’attaque dès la conception. C’est le cœur de l’approche sovereign-by-design : architecture décentralisée, pas de serveur central, pas de base de données à siphonner.

⮞ Résumé

Le Zero DOM n’est pas une rustine, mais un changement de doctrine.
Tant que vos secrets vivent dans le navigateur, ils restent vulnérables.
Hors DOM, chiffrés en HSM et activés physiquement, ils deviennent inaccessibles aux attaques clickjacking ou BITB.

PassCypher NFC HSM — architecture souveraine passwordless

Quand les gestionnaires logiciels se font piéger par un simple iframe, PassCypher NFC HSM trace une autre voie : vos identifiants, mots de passe, ne transitent jamais par le DOM.
Ils dorment chiffrés dans un nano-HSM hors ligne, et n’apparaissent qu’un instant en mémoire volatile — juste le temps strict nécessaire à l’authentification.

Fonctionnement côté utilisateur :

  • Secrets intouchables — stockés et chiffrés dans le NFC HSM, jamais visibles ni extraits.
  • TOTP/HOTP — générés et affichés à la demande via l’application Android PassCypher NFC HSM ou sur ordinateur via PassCypher HSM PGP.
  • Saisie manuelle — l’utilisateur saisit son code PIN ou TOTP dans le champ prévu sur son ordinateur ou son téléphone Android NFC, visualisé dans l’application PassCypher (Freemindtronic), généré depuis le module NFC HSM. Même principe pour les autres secrets : identifiants, mots de passe, etc.
  • Saisie automatique sans contact — aucune saisie clavier : l’utilisateur présente simplement le module NFC HSM PassCypher à son téléphone ou à son ordinateur. L’opération s’effectue sans contact, y compris lorsque l’application PassCypher NFC HSM est appairée avec PassCypher HSM PGP.
  • Saisie automatique sur ordinateur — avec PassCypher HSM PGP sur Windows ou macOS, l’utilisateur clique sur un bouton intégré aux champs d’identification pour auto-remplir, avec validation automatique possible, le login, le mot de passe.
  • Anti-BITB distribué — grâce à l’appairage sécurisé NFC ↔ Android ↔ navigateur (Win/Mac/Linux), les iframes malveillants sont neutralisés en temps réel (EviBITB).
  • Mode HID BLE — injection directe hors DOM via un émulateur de clavier Bluetooth appairé à PassCypher NFC HSM, neutralisant à la fois les attaques DOM et les keyloggers.

⮞ Résumé

PassCypher NFC HSM incarne le Zero Trust (chaque action doit être validée physiquement) et le Zero Knowledge (aucun secret n’est jamais exposé).
Une sauvegarde sécurisée d’identité matérielle by design, qui rend inopérants le clickjacking, l’attaque par BITB, le typosquatting, le keylogging, les attaques par homoglyphes (IDN spoofing), les injections DOM, le clipboard hijacking, les extensions malveillantes, et anticipe les attaques quantiques.

🛡️ Attaques neutralisées par PassCypher NFC HSM

Type d’attaque Description Statut avec PassCypher
Clickjacking / UI Redressing Iframes invisibles ou overlays qui piègent les clics utilisateur Neutralisé (EviBITB)
BITB (Browser-in-the-Browser) Faux navigateurs simulés dans une iframe pour voler identifiants Neutralisé (sandbox + appairage)
Keylogging Capture des frappes clavier Neutralisé (mode HID BLE)
Typosquatting URLs proches visuellement de sites légitimes Neutralisé (validation physique)
Homograph Attack (IDN spoofing) Substitution de caractères Unicode pour tromper l’utilisateur sur l’URL Neutralisé (zéro DOM)
Injection DOM / DOM XSS Scripts malveillants injectés dans le DOM Neutralisé (architecture hors DOM)
Clipboard hijacking Interception ou modification du presse-papiers Neutralisé (pas d’usage clipboard)
Extensions malveillantes Altération du navigateur via plugins ou scripts Neutralisé (appairage + sandbox)
Attaques quantiques (anticipées) Calculs massifs pour casser les clés cryptographiques Atténué (clés segmentées + AES-256 CBC + PGP)

PassCypher HSM PGP — Gestion souveraine des clés anti-phishing

Dans un monde où les gestionnaires classiques se font piller par un simple iframe fantôme, PassCypher HSM PGP refuse de plier.

Sa règle ? Zéro serveur, zéro base de données, zéro DOM.

Vos secrets — identifiants, mots de passe, passkeys, clés SSH/PGP, TOTP/HOTP — vivent dans des conteneurs chiffrés AES-256 CBC PGP, protégés par un système de clés segmentées brevetées conçu pour encaisser même l’ère quantique.

Pourquoi ça tient face aux attaques type DEF CON 33 ?

Parce qu’ici, rien ne transite par le DOM, aucun mot de passe maître n’existe donc à extraire, et surtout : les conteneurs demeurent en permanence chiffrés. Leur déchiffrement n’intervient qu’en mémoire volatile (RAM), le temps d’assembler les segments de clés requis. Une fois l’auto-remplissage accompli, tout disparaît instantanément, sans laisser la moindre trace exploitable.

Fonctionnalités clés :

  • Auto-remplissage blindé — un clic suffit, mais via URL sandbox, jamais en clair dans le navigateur.
  • EviBITB embarqué — destructeur d’iframes et d’overlays malveillants, activable en manuel, semi-auto ou full-auto, 100 % hors serveur.
  • Outils crypto intégrés — génération et gestion de clés AES-256 segmentées et clés PGP sans dépendances externes.
  • Compatibilité universelle — fonctionne avec tout site via un logiciel + extension navigateur — pas de mise à jour forcée, pas de plugin exotique.
  • Architecture souveraine — sans serveur, sans base de données, sans mot de passe maître, 100 % anonymisée — inattaquable par design là où le cloud faiblit.

⮞ Résumé

PassCypher HSM PGP redéfinit la gestion des secrets : conteneurs chiffrés en permanence, clés segmentées, déchiffrement éphémère en RAM, zéro DOM et zéro cloud.
Un gestionnaire de mots de passe matériel et une mécanique passwordless souveraine, pensée pour résister aux attaques d’aujourd’hui comme aux attaques quantiques.

SeedNFC + HID Bluetooth — Injection sécurisée des wallets

Les extensions de wallets aiment le DOM… et c’est précisément là qu’on les piège. Avec SeedNFC HSM, on inverse la logique : les clés privées et seed phrases ne quittent jamais l’enclave.
Quand il faut initialiser ou restaurer un wallet (web ou desktop), la saisie se fait via une émulation HID Bluetooth — comme un clavier matériel — sans presse‑papiers, sans DOM, sans trace pour saisir les clés privées et publiques mais également les identifiants et mot de passe notamment des hot wallet.

Flux opérationnel (anti‑DOM, anti‑clipboard) :

  • Custodie : la seed/clé privée est stockée chiffrée dans le SeedNFC HSM (jamais exportée, jamais visible).
  • Activation physique : l’utilisation du sans contact via le NFC HSM autorise l’opération depuis l’appli Freemindtronic (Android NFC Phone).
  • Injection HID BLE : la seed (ou un fragment/format requis) est dactylographiée directement dans le champ du wallet, hors DOM et hors presse‑papiers (résistance aux keyloggers logiciels classiques).
  • Protection BITB : pour un wallet web, l’EviBITB (anti‑BITB / destructeur d’iframes) peut être activé côté appli,
    neutralisant les overlays et redirections piégées pendant la procédure.
  • Éphémérité : les données transitent en RAM volatile du terminal le strict temps de la frappe HID, puis disparaissent.

Cas d’usage typiques :

  • Onboarding ou recovery de wallets (MetaMask, Phantom, etc.) sans jamais exposer la clé privée au navigateur ni au DOM. Le secret reste chiffré dans le HSM et n’est déchiffré qu’en RAM, le temps strict nécessaire à l’opération.
  • Opérations sensibles sur ordinateur (air-gap logique), avec validation physique par l’utilisateur : il présente son module NFC HSM sous son smartphone Android NFC pour autoriser l’action, sans interaction clavier ni exposition au DOM.
  • Sauvegarde sécurisée multi-actifs : seed phrases, clés master et clés privées conservées dans un HSM matériel hors ligne, réutilisables sans copie, sans export, sans capture. Activation uniquement physique, souveraine et traçable.

⮞ Résumé

SeedNFC HSM avec HID BLE permet la saisie directe de la clé privée ou publique dans le champ du hot wallet via un émulateur de clavier Bluetooth Low Energy (HID BLE), sans interaction clavier ni presse-papiers.
Le canal est chiffré en AES-128 CBC, l’activation est physique par NFC, et la protection anti-BITB est activable.
Les secrets restent confinés dans l’enclave HSM, hors DOM et hors d’atteinte des extensions malveillantes.

Scénarios d’exploitation du hameçonnage (phishing) des passkeys DOM

Les révélations du DEF CON 33 ne sont pas une fin de partie, mais un avertissement. Ce qui vient ensuite pourrait être encore plus corrosif :

  • Phishing piloté par IA + détournement DOM — Demain, ce n’est plus un kit de phishing bricolé dans un garage, mais des LLM qui génèrent en temps réel des overlays DOM indétectables, capables de mimer n’importe quel portail bancaire ou cloud.
  • Tapjacking mobile hybride — L’écran tactile devient un champ de mines : superposition d’apps, autorisations invisibles, et en arrière-plan vos gestuelles sont détournées pour valider des transactions ou exfiltrer des OTP.
  • Post-quantum ready HSM —  La prochaine ligne de défense ne résidera pas dans un simple patch navigateur, mais dans des HSM résistants au calcul quantique, capables d’absorber les futures puissances de Shor ou de Grover. Des solutions comme PassCypher HSM PGP et SeedNFC en sécurité quantique incarnent déjà ce socle matériel zéro-DOM, conçu pour l’ère post-cloud.

⮞ Résumé

L’avenir du clickjacking et du phishing ne s’écrit pas dans le code des navigateurs, mais dans leur contournement.
La mitigation passe par une rupture : supports matériels hors-ligne, à sécurité quantique et architectures souveraines.
Tout le reste n’est que rustine logicielle vouée à craquer.

Synthèse stratégique du clickjacking des extensions DOM

Le clickjacking des extensions DOM révèle une vérité crue : navigateurs, gestionnaires de mots de passe et extensions crypto ne sont pas des environnements de confiance.
Les patchs arrivent en ordre dispersé, l’exposition utilisateur se chiffre en dizaines de millions, et les cadres réglementaires courent toujours derrière la menace.
La seule sortie souveraine ? Une gouvernance stricte du logiciel, doublée d’une sauvegarde matérielle hors DOM (PassCypher NFC HSM / HSM PGP), où les secrets restent chiffrés, hors ligne, et intouchables par redressing.

La voie souveraine :

  • Gouvernance stricte des logiciels et extensions
  • Sécurité matérielle des identités (PassCypher NFC HSM / HSM PGP)
  • Secrets chiffrés, hors DOM, hors cloud, redress-proof

En définitive, le clickjacking des extensions DOM oblige à une rupture : sortir les secrets du navigateur et du cloud.

Doctrine de souveraineté cyber matérielle —

  • Tout secret exposé au DOM doit être considéré comme compromis par défaut.
  • L’identité numérique doit être activée physiquement (NFC, HID BLE, HSM PGP).
  • La confiance ne repose pas sur le sandbox navigateur mais sur l’isolation matérielle.
  • Les extensions doivent être auditées comme des infrastructures critiques.
  • La résilience post-quantique commence par l’isolement physique des clés.
Angle mort réglementaire — CRA, NIS2 ou RGS (ANSSI) renforcent la résilience logicielle, mais aucun ne couvre les secrets intégrés au DOM.
La garde matérielle reste le seul fallback souverain — et seuls les États capables de produire et certifier leurs propres HSMs peuvent garantir une vraie souveraineté numérique.
Continuité stratégique — Le clickjacking des extensions DOM s’ajoute à une série noire : ToolShell, eSIM hijack, Atomic Stealer… autant d’alertes sur les limites structurelles de la confiance logicielle.
La doctrine d’une cybersécurité souveraine enracinée dans le matériel n’est plus une option. C’est désormais une stratégique fondamentale.
🔥 En résumé : le cloud patchera demain, mais le hardware protège déjà aujourd’hui.

⮞ À noter — Ce que cette chronique ne couvre pas :

Cette analyse ne fournit ni proof-of-concept exploitable, ni tutoriel technique pour reproduire les attaques de type clickjacking DOM ou phishing de passkeys.
Elle ne détaille pas non plus les aspects économiques liés aux cryptomonnaies ni les implications légales spécifiques hors UE.
L’objectif est de proposer une lecture stratégique et souveraine : comprendre les failles structurelles, identifier les risques systémiques et mettre en perspective les contre-mesures matérielles zero trust (PassCypher, SeedNFC).

Let’s Encrypt IP SSL: Secure HTTPS Without a Domain

Illustration d’un certificat Let's Encrypt IP SSL protégeant une adresse IP sans nom de domaine

Executive Summary

Let’s Encrypt IP SSL now enables the issuance of SSL/TLS certificates directly for public IP addresses, without requiring a domain name or DNS configuration. This breakthrough unlocks secure HTTPS access for test labs, DevOps deployments, IoT devices, and local infrastructure. Valid for 6 days, these certificates support automated renewal via ACME clients like Certbot or acme.sh. Compared to self-signed alternatives, Let’s Encrypt IP SSL offers browser trust, automation, and a zero-cost advantage. This article explores practical use cases, technical constraints, WordPress integration, and alternatives for full HTTPS coverage on raw IP addresses.

TL;DR — Let’s Encrypt now supports issuing HTTPS certificates directly for public IP addresses — without requiring a domain name. These short-lived IP SSL certificates (valid for 6 days) are ideal for DevOps, staging, IoT, and infrastructure services. Full automation via ACME clients (http-01 / tls-alpn-01) is supported. As of July 2025, the first IP certificate has been issued in staging; production availability is expected by the end of 2025. No DNS, no FQDN, just secure HTTPS over raw IPs.

2025 Tech Fixes Security Solutions

Secure SSH key for VPS with PassCypher HSM PGP

2025 Tech Fixes Security Solutions Technical News

Secure SSH key VPS PassCypher with HSM PGP

2025 Tech Fixes Security Solutions

Let’s Encrypt IP SSL: Secure HTTPS Without a Domain

2024 Tech Fixes Security Solutions

How to Defending Against Keyloggers: A Complete Guide

2024 Tech Fixes Security Solutions

Unlock Write-Protected USB Easily (Free Methods)

2023 EviKey & EviDisk EviKey NFC HSM NFC HSM technology Tech Fixes Security Solutions Technical News

Secure SSH Key Storage with EviKey NFC HSM

About the Author – Jacques Gascuel is the inventor of several patented, hardware-based encryption and authentication technologies, and founder of Freemindtronic Andorra. A specialist in sovereign cybersecurity and offline cryptographic systems, he focuses on privacy-by-design solutions for environments with no internet or server dependency. In this article on Let’s Encrypt IP SSL, he explores the strategic potential of securing raw IP communications without DNS, offering insight into resilient digital architectures compatible with sensitive and constrained infrastructures.

Key Insights — Let’s Encrypt now offers free SSL/TLS certificates for public IP addresses, removing the need for a domain name. This feature supports ACME automation, is valid for 6 days, and is ideal for DevOps, containers, local devices, and staging environments. While still in the staging phase, it provides a trusted certificate chain without the hassle of DNS, unlocking new secure deployment strategies for infrastructure teams.

Let’s Encrypt IP SSL: Secure an IP Address with HTTPS Without a Domain Name

Let’s Encrypt, the free and open-source certificate authority, now offers SSL/TLS certificates for IP addresses, without requiring a Fully Qualified Domain Name (FQDN). This innovation enables encrypted HTTPS communication on servers accessible via raw IP addresses, without relying on DNS. It’s ideal for DevOps pipelines, test labs, and local or self-hosted network appliances.

Let’s Encrypt IP SSL vs Domain-Based SSL

Let’s Encrypt primarily issues free SSL certificates for domain names, but it also supports securing public IP addresses directly through the ACME protocol. This article explores how Let’s Encrypt IP SSL differs from traditional domain-based certificates and when this approach makes sense.

Let’s Encrypt IP SSL vs Domain-Based Certificates

Let’s Encrypt is historically known for issuing domain-validated SSL/TLS certificates. However, it now also supports issuing certificates directly for public IP addresses. This removes the dependency on DNS and makes it possible to secure services by IP alone.

Unlike domain-based certificates, which require a Fully Qualified Domain Name (FQDN), IP SSL certificates use the SAN field to declare the IP address (IPv4 or IPv6). This change facilitates secure deployments in contexts like DevOps, IoT, or test environments without needing to register domains.

Official Let’s Encrypt Forum Post · ACME Protocol – RFC 8555

Why Use HTTPS on an IP Without a Domain?

  • Test or Staging Environments: No need to register temporary domains—launch secure interfaces instantly.
  • Cloud Instances & Containers: Secure dynamic or short-lived cloud workloads with HTTPS without DNS hassle.
  • Internal or Local Networks: Access NAS devices, routers, DoH/DoT services, or IoT devices without browser warnings, even without a domain.
  • Use in Security-Conscious or Air-Gapped Environments: Combine IP SSL certs with self-hosted ACME setups to create secure enclaves without domain exposure or internet reliance.

Key Use Cases

New use cases include securing DNS‑over‑HTTPS (DoH) endpoints, IoT/home‑lab devices, and ephemeral cloud workloads.

    1. NAS Admin Interfaces: Secure your NAS control panel accessed via public IP.
    2. Fast HTTPS for VMs or Bare Metal: Deploy secure servers on AWS, Azure, or OVHcloud with public IPs in seconds.
    3. CI/CD & DevOps Pipelines: Spin up HTTPS-enabled test servers with no DNS propagation.
    4. Self-Hosted DoH/DoT: Serve encrypted DNS traffic using a valid IP SSL cert.
    5. Internet-Facing Cameras: Protect IP-streamed video feeds without needing a domain.
    6. Industrial & SCADA Systems: Encrypt communication between web dashboards and IP-based industrial devices.
Use Case — Sovereign Trigger of SSL/IP Certificate via NFC HSM
Let’s Encrypt IP SSL certificates can be autonomously issued via NFC HSM devices such as PassCypher NFC HSM and DataShielder NFC HSM. These devices integrate a secure Bluetooth USB keyboard emulator operating in AES 128 CBC mode, enabling fully offline and sovereign execution of commands.By embedding a complete ACME command (e.g., ~/.acme.sh/acme.sh --issue --standalone -d 203.0.113.10) as a “password” (≤55 characters), the certificate issuance can be triggered securely on a Linux or Windows terminal without human typing. Combined with auto-enter, this setup ensures air-gapped, domainless HTTPS deployment for critical infrastructure, DevSecOps labs, or secure IoT environments.→ Full technical walkthrough: Trigger Let’s Encrypt IP SSL with NFC HSM

Sovereign Certificate Automation via NFC HSM

The diagram below demonstrates how a fully offline NFC HSM device can autonomously trigger HTTPS certificate issuance over raw IP — without DNS or manual typing. This approach, secured via AES-encrypted Bluetooth keyboard emulation, enables resilient deployments across air-gapped systems, DevSecOps pipelines, and critical infrastructure.

Diagram illustrating the sovereign triggering of Let's Encrypt IP SSL certificate issuance via a PassCypher or DataShielder NFC HSM device.

Other technical scenarios include:

  • Landing page providers dynamically assigning IPs to tenants.
  • DNS-over-HTTPS (DoH) endpoints using direct IP exposure.
  • NAS and IoT devices offering direct web interfaces without FQDNs.
  • Cloud back-end apps with ephemeral public IPs.

Source : Let’s Encrypt IP Announcement, July 2025

Validity and ACME Requirements

Let’s Encrypt IP certificates are valid for just 6 days. This short lifetime helps enhance security by quickly invalidating certificates in case of IP address changes or misconfigurations. Source: Let’s Encrypt Forum Post Certificate issuance requires the ACME protocol, defined in RFC 8555, using the http-01 or tls-alpn-01 challenges. DNS-based validation is not supported for IP certificates. Reference: Let’s Encrypt Challenge Types To automate certificate renewal, use compatible ACME clients such as:

⚠️ Rate Limit Notice: Let’s Encrypt enforces a rate limit of 50 certificates per IP address (or /64 IPv6 range) per 7-day window. You may also request up to 5 certificates per identical set of identifiers (IP + SAN/domain) per week. Let’s Encrypt currently restricts IP certificate access to allow-listed subscribers during the early access phase. Full production is scheduled to roll out by late 2025.

Source: Let’s Encrypt Rate Limits

Pros and Cons

Criteria Benefits Drawbacks
No Domain Needed Ideal for IP-only services Not compatible with wildcard/domain combos
Valid Chain Removes browser security alerts Requires trusted CA, ACME setup
Full Automation DevOps friendly 6-day renewals are mandatory
Free of Charge Cost-effective No support for long-term issuance
In Staging Now Available for tests Not yet production-ready for all workflows

DIY: Create Your Own SSL Certificate

For environments not requiring public trust, you can generate a free self-signed certificate with OpenSSL that works over an IP address.

Technical Note: Generating an IP-based certificate manually requires a Certificate Signing Request (CSR) or equivalent parameters, ensuring the IP address is declared in the SAN (Subject Alternative Name) field. Some modern browsers and systems will ignore the CN (Common Name) if the SAN is missing or incomplete.

openssl req -x509 -nodes -days 365 -newkey rsa:2048 
-keyout server.key -out server.crt 
-subj "/CN=203.0.113.10" -addext "subjectAltName=IP:203.0.113.10"

⚠️ You’ll need to manually install this certificate in each client system or browser to avoid trust warnings.

OpenSSL directly builds this certificate inline, skipping the traditional CSR request step. Because it’s self-signed, a trusted certificate authority (CA) does not issue it. If you later decide to obtain a certificate from a CA, you’ll need to prepare a properly formatted CSR.

WordPress & IP SSL: Plugin Recommendation

In rare WordPress setups where the site is served over an IP:

  • Generate an IP SSL certificate with acme.sh
  • Modify wp-config.php to define siteurl as the IP
  • Use the plugin Really Simple SSL to enforce HTTPS

⚠️ Some WordPress features may not function fully without a domain.

Comparison Table: Let’s Encrypt vs Other Free Alternatives

Feature Let’s Encrypt IP SSL Self-Signed (OpenSSL) mkcert
Trusted by Browsers ✅ Yes ❌ No ⚠️ Dev only
Free of Cost
Automation ✅ (via ACME) Manual Limited
Certificate Lifetime 6 days Custom (e.g. 1 year) Short/dev
Public IP Only ✅ Required ✅/❌ Any Localhost

Example: Benchmark with Shell Script

You can run a real benchmark Script  using /usr/bin/time to compare performance between ACME and OpenSSL:


#!/bin/bash
echo "Benchmarking Let's Encrypt (acme.sh)..."
time acme.sh --issue --standalone -d 203.0.113.10 --server https://acme-staging-v02.api.letsencrypt.org/directory

echo "Benchmarking Certbot..."
time certbot certonly --standalone -d 203.0.113.10 --test-cert

echo "Benchmarking OpenSSL self-signed..."
time openssl req -x509 -nodes -days 365 -newkey rsa:2048 
  -keyout test.key -out test.crt 
  -subj "/CN=203.0.113.10" -addext "subjectAltName=IP:203.0.113.10"

Note:

  • Replace 203.0.113.10 with your actual public IP.
  • Root privileges and open ports 80/443 are required for ACME clients.
  • Results can guide optimizations for secure, scalable deployments.

ACME vs OpenSSL — Performance Snapshot


ACME (Let’s Encrypt IP via acme.sh):     ~6.4 seconds
ACME (Let’s Encrypt IP via Certbot):     ~7.9 seconds
OpenSSL Self-Signed (RSA 2048):          ~1.1 seconds

Tested on:
VPS OVHcloud – 2 vCPU – 4GB RAM  
Ubuntu 22.04 LTS – Localhost Challenge

Tip: Self-signed is faster but not trusted by browsers. Use ACME for production and automation.

Live Benchmark Demo (Simulated)

Technical note: This benchmark runs as a simulated browser-side demo for educational purposes only. However, the displayed timing results reflect actual average measurements from real-world performance tests conducted under the following conditions:

  • OVHcloud VPS — 2 vCPU, 4GB RAM
  • Ubuntu 22.04 LTS with local ACME challenge
  • ACME clients: acme.sh and certbot
  • Execution timing measured via /usr/bin/time on shell scripts
  • OpenSSL version: 3.0.2

These metrics highlight practical performance differences between Let’s Encrypt ACME automation and self-signed OpenSSL certificates—especially relevant for DevOps pipelines and IP-only HTTPS deployments.

Click below to simulate certificate generation speed:

Waiting for input…

Cybersecurity Considerations for IP-Based SSL

Using Let’s Encrypt IP SSL certificates introduces new security and privacy considerations, especially when bypassing traditional DNS structures.

  • Public Exposure via CT Logs: Every Let’s Encrypt certificate is publicly logged through Certificate Transparency. Even without a domain name, an exposed IP may leak infrastructure details.
  • Passive Scanning: Tools like Shodan or Censys index IPs with SSL. Consider firewalls or geo-fencing to restrict access where applicable.
  • No PTR Record ≠ Anonymity: An IP without a reverse DNS entry may still be fingerprinted through TLS metadata or service banners.
  • Short Validity, Frequent Rotation: The 6-day lifetime improves security by reducing exposure, but make sure automated renewal is robust to avoid service interruption.
  • Zero Trust Implications: In Zero Trust or segmented environments, use IP SSL certificates alongside mTLS or gateway-based access control.
  • GDPR Compliance: IP addresses can be considered personal data under GDPR. Ensure lawful basis and appropriate controls are in place.

Best Practice: Combine IP SSL with firewall rules, strong client authentication, logging, and certificate monitoring tools to reduce the attack surface.

Technical Glossary

  • ACME: Automatic Certificate Management Environment. A protocol (RFC 8555) used to automate the issuance and renewal of certificates.
  • SAN: Subject Alternative Name. A field in SSL certificates allowing multiple identifiers (e.g. IPs or domains).
  • FQDN: Fully Qualified Domain Name. A complete domain name including all subdomains and the root domain.
  • TLS: Transport Layer Security. The protocol that provides HTTPS encryption.
  • CSR: Certificate Signing Request. A block of encoded text used when applying for an SSL certificate.
  • HTTP-01: ACME challenge using a file served over HTTP.
  • TLS-ALPN-01: ACME challenge using a temporary TLS certificate.
  • SSL: Secure Sockets Layer. A deprecated cryptographic protocol once used for securing HTTP (HTTPS). Modern HTTPS uses TLS instead of SSL, but the term “SSL” is still commonly used to refer to HTTPS certificates.
  • Benchmark Script: A shell-based automation script used to compare the performance of multiple certificate issuance methods (e.g. ACME clients vs OpenSSL) by measuring execution time and resource usage.

What This Article Didn’t Cover (Yet)

We should explore these topics in greater depth, and plan to revisit them in a future update.

  • Wildcard + IP Certs: Exploring mixed SANs (domain + IP) and use cases.
  • IP Certificates on Shared Infrastructures: Managing certs across virtual hosts or reverse proxies.
  • Commercial vs. Free IP Certificates: Durability, legal liability, SLAs, and compatibility audits.
  • Integration with Appliances and Industrial Hardware: Are SASE, ZTNA, and IoT ecosystems fully compatible?

Timeline Highlights

  • January 2025: Launch of short-lived certificate support (6–7 days).
  • July 1st, 2025: Let’s Encrypt issues the first SSL certificate for a public IP address in staging.
  • Q3–Q4 2025 (est.): Planned production rollout of IP certificate issuance.
⮞ Weak Signals Identified
– Trend: Domainless HTTPS adoption accelerating for containerized apps
– Pattern: ACME automation spreading to staging and test environments
– Vector: First real IP SSL use cases emerging in industrial edge networks

Strategic Wrap-up: A Game Changer for HTTPS Adoption

The ability to secure raw IPs without domains makes HTTPS easier to adopt in automation, IoT, and internal infrastructures. DevOps teams benefit from agile deployments, while local services gain privacy and security.

Want to go further?

  • Build CI/CD pipelines with auto-renewing IP certs
  • Deploy encrypted services in air-gapped environments
  • Explore compatibility with reverse proxies and smart gateways
  • Benchmark ACME certificate issuance times vs OpenSSL self-signing
  • Consider legal implications of public IP exposure without DNS

Deploying SSL on raw IP addresses may have implications depending on jurisdiction, network policies, or data protection regulations:

  • GDPR Compliance: Ensure IP-based SSL usage complies with data protection laws. See CNIL (France) or GDPR.eu.
  • Network Trust Models: Some corporate firewalls and proxies might distrust certificates not tied to domains.
  • Audit & Logging: Ensure secure logging and identity verification where ACME automation is involved.
  • Certificate Transparency: All Let’s Encrypt certificates are public. Don’t expose sensitive IPs without awareness.
  • Best Practices: Refer to NIST Cybersecurity Framework and ENISA Guidelines for secure deployment.
  • Reverse DNS leaks: Serving an IP SSL without PTR can still expose servers via Certificate Transparency logs.
  • Passive scanning: Some tools index IPs with SSL enabled, which can be a privacy concern (e.g., Shodan, Censys).
  • Phishing via IP URLs: Untrusted users may be misled by IP‑based links with trusted padlocks; monitor Certificate Transparency and educate users.

FAQ

Let’s Encrypt IP SSL & NFC HSM

Let’s Encrypt enforces this policy, and users cannot modify it.

Yes. You can trigger the issuance of a Let’s Encrypt IP SSL certificate fully offline using a sovereign NFC HSM device such as <strong>PassCypher NFC HSM</strong> or <strong>DataShielder NFC HSM</strong>. These devices emulate a secure AES 128 CBC encrypted Bluetooth USB keyboard. By storing a complete ACME command (e.g. <code>~/.acme.sh/acme.sh –issue –standalone -d 203.0.113.10</code>) as a secure string (≤55 characters), the device injects it into the terminal of a Linux or Windows machine, triggering certificate generation without any manual typing or internet dependency.

→ <a href=”https://freemindtronic.com/nfc-hsm-ssl-cert-ip/” target=”_blank” rel=”noopener”>Learn more: NFC HSM triggered HTTPS certificate over IP</a>

No. Only public, globally routable IP addresses are eligible.

Yes, in closed or dev environments, but clients must trust it manually.

Not yet supported. You must issue separate certificates.

Yes, as long as the browser trusts Let’s Encrypt’s root certificate. Modern browsers like Chrome, Firefox, Edge, and Safari are all compatible.

[accordion-item_inner title=”Can the NFC HSM trigger HTTPS certificate issuance from a web page?”]

[/accordion-item_inner]

Yes, it can. When combined with a properly designed local web interface, the NFC HSM — acting as a secure Bluetooth USB keyboard — can inject a complete ACME command directly into a focused input field. Although browsers cannot execute system commands on their own, this injected command can be immediately picked up by a local daemon or background script for execution.

This configuration enables sovereign HTTPS certificate issuance entirely offline, without DNS or manual typing. It proves especially useful for touchless deployments in isolated environments, where the web page acts as a bridge between the NFC-triggered command and the host system’s ACME client.

To ensure compatibility:

  • Serve the interface over HTTPS (self-signed or IP SSL)
  • Autofocus the input field targeted by the HSM
  • Run a listener process that executes the received input securely

As a result, this setup empowers critical systems to deploy valid SSL certificates with minimal attack surface — and no internet dependency.

Atomic Stealer AMOS: The Mac Malware That Redefined Cyber Infiltration

Illustration showing Atomic Stealer AMOS malware process on macOS with fake update, keychain access, and crypto exfiltration

Atomic Stealer AMOS: Redefining Mac Cyber Threats Featured in Freemindtronic’s Digital Security section, this analysis by Jacques Gascuel explores one of the most sophisticated and resilient macOS malware strains to date. Atomic Stealer Amos merges cybercriminal tactics with espionage-grade operations, forming a hybrid threat that challenges traditional defenses. Gascuel dissects its architecture and presents actionable strategies to protect national systems and corporate infrastructures in an increasingly volatile digital landscape.


Explore More in Digital Security

Stay ahead of advanced cyber threats with in-depth articles from Freemindtronic’s Digital Security section. From zero-day exploits to hardware-based countermeasures, discover expert insights and field-tested strategies to protect your data, systems, and infrastructure.

2021 Articles Cyberculture Digital Security EviPass EviPass NFC HSM technology EviPass Technology Technical News

766 trillion years to find 20-character code like a randomly generated password

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Articles Compagny spying Digital Security Industrial spying Military spying News Spying Zero trust

KingsPawn A Spyware Targeting Civil Society

Articles Digital Security Phishing

Kevin Mitnick’s Password Hacking with Hashtopolis

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2 Comments

Articles Cryptocurrency Digital Security Phishing

ViperSoftX How to avoid the malware that steals your passwords

1 Comment

Articles Digital Security Phishing

Snake Malware: The Russian Spy Tool

2023 Digital Security Phishing

BITB Attacks: How to Avoid Phishing by iFrame

2023 Articles Cryptocurrency Digital Security NFC HSM technology Technologies

How BIP39 helps you create and restore your Bitcoin wallets

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

Articles Cryptocurrency Digital Security Technical News

Securing IEO STO ICO IDO and INO: The Challenges and Solutions

Articles Digital Security EviVault Technology NFC HSM technology Technical News

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

Articles Digital Security EviCypher Technology

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Articles Compagny spying Digital Security Industrial spying Military spying Spying

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Articles Crypto Currency Digital Security News

Coinbase blockchain hack: How It Happened and How to Avoid It

Articles Digital Security News

How to Recover and Protect Your SMS on Android

Articles Crypto Currency Digital Security EviSeed EviVault Technology News

Enhancing Crypto Wallet Security: How EviSeed and EviVault Could Have Prevented the $41M Crypto Heist

2023 Articles DataShielder Digital Security Military spying News NFC HSM technology Spying

Pegasus: The cost of spying with one of the most powerful spyware in the world

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

2023 Digital Security

5Ghoul: 5G NR Attacks on Mobile Devices

1 Comment

2024 Articles Digital Security News Phishing

Google OAuth2 security flaw: How to Protect Yourself from Hackers

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

2024 Articles Digital Security News Spying

How to protect yourself from stalkerware on any phone

2024 DataShielder Digital Security PassCypher Phishing

Midnight Blizzard Cyberattack Against Microsoft and HPE: What are the consequences?

2 Comments

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

1 Comment


Executive Summary

Atomic Stealer (AMOS) redefined how macOS threats operate. Silent, precise, and persistent, it bypassed traditional Apple defenses and exploited routine user behavior to exfiltrate critical data. This article offers a strategic analysis of AMOS’s evolution, infection techniques, threat infrastructure, and its geopolitical and organizational impact. It also provides concrete defense recommendations, real-world case examples, and a cultural reassessment of how we approach Apple endpoint security.


 

Macs Were Safe. Until They Weren’t.

For more than a decade, macOS held a reputation as a bastion of digital safety. Many believed its architecture inherently protected users from the kind of sophisticated malware seen on Windows. This belief was widespread, deeply rooted—and dangerously wrong.

In April 2023, that myth cracked open.

Security researchers from Malwarebytes and Moonlock spotted a new macOS malware circulating on Telegram. It wasn’t loud. It wasn’t chaotic. It didn’t encrypt files or display ransom notes. Instead, it crept in silently, exfiltrating passwords, session tokens, and cryptocurrency wallets before anyone noticed. They called it Atomic Stealer AMOS for short.

TL;DR — AMOS Targets Trust Inside macOS
It doesn’t log keystrokes. It doesn’t need to. AMOS exploits macOS-native trust zones like Keychain and iCloud Keychain. Only air-gapped hybrid HSM solutions — like NFC HSM and PGP HSM — fully isolate your secrets from such attacks.

Atomic Stealer AMOS infiltrating Apple’s ecosystem through stealthy code

✪ Illustration showing Apple’s ecosystem under scrutiny, symbolizing the covert infiltration methods used by Atomic Stealer AMOS.

By mid-2025, Atomic had breached targets in over 120 countries. It wasn’t a side-story in the malware landscape anymore—it had become a central threat vector, especially for those who had mistakenly assumed their Macs were beyond reach.

In April 2023, that myth cracked open…

They called it Atomic Stealer AMOS for short.

TL;DR — AMOS isn’t your average Mac malware.
It doesn’t encrypt or disrupt. It quietly exfiltrates credentials, tokens, and crypto wallets—without triggering alerts.

Updated Threat Capabilities July 2025

Since its initial discovery, Atomic Stealer AMOS has evolved dramatically, with a much more aggressive and stealthy feature set now observed in the wild.

  • Persistence via macOS LaunchDaemons and LaunchAgents
    AMOS now installs hidden .agent and .helper files, such as com.finder.helper.plist, to maintain persistence even after reboot.
  • Remote Command & Control (C2)
    AMOS communicates silently with attacker servers, enabling remote command execution and lateral network movement.
  • Modular Payload Deployment
    Attackers can now inject new components post-infection, adapting the malware’s behavior in real time.
  • Advanced Social Engineering
    Distributed via fake installers, trojanized Homebrew packages, and spoofed CAPTCHA prompts. Even digitally signed apps can be weaponized.
  • Global Spread
    Targets across 120+ countries including the United States, France, Italy, UK, and Canada. Attribution links it to a MaaS operation known as “Poseidon.”

Recommended Defense Enhancements

To defend against this rapidly evolving macOS threat, experts recommend:

  • Monitoring for unauthorized .plist files and LaunchAgents
  • Blocking unexpected outbound traffic to unknown C2 servers
  • Avoiding installation of apps from non-official sources—even if signed
  • Strengthening your Zero Trust posture with air-gapped tools like SeedNFC HSM and Bluetooth Keyboard Emulator to eliminate clipboard, keychain, and RAM-based exfiltration vectors

Risk Scoring Update for Atomic Stealer AMOS

Capability Previous Score July 2025 Score
Stealth & Evasion 8/10 9/10
Credential & Crypto Theft 9/10 10/10
Persistent Backdoor 0/10 10/10
Remote Access / C2 2/10 10/10
Global Reach & Target Scope 9/10 9/10
Overall Threat Level 7.6 / 10 9.6 / 10

Atomic Stealer AMOS covertly infiltrating Apple’s ecosystem with advanced macOS techniques

✪ Illustration showing Atomic Stealer AMOS breaching Apple’s ecosystem, using stealthy exfiltration methods across macOS environments.

New Backdoor: Persistent and Programmable
In early July 2025, Moonlock – MacPaw’s cybersecurity arm – confirmed a significant upgrade: AMOS now installs a hidden backdoor (via .helper/.agent + LaunchDaemon), which survives reboots and enables remote command execution or additional payload delivery — elevating its threat level dramatically

A Threat Engineered for Human Habits

Atomic Stealer AMOS didn’t rely on zero-days or brute force. It exploited something far more predictable: human behavior.

Freelancers seeking cracked design plugins. Employees clicking “update” on fake Zoom prompts. Developers installing browser extensions without scrutiny. These seemingly minor actions triggered full system compromise.

Once deployed, AMOS used AppleScript prompts to request credentials and XOR-encrypted payloads to evade detection. It embedded itself via LaunchAgents and LaunchDaemons, securing persistence across reboots.

Realistic illustration showing Atomic Stealer infecting a macOS system through a fake update, stealing keychain credentials and sending data to a remote server.

✪ A visual breakdown of Atomic Stealer’s infection method on macOS, from fake update to credential theft and data exfiltration.

Its targets were no less subtle:

  • Passwords saved in Chrome, Safari, Brave
  • Data from over 50 crypto wallets (Ledger, Coinomi, Exodus…)
  • Clipboard content—often cryptocurrency transactions
  • Browser session tokens, including cloud accounts

SpyCloud Labs – Reverse Engineering AMOS

Atomic didn’t crash systems or encrypt drives. It simply harvested. Quietly. Efficiently. Fatally.

Adaptation as a Service

What makes AMOS so dangerous isn’t just its code—it’s the mindset behind it. This is malware designed to evolve, sold as a service, maintained like a product.

Date Evolution Milestone
Apr 2023 First sightings in Telegram forums
Sep 2023 ClearFake phishing campaigns weaponize delivery
Dec 2023 Encrypted payloads bypass antivirus detection
Jan 2024 Fake Google Ads launch massive malvertising wave
Jul 2025 Persistent remote backdoor integrated
 

Atomic Stealer infection timeline infographic on white background showing evolution from cracked apps to phishing and remote access

✪ This infographic charts the infection stages of Atomic Stealer AMOS, highlighting key milestones from its emergence via cracked macOS apps to sophisticated phishing and remote access techniques.

Picus Security – MITRE ATT&CK mapping

Two Clicks Away from a Breach

To understand AMOS, you don’t need to reverse-engineer its binaries. You just need to watch how people behave.

In a real-world example, a freelance designer downloaded a cracked font plugin to meet a deadline. Within hours, AMOS drained her wallet, accessed her saved credentials, and uploaded client documents to a remote server.

In a separate case, a government office reported unusual login activity. Investigators found a spoofed Slack update triggered the breach. It wasn’t Slack. It was AMOS.

Dual exposure: AMOS targeting civilian and institutional users through cracked software and spoofed updates

✪ Illustration depicting the dual nature of Atomic Stealer (AMOS) attacks: a freelancer installing a cracked plugin and a government employee clicking a fake Slack update, both leading to data theft and wallet drain.

Institutional Blind Spots

In 2024, Red Canary flagged Atomic Stealer among the top 10 macOS threats five times. A year later, it had infected over 2,800 websites, distributing its payload via fake CAPTCHA overlays—undetectable by most antivirus suites.

Cybersecurity News – 2,800+ infected websites

AMOS breached:

  • Judicial systems (document leaks)
  • Defense ministries (backdoor surveillance)
  • Health agencies (citizen data exfiltration)

Geographic impact of Atomic Stealer infections illustrated on a world heatmap with a legend

✪ A choropleth heatmap visualizing the global spread of Atomic Stealer AMOS malware, highlighting red zones of high infection (USA, Europe, Russia) and a legend indicating severity levels.

Detecting the Undetectable

AMOS leaves subtle traces:

  • Browser redirects
  • Unexpected password resets
  • .agent or .runner processes
  • Apps flickering open

To mitigate:

  • Update macOS regularly
  • Use Little Snitch or LuLu
  • Audit ~/Library/LaunchAgents
  • Avoid unverified apps
  • Never run copy-paste terminal commands
Checklist for detecting and neutralizing AMOS threats on macOS

✪ This infographic checklist outlines 5 key reflexes to detect and neutralize Atomic Stealer (AMOS) infections on macOS systems.

Threat Actor Profile: Who’s Behind AMOS?

While AMOS has not been officially attributed to a specific APT group, indicators suggest it was developed by Russian-speaking actors, based on:

  • Forum discussions on Russian-language Telegram groups
  • Code strings and comments in Cyrillic
  • Infrastructure overlaps with known Eastern European malware groups

These threat actors are not simply financially motivated. The precision, modularity, and persistence of AMOS suggests potential use in state-adjacent cyber operations or intelligence-linked campaigns.

Its evolution also parallels other known cybercrime ecosystems operating in Russia and Belarus, often protected by a “hands-off” doctrine as long as they avoid targeting domestic networks.

Malware-as-a-Service: Industrial Grade

  • Custom builds with payload encryption
  • Support and distribution via Telegram
  • Spread via ClickFix and malvertising
  • Blockchain-based hosting using EtherHiding

Moonlock Threat Report

Atomic Stealer Malware-as-a-Service ecosystem with tactics comparison chart

✪ Écosystème MaaS d’Atomic Stealer comparé à Silver Sparrow et JokerSpy, illustrant ses tactiques uniques : chiffrement XOR, exfiltration crypto, AppleScript et diffusion via Telegram.

Malware Name Year Tactics Unique to AMOS
Silver Sparrow 2021 Early Apple M1 compatibility
JokerSpy 2023 Spyware in Python, used C2 servers
Atomic Stealer 2023–2025 MaaS, XOR encryption, AppleScript, wallet exfiltration

AMOS combines multiple threat vectors—social engineering, native scripting abuse, and crypto-focused data harvesting—previously scattered across different strains.

Strategic Exposure: Who’s at Risk

Group Severity Vector
Casual Users High Browser extensions
Crypto Traders Critical Clipboard/wallet interception
Startups Severe Slack/Teams compromise
Governments Extreme Persistent surveillance backdoors

What Defenders Fear Next

The evolution isn’t over. AMOS may soon integrate:

  • Biometric spoofing (macOS Touch ID)
  • Lateral movement in creative agencies
  • Steganography-based payloads in image files

Security must not follow. It must anticipate.

Strategic Outlook Atomic Stealer AMOS

  • GDPR breaches from exfiltrated citizen data (health, justice)
  • Legal risks for companies not securing macOS endpoints
  • Cross-border incident response complexities due to MaaS
  • Urgent need to update risk models to treat Apple devices as critical infrastructure

Threat Actor Attribution: Who’s Really Behind AMOS?

While Atomic Stealer (AMOS) has not been officially attributed to any known APT group, its evolution and operational model suggest the involvement of a Russian-speaking cybercriminal network, possibly APT-adjacent.

The malware’s early presence on Russian-language Telegram groups, combined with:

  • Infrastructure linked to Eastern Europe,
  • XOR obfuscation and macOS persistence techniques,
  • and a sophisticated Malware-as-a-Service support network

…indicate a semi-professionalized developer team with deep technical access.

Whether this actor operates independently or under informal “state-blind tolerance” remains unclear. But the outcome is strategic: AMOS creates viable access for both criminal monetization and state-aligned espionage.

Related reading: APT28’s Campaign in Europe

Indicators of Compromise (IOCs)

Here are notable Indicators of Compromise for Atomic Stealer AMOS:

File Hashes

  • fa34b1e87d9bb2f244c349e69f6211f3 – Encrypted loader sample (SHA256)
  • 9d52a194e39de66b80ff77f0f8e3fbc4 – macOS .dmg payload (SHA1)

Process Names / Artifacts

  • .atomic_agent or .launch_daemon
  • /Library/LaunchAgents/com.apple.atomic.*
  • /private/tmp/atomic/tmp.log

C2 IPs / Domains (as of Q2 2025)

  • 185.112.156.87
  • atomicsec[.]ru
  • zoom-securecdn[.]net

Behavioral

  • Prompt for keychain credentials using AppleScript
  • Sudden redirection to fake update screens
  • Unusual clipboard content activity (crypto strings)

These IOCs are dynamic. Correlate with updated threat intel feeds.

Defenders’ Playbook: Active Protection

Comparative infographic illustration showing macOS native defenses versus Atomic Stealer attack vectors on a white background

✪ Security teams can proactively counter AMOS using a layered defense model:

SIEM Integration (Ex: Splunk, ELK)

  • Monitor execution of osascript and creation of LaunchAgents
  • Detect access to ~/Library/Application Support with unknown binaries
  • Alert on anomalous clipboard behavior or browser token access

EDR Rules (Ex: CrowdStrike, SentinelOne)

  • Block unsigned binaries requesting keychain access
  • Alert on XOR-obfuscated payloads in user directories
  • Kill child processes of fake Zoom or Slack installers

Sandbox Testing

  • Detonate .dmg and .pkg in macOS VM with logging enabled
  • Watch for connections to known C2 indicators
  • Evaluate memory-only behaviors in unsigned apps

Diagram of Atomic Stealer detection workflow on macOS using SIEM, EDR, and sandbox analysis tools, with defense strategies visualized.

General Hygiene

  • Remove unverified extensions and “free” tools
  • Train users against fake updates and cracked apps
  • Segment Apple devices in network policy to enforce Zero Trust

AMOS is stealthy, but its behaviors are predictable. Behavior-based defenses offer the best chance at containment.

Freemindtronic Solutions to Secure macOS

To counter threats like Atomic Stealer, Freemindtronic provides macOS-compatible hardware and software cybersecurity solutions:

End-to-end email encryption using Freemindtronic segmented key HSM for macOS

DataShielder: Hardware Immunity Against macOS Infostealers

DataShielder NFC HSM

  • Offline AES-256 and RSA 4096 key storage: No exposure to system memory or macOS processes.
  • Phishing-resistant authentication: Secure login via NFC, independent from macOS.
  • End-to-end encrypted messaging: Works even for email, LinkedIn, and QR-based communications.
  • No server, no account, no trace: Total anonymity and data control.

DataShielder HSM PGP

  • Hardware-based PGP encryption for files, messages, and emails.
  • Zero-trust design: Doesn’t rely on macOS keychain or system libraries.
  • Immune to infostealers: Keys never leave the secure hardware environment.

Use Cases for macOS Protection

  • Securing Apple Mail, Telegram, Signal messages with AES/PGP
  • Protecting crypto assets via encrypted QR exchanges
  • Mitigating clipboard attacks with hardware-only storage
  • Creating sandboxed key workflows isolated from macOS execution

These tools shift the attack surface away from macOS and into a secure, externalized hardware vault.

Hardware AES-256 encryption for macOS using Freemindtronic Hybrid HSM with email, Signal, and Telegram support

✪ Hybrid HSM from Freemindtronic securely stores AES-256 encryption keys outside macOS, protecting email and messaging apps like Apple Mail, Signal, and Telegram.

SeedNFC HSM Tag

Hardware-Secured Crypto Wallets — Invisible to Atomic Stealer AMOS

Atomic Stealer (AMOS) actively targets cryptocurrency wallets and clipboard content linked to crypto transactions. The SeedNFC HSM 100 Tag, powered by the SeedNFC Android app, offers a 100% externalized and offline vault that supports up to 50 wallets (Bitcoin, Ethereum, and others), created directly on the blockchain.

Using SeedNFC HSM with secure local network and Bluetooth keyboard emulator to protect crypto wallets against Atomic Stealer malware on macOS.

✪ Even if Atomic Stealer compromises the macOS system, SeedNFC HSM keeps crypto secrets unreachable via secure local or Bluetooth emulation channels.

Unlike traditional browser extensions or software wallets:

Private keys are stored fully offline — never touch system memory or the clipboard.

Wallets can be used on macOS and Windows via:

  • Web extensions communicating over an encrypted local network,
  • Or via Bluetooth keyboard emulation to inject public keys, passwords, or transaction data.
  • Wallet sharing is possible via RSA-4096 encrypted QR codes.
  • All functions are triggered via NFC and executed externally to the OS.

This creates a Zero Trust perimeter for digital assets — ideal against crypto-focused malware like AMOS.

Bluetooth Keyboard Emulator

Zero-Exposure Credential Delivery — No Typing, No Trace

Flat-style illustration of an NFC HSM device using Bluetooth keyboard emulation to securely enter credentials on a laptop, bypassing malware

✪ Freemindtronic’s patented NFC HSM delivers secure, air-gapped password entry via Bluetooth keyboard emulation — immune to clipboard sniffers, and memory-based malware like AMOS.

Since AMOS does not embed a keylogger, it relies on clipboard sniffing, browser-stored credentials, and deceptive interface prompts to steal data.

The Bluetooth Keyboard Emulator bypasses these vectors entirely. It allows sensitive information to be typed automatically from a NFC HSM device (such as DataShielder or PassCypher) into virtually any target environment:

  • macOS and Windows login screens,
  • BIOS, UEFI, and embedded systems,
  • Shell terminals or command-line prompts,
  • Sandboxed or isolated virtual machines.

This hardware-based method supports the injection of:

  • Logins and passwords
  • PIN codes and encryption keys (e.g. AES, PGP)
  • Seed phrases for crypto wallets

All credentials are delivered via Bluetooth keyboard emulation:

  • No clipboard usage
  • No typing on the host device
  • No exposure to OS memory, browser keychains, or RAM

This creates a physically segmented, air-gapped credential input path — completely outside the malware’s attack surface. Against threats like Atomic Stealer (AMOS), it renders data exfiltration attempts ineffective by design.

TL;DR — No clipboard, no typing, no trace
Bluetooth keyboard emulation bypasses AMOS exfiltration entirely. Credentials are securely “typed” into systems from NFC HSMs, without touching macOS memory or storage.

What About Passkeys and Private Keys?

While AMOS is not a keylogger, it doesn’t need to be — because it can access your Keychain under the right conditions:

  • Use native macOS tools (e.g., security CLI, Keychain API) to extract saved secrets
  • Retrieve session tokens and autofill credentials
  • Exploit unlocked sessions or prompt fatigue to access sensitive data

Passkeys, used for passwordless login via Face ID or Touch ID, are more secure due to Secure Enclave, yet:

  • AMOS can hijack authenticated sessions (e.g., cookies, tokens)
  • Cached WebAuthn tokens may be abused if the browser remains active
  • Keychain-stored credentials may still be exposed in unlocked sessions

 Why External Hardware Security Modules (HSMs) Are Critical

Unlike macOS Keychain, Freemindtronic’s NFC HSM and HSM PGP solutions store secrets completely outside the host system, offering true air-gap security and malware immunity.

Key advantages over macOS Keychain:

  • No clipboard or RAM exposure
  • No reliance on OS trust or session state
  • No biometric prompt abuse
  • Not exploitable via API or command-line tools

Visual comparison between compromised macOS Keychain and AMOS-resistant NFC HSMs with three isolated access channels

✪ This infographic compares the vulnerabilities of macOS Keychain with the security of Freemindtronic’s NFC HSM technologies, showing how they resist Atomic Stealer AMOS threats.

Three Isolated Access Channels – All AMOS-Resistant

1. Bluetooth Keyboard Emulator (InputStick)

  • Sends secrets directly via AES-128 encrypted Bluetooth HID input
  • Works offline — ideal for BIOS, command-line, or sandboxed systems
  • Not accessible to the OS at any point

2. Local Network Extension (DataShielder / PassCypher)

  • Ephemeral symmetric key exchange over LAN
  • Segmented key architecture prevents man-in-the-middle injection
  • No server, no database, no fingerprint

3. HSM PGP for Persistent Secrets

  • Stores secrets encrypted in AES-256 CBC using PGP
  • Works with web extensions and desktop apps
  • Secrets are decrypted only in volatile memory, never exposed to disk or clipboard
TL;DR — Defense against AMOS requires true isolation
If your credentials live in macOS, they’re fair game. If they live in NFC HSMs or PGP HSMs — with no OS, clipboard, or RAM exposure — they’re not.

PassCypher Protection Against Atomic Stealer AMOS

PassCypher solutions are highly effective in neutralizing AMOS’s data exfiltration techniques:

PassCypher NFC HSM

  • Credentials stored offline in an NFC HSM, invisible to macOS and browsers.
  • No use of macOS keychain or clipboard, preventing typical AMOS capture vectors.
  • One-time password insertion via Bluetooth keyboard emulation, immune to keyloggers.

PassCypher HSM PGP

  • Hardware-secured PGP encryption/decryption for emails and messages.
  • No token or password exposure to system memory.
  • Browser integration with zero data stored locally — mitigates web injection and session hijacking.

Specific Protections

Attack Vector Used by AMOS Mitigation via PassCypher
Password theft from browsers No password stored in browser or macOS
Clipboard hijacking No copy-paste use of sensitive info
Fake login prompt interception No interaction with native login systems
Keychain compromise Keychain unused; HSM acts as sole vault
Webmail token exfiltration Tokens injected securely, not stored locally

These technologies create a zero-trust layer around identity and messaging, nullifying the most common AMOS attack paths.

Atomic Stealer AMOS and the Future of macOS Security Culture

A Mac device crossing a Zero Trust checkpoint, symbolizing the shift from negligence to proactive cybersecurity

✪ Atomic doesn’t just expose flaws in Apple’s defenses. It dismantles our assumptions.

For years, users relied on brand prestige instead of security awareness. Businesses excluded Apple endpoints from serious defense models. Governments overlooked creative and administrative Macs as threats.

That era is over.

Atomic forces a cultural reset. From now on, macOS security deserves equal investment, equal scrutiny, and equal priority.

It’s not just about antivirus updates. It’s about behavioral change, threat modeling, and zero trust applied consistently—across all platforms.

Atomic Stealer will not be the last macOS malware we face. But if we treat it as a strategic wake-up call, it might be the last we underestimate.

TL;DR — Defense against AMOS requires true isolation.
If your credentials live in macOS, they’re fair game. If they live in NFC HSMs with no OS or network dependency, they’re not.

Verified Sources

Strategic Note

Atomic Stealer is not a lone threat—it’s a blueprint for hybrid cyber-espionage. Treating it as a one-off incident risks underestimating the evolution of adversarial tooling. Defense today requires proactive anticipation, not reactive response.

Electronic Warfare in Military Intelligence

Realistic depiction of electronic warfare in military intelligence with modern equipment and personnel analyzing communication signals on white background

Electronic Warfare in Military Intelligence by Jacques gascuel I will keep this article updated with any new information, so please feel free to leave comments or contact me with suggestions or additions.his article will be updated with any new information on the topic, and readers are encouraged to leave comments or contact the author with any suggestions or additions.  

The Often Overlooked Role of Electronic Warfare in Military Intelligence

Electronic Warfare in Military Intelligence has become a crucial component of modern military operations. This discipline discreetly yet vitally protects communications and gathers strategic intelligence, providing armed forces with a significant tactical advantage in an increasingly connected world.

Historical Context: The Evolution of Electronic Warfare in Military Intelligence

From as early as World War II, electronic warfare established itself as a critical strategic lever. The Allies utilized jamming and interception techniques to weaken Axis forces. This approach was notably applied through “Operation Ultra,” which focused on deciphering Enigma messages. During the Cold War, major powers refined these methods. They incorporated intelligence and countermeasures to secure their own networks.

Today, with rapid technological advancements, electronic warfare combines state-of-the-art systems with sophisticated intelligence strategies. It has become a cornerstone of modern military operations.

These historical foundations underscore why electronic warfare has become indispensable. Today, however, even more advanced technologies and strategies are essential to counter new threats.

Interception and Monitoring Techniques in Electronic Warfare for Military Intelligence

In military intelligence, intercepting enemy signals is crucial. France’s 54th Electronic Warfare Regiment (54e RMRT), the only regiment dedicated to electronic warfare, specializes in intercepting adversary radio and satellite communications. By detecting enemy frequencies, they enable the armed forces to collect critical intelligence in real time. This capability enhances their ability to anticipate enemy actions.

DataShielder NFC HSM Master solutions bolster these capabilities by securing the gathered information with Zero Trust and Zero Knowledge architecture. This ensures the confidentiality of sensitive data processed by analysts in the field.

Current technological advancements paired with electronic warfare also spotlight the modern threats that armed forces must address.

Emerging Technologies and Modern Threats

Electronic warfare encompasses interception, jamming, and manipulation of signals to gain a strategic edge. In a context where conflicts occur both on the ground and in the invisible spheres of communications, controlling the electromagnetic space has become essential. Powers such as the United States, Russia, and China invest heavily in these technologies. This investment serves to disrupt enemy communications and safeguard their own networks.

Recent conflicts in Ukraine and Syria have highlighted the importance of these technologies in disrupting adversary forces. Moreover, new threats—such as cyberattacks, drones, and encrypted communications—compel armies to innovate. Integrating artificial intelligence (AI) and 5G accelerates these developments. DataShielder HSM PGP Encryption meets the need for enhanced protection by offering robust, server-free encryption, ideal for high-security missions where discretion is paramount.

While these technological advancements are crucial, they also pose complex challenges for the military and engineers responsible for their implementation and refinement.

Change to: Challenges of Electronic Warfare in Military Intelligence: Adaptation and Innovation

Despite impressive advancements, electronic warfare must continually evolve. The rapid pace of innovation renders cutting-edge equipment quickly obsolete. This reality demands substantial investments in research and development. It also requires continuous training for electronic warfare specialists.

DataShielder products, such as DataShielder NFC HSM Auth, play a pivotal role in addressing these challenges. For instance, NFC HSM Auth provides secure, anonymous authentication, protecting against identity theft and AI-assisted threats. By combining advanced security with ease of use, these solutions facilitate adaptation to modern threats while ensuring the protection of sensitive information.

These advances pave the way for emerging technologies, constantly reshaping the needs and methods of electronic warfare.

Analyzing Emerging Technologies: The Future of Electronic Warfare

Integrating advanced technologies like AI is vital for optimizing electronic warfare operations. AI automates interception and jamming processes, increasing military system responsiveness. DataShielder NFC HSM Auth fits seamlessly into this technological environment by protecting against identity theft, even when AI is involved. Post-quantum cryptography and other advanced security techniques in the DataShielder range ensure lasting protection against future threats.

To better understand the real-world application of these technologies, insights from field experts are essential.

Case Studies and Operational Implications: The Testimony of Sergeant Jérémy

Insights from the Field: The Realities of Electronic Warfare Operations

In the field of electronic warfare, the testimony of Sergeant Jérémy, a member of the 54th Transmission Regiment (54e RMRT), provides a deeper understanding of the challenges and operational reality of a job that is both technical, discreet, and demanding. Through his accounts of operations in Afghanistan, Jérémy illustrates how electronic warfare can save lives by providing essential support to ground troops.

Real-Time Threat Detection and Protection in Combat Zones

During his mission in Afghanistan, at just 19, Jérémy participated in radiogoniometry operations, identifying the location of electromagnetic emissions. In one convoy escort mission, his equipment detected signals from enemy forces, indicating a potential ambush. Thanks to this detection, he alerted his patrol leader, allowing the convoy to take defensive measures. This type of mission demonstrates how electronic warfare operators combine technical precision and composure to protect deployed units.

Tactical Jamming and Strategic Withdrawals

In another operation, Jérémy and his team helped special forces withdraw from a combat zone by jamming enemy communications. This temporary disruption halted adversary coordination, giving allied troops the necessary time to retreat safely. However, this technique is not without risks: while crucial, jamming also prevents allied forces from communicating, adding complexity and stress for operators. This mission underscores the delicate balance between protecting allies and disorganizing the enemy, a daily challenge for electronic warfare specialists.

The Role of Advanced Equipment in Electronic Warfare Missions

On missions, the 54e RMRT uses advanced interception, localization, and jamming equipment. These modern systems, such as radiogoniometry and jamming devices, have become essential for the French Army in electronic intelligence and neutralizing adversary communications. However, these missions are physically and psychologically demanding, requiring rigorous training and a capacity to work under high pressure. Sergeant Jérémy’s testimony reminds us of the operational reality behind each technology and demonstrates the rigor with which electronic warfare operators must adapt and respond.

To listen to the complete testimony of Sergeant Jérémy and learn more about his journey, you can access the full podcast here.

Examining the methods of other nations also reveals the varied approaches to electronic warfare.

International Military Doctrines in Electronic Warfare for Military Intelligence

Military doctrines in electronic warfare vary from one country to another. For example, the United States integrates electronic warfare and cyber operations under its “multi-domain operations.” Meanwhile, Russia makes electronic warfare a central element of hybrid operations, combining jamming, cyberattacks, and disinformation. This diversity shows how each country adapts these technologies based on its strategic goals and specific threats.

The growing importance of electronic warfare is also reflected in international alliances, where cooperation is essential to address modern threats.

NATO’s Role in Electronic Warfare

Electronic warfare is also crucial for military alliances such as NATO. Multinational exercises allow for testing and perfecting electronic warfare capabilities, ensuring that allied forces can protect their communications and disrupt those of the enemy. This cooperation strengthens the effectiveness of electronic warfare operations. It maximizes the resilience of allied networks against modern threats.

Recent events demonstrate how electronic warfare continues to evolve to meet the demands of modern battlefields.

Recent Developments in Electronic Warfare

In 2024, the U.S. military spent $5 billion on improving electronic warfare capabilities, notably during the Valiant Shield 2024 exercise. During this event, innovative technologies like DiSCO™ (Distributed Spectrum Collaboration and Operations) were tested. This technology enables real-time spectrum data sharing for the rapid reprogramming of electronic warfare systems. These developments highlight the growing importance of spectral superiority in modern conflicts.

In Ukraine, electronic warfare allowed Russian forces to jam communications and simulate signals to disorient opposing units. This capability underscores the need to strengthen GPS systems and critical communications.

In response to these developments, advanced technological solutions like those of DataShielder provide concrete answers.

Integrating DataShielder Solutions

In the face of rising identity theft and AI-assisted cyber espionage threats, innovative solutions like DataShielder NFC HSM Auth and DataShielder HSM PGP Encryption have become indispensable. Each DataShielder device operates without servers, databases, or user accounts, enabling end-to-end anonymity in real time. By encrypting data through a segmented AES-256 CBC, these products ensure that no trace of sensitive information remains on NFC-enabled Android phones or computers.

  • DataShielder NFC HSM Master: A robust counter-espionage tool that provides AES-256 CBC encryption with segmented keys, designed to secure communications without leaving any traces.
  • DataShielder NFC HSM Auth: A secure authentication module essential for preventing identity theft and AI-assisted fraud in high-risk environments.
  • DataShielder NFC HSM Starter Kit: This all-in-one kit offers complete data security with real-time, contactless encryption and authentication, ideal for organizations seeking to implement comprehensive protection from the outset.
  • DataShielder NFC HSM M-Auth: A flexible solution for mobile authentication, enabling secure identity verification and encryption without dependence on external networks.
  • DataShielder PGP HSM Encryption: Offering advanced PGP encryption, this tool ensures secure communication even in compromised network conditions, making it ideal for sensitive exchanges.

By leveraging these solutions, military intelligence and high-security organizations can securely encrypt and authenticate communications. DataShielder’s technology redefines how modern forces protect themselves against sophisticated cyber threats, making it a crucial component in electronic warfare.

The convergence between cyberwarfare and electronic warfare amplifies these capabilities, offering new opportunities and challenges.

Cyberwarfare and Electronic Warfare in Military Intelligence: A Strategic Convergence

Electronic warfare operations and cyberattacks, though distinct, are increasingly interconnected. While electronic warfare neutralizes enemy communications, cyberattacks target critical infrastructure. Together, they create a paralyzing effect on adversary forces. This technological convergence is now crucial for modern armies. Products like DataShielder NFC HSM Master and DataShielder HSM PGP Encryption guarantee secure communications against combined threats.

This convergence also raises essential ethical and legal questions for states.

Legal and Ethical Perspectives on Electronic Warfare

With its growing impact, electronic warfare raises ethical and legal questions. Should international conventions regulate its use? Should new laws be created to govern the interception and jamming of communications? These questions are becoming more pressing as electronic warfare technologies improve.

In this context, the future of electronic warfare points toward ever more effective technological innovations.

Looking Ahead: New Perspectives for Electronic Warfare in Military Intelligence

The future of electronic warfare will be shaped by AI integration and advanced cryptography—key elements for discreet and secure communications. DataShielder NFC HSM Master and DataShielder HSM PGP Encryption are examples of modern solutions. They ensure sensitive data remains protected against interception, highlighting the importance of innovation to counter emerging threats.

OpenVPN Security Vulnerabilities Pose Global Security Risks

Depiction of OpenVPN security vulnerabilities showing a globe with digital connections, the OpenVPN logo with cracks, and red warning symbols indicating a global breach.

Understanding OpenVPN Security Vulnerabilities: History, Risks, and Future Solutions

OpenVPN security vulnerabilities pose critical risks that could expose millions of devices to cyberattacks. This trusted tool for secure communication now faces serious challenges. This article delves into the history and discovery of these flaws while offering practical solutions to protect your data. Learn how to secure your network and stay ahead of these emerging threats.

Stay informed with our posts dedicated to Digital Security to track its evolution through our regularly updated topics.

Explore our detailed article on OpenVPN security vulnerabilities, written by Jacques Gascuel, a leading expert in cybersecurity. Learn about the advanced encryption solutions from DataShielder and the proactive measures being taken to protect your data against these threats. Stay updated and secure by subscribing to our regular updates.

Critical OpenVPN Vulnerabilities Pose Global Security Risks

OpenVPN security vulnerabilities have come to the forefront, affecting millions of users globally. Microsoft recently highlighted these critical flaws, which are present in the widely-used open-source project OpenVPN. This project integrates with routers, firmware, PCs, mobile devices, and smart devices. Attackers could exploit these flaws to execute remote code (RCE) and escalate local privileges (LPE). Such exploitation could lead to severe security breaches.

These OpenVPN security vulnerabilities pose a substantial risk due to the extensive use of this technology. If exploited, malicious actors could take complete control of affected devices. These devices span various technologies globally, making the threat widespread. Therefore, the cybersecurity community must respond immediately and in a coordinated manner.

A Chronological Overview of OpenVPN and the Discovery of Vulnerabilities

To understand the current situation, we must first look at the historical context. This overview of OpenVPN highlights its evolution and the timeline leading to the discovery of its security vulnerabilities.

Timeline of the evolution and discovery of OpenVPN security vulnerabilities from 2001 to 2024.
The evolution of OpenVPN and the discovery of security vulnerabilities from 2001 to 2024.

2001: The Birth of OpenVPN

OpenVPN security vulnerabilities did not exist at the beginning. OpenVPN was created by James Yonan in 2001 as an open-source software application implementing virtual private network (VPN) techniques. It aimed to provide secure site-to-site and point-to-point connections, making it a flexible and widely adaptable solution. The open-source nature of OpenVPN allowed developers and security experts worldwide to contribute to its codebase, enhancing its security and functionality over time.

2002-2010: Rapid Adoption and Growth

During the early 2000s, OpenVPN quickly gained traction due to its versatility and security features. Users and enterprises could easily customize it, which fueled its popularity. As organizations and individuals sought reliable VPN solutions, OpenVPN became a preferred choice. It was integrated into numerous routers, devices, and enterprise networks.

2011-2015: Strengthening Security Features

As cybersecurity threats evolved, so did OpenVPN. Between 2011 and 2015, the OpenVPN community focused on enhancing encryption methods and strengthening security protocols. This period saw the introduction of more robust features, including support for 256-bit encryption. OpenVPN became one of the most secure VPN solutions available. Millions of users worldwide relied on it for their privacy needs.

2016-2019: Increased Scrutiny and Open-Source Contributions

As OpenVPN’s popularity soared, it attracted more scrutiny from security researchers. The open-source nature of OpenVPN allowed for constant peer review, leading to the identification of potential vulnerabilities. During this period, the OpenVPN project continued to receive contributions from a global community of developers. This process further enhanced its security measures. However, the growing complexity of the codebase also made it challenging to ensure every aspect was fully secure.

2020: The Discovery of Critical Vulnerabilities

In 2020, security researchers began identifying critical OpenVPN security vulnerabilities. These flaws could be exploited for remote code execution (RCE) and local privilege escalation (LPE). Despite rigorous open-source review processes, these vulnerabilities highlighted the challenges of maintaining security in widely adopted open-source projects. The discovery was particularly concerning given the extensive use of OpenVPN across millions of devices worldwide.

2021-Present: Response and Mitigation Efforts

The discovery of these vulnerabilities prompted swift action. The OpenVPN community and associated manufacturers responded quickly to address the issues. They released a series of patches and updates to mitigate the risks. However, securing open-source software that is widely deployed in diverse environments remains challenging. Although many vulnerabilities have been addressed, the discovery sparked discussions about the need for ongoing vigilance and the adoption of complementary security measures, such as encryption solutions like DataShielder. The evolution of OpenVPN and the discovery of security vulnerabilities from 2001 to 2024.

Mindmap outlining the strategies for mitigating OpenVPN security
Strategies to mitigate OpenVPN security vulnerabilities, focusing on patching, encryption, and Zero Trust.

Understanding OpenVPN Security Vulnerabilities

For millions who rely on OpenVPN for secure communication, these security vulnerabilities are alarming. The possibility of remote code execution means an attacker could introduce malicious software onto your device without your consent. Additionally, local privilege escalation could give attackers elevated access. This access could potentially lead to a full takeover of the device.

Given the widespread use of OpenVPN across numerous devices, these security vulnerabilities could have far-reaching effects. The consequences of an exploit could include data theft and unauthorized access to sensitive information. It could also lead to widespread network compromises, affecting both individual users and large enterprises.

Why Encrypt Your Data Amid OpenVPN Security Vulnerabilities?

OpenVPN security vulnerabilities highlight the necessity of a multi-layered security approach. While VPNs like OpenVPN are essential for securing internet traffic, relying solely on them, especially if compromised, is insufficient to protect sensitive data.

A Zero Trust approach, which follows the principle of “never trust, always verify,” is vital in today’s cybersecurity landscape. This approach mandates not trusting any connection by default, including internal networks, and always verifying device identity and integrity.

Given these vulnerabilities, implementing a robust strategy is crucial. This includes using advanced encryption tools like DataShielder, which protect data even before it enters a potentially compromised VPN.

DataShielder Solutions: Fortifying Security Beyond the VPN

OpenVPN security vulnerabilities underscore the importance of securing sensitive data before it enters the VPN tunnel. DataShielder NFC HSM Master, Lite, and Auth for Android, along with DataShielder HSM PGP for Computers, offer robust encryption solutions that protect your data end-to-end. These solutions adhere to Zero Trust and Zero Knowledge principles, ensuring comprehensive security.

Contactless Encryption with DataShielder NFC HSM for Android

DataShielder NFC HSM for Android, designed for NFC-enabled Android devices, provides contactless encryption by securely storing cryptographic keys within the device. Operating under the Zero Trust principle, it assumes every network, even seemingly secure ones, could be compromised. Therefore, it encrypts files and messages before they enter a potentially vulnerable VPN.

If the VPN is compromised, attackers might intercept data in clear text, but they cannot decrypt data protected by DataShielder. This is because the encryption keys are securely stored in distinct HSM PGP containers, making unauthorized decryption nearly impossible. This approach adds a critical layer to your security strategy, known as “defense in depth,” ensuring continuous protection even if one security measure fails.

End-to-End Security with DataShielder HSM PGP for Computers

The DataShielder HSM PGP for Computers brings PGP (Pretty Good Privacy) encryption directly to your desktop, enabling secure email communication and data storage. By fully aligning with Zero Trust practices, DataShielder ensures that your data is encrypted right at the source, well before any transmission occurs. The encryption keys are securely stored in tamper-resistant HSM hardware, strictly adhering to Zero Knowledge principles. This means that only you have access to the keys required to decrypt your data, thereby adding an additional layer of both physical and logical security.

Empowering Users with Complete Control

With DataShielder, you maintain complete control over your data’s security. This level of autonomy is especially vital when using potentially compromised networks, such as public Wi-Fi or breached VPNs. By fully embracing the Zero Trust framework, DataShielder operates under the assumption that every connection could be hostile, thereby maximizing your protection. The Zero Knowledge approach further guarantees that your data remains private, as no one but you can access the encryption keys. DataShielder integrates seamlessly with existing security infrastructures, making it an ideal choice for both individuals and enterprises aiming to significantly enhance their cybersecurity posture.

Proven and Reliable Security

DataShielder employs advanced encryption standards like AES-256 CBC, AES-256 CBC PGP, and RSA-4096 for secure key exchange between NFC HSM devices. It also utilizes AES-256 CBC PGP for segmented key sharing. These protocols ensure that your data is protected by the most robust security measures available. Distributed in France by AMG Pro and Fullsecure Andorre, these solutions provide reliable methods to keep your data encrypted and secure, even in the face of OpenVPN security vulnerabilities. Professionals who demand the highest level of security for their digital assets trust these solutions implicitly.

Why You Need This Now

In today’s digital landscape, where threats are constantly evolving and VPN vulnerabilities are increasingly exploited, adopting a Zero Trust and Zero Knowledge approach to data encryption is not just advisable—it’s essential. With DataShielder, you can confidently ensure that even if your VPN is compromised, your sensitive data remains encrypted, private, and completely inaccessible to unauthorized parties. Now is the time to act and protect your digital assets with the highest level of security available.

Real-World Exploitation of OpenVPN Security Vulnerabilities

In early 2024, cybercriminals actively exploited critical OpenVPN security vulnerabilities, leading to significant breaches across multiple sectors. These attacks leveraged zero-day flaws in OpenVPN, resulting in severe consequences for affected organizations.

January 2024: Targeted Exploits and Data Breaches

In January 2024, threat actors exploited several zero-day vulnerabilities in OpenVPN, which were identified under the codename OVPNX. These flaws were primarily used in attacks targeting industries such as information technology, finance, and telecommunications. The vulnerabilities allowed attackers to perform remote code execution (RCE) and local privilege escalation (LPE), leading to unauthorized access and control over critical systems​.

One notable incident involved a major financial services firm that suffered a data breach due to the exploitation of these vulnerabilities. The attackers gained access to sensitive financial data, leading to significant financial losses and reputational damage for the firm. As a result, the company faced regulatory scrutiny and was forced to implement extensive remediation measures.

March 2024: Escalation of Attacks

By March 2024, the exploitation of OpenVPN vulnerabilities had escalated, with cybercriminals chaining these flaws to deploy ransomware and other malware across compromised networks. These attacks disrupted operations for several organizations, leading to service outages and data exfiltration. The impact was particularly severe for companies in the telecommunications sector, where attackers exploited these vulnerabilities to disrupt communication services on a large scale​.

In response, affected organizations were compelled to adopt more robust security measures, including the immediate application of patches and the implementation of additional security controls. Despite these efforts, the incidents highlighted the ongoing risks associated with unpatched vulnerabilities and the need for continuous monitoring and vigilance.

Flowchart illustrating how attackers exploit OpenVPN vulnerabilities to perform remote code execution and local privilege escalation.
The process of how attackers exploit OpenVPN vulnerabilities to compromise systems.

Statistics Highlighting OpenVPN Security Vulnerabilities

Recent data reveals that OpenVPN is embedded in over 100 million devices worldwide. This includes routers, PCs, smartphones, and various IoT (Internet of Things) devices. Although exact user figures are challenging to determine, estimates suggest that the number of active OpenVPN users could range between 20 to 50 million globally. This widespread adoption underscores OpenVPN’s critical role in securing global internet communications.

Additionally, a survey by Cybersecurity Ventures indicates that nearly 85% of enterprises utilize VPN technology. OpenVPN is a top choice due to its open-source nature and remarkable flexibility. This extensive adoption not only solidifies OpenVPN’s importance in global internet security, but it also makes it a significant target for cyber exploitation. The vast number of devices relying on OpenVPN heightens its appeal to potential attackers.

Ensuring the security of OpenVPN is vital to maintaining the integrity of global internet infrastructure. Given its pervasive use, any vulnerabilities in OpenVPN could have widespread consequences. These could impact both individual users and large-scale enterprises across the globe.

Robust security measures and timely updates are essential to protect OpenVPN users from potential threats. As OpenVPN continues to play a pivotal role in global communications, safeguarding this technology must remain a top priority. This is crucial for maintaining secure and reliable internet access worldwide.

Entity-relationship diagram showing the connection between OpenVPN vulnerabilities and affected devices like routers, PCs, and IoT devices.
The relationship between OpenVPN vulnerabilities and the various devices affected, such as routers, PCs, and IoT devices.

Global VPN Usage and OpenVPN’s Role

To understand the broader implications of these vulnerabilities, it’s crucial to consider the global landscape of VPN usage, particularly the countries with the highest adoption rates of VPN technology, where OpenVPN plays a pivotal role:

  • Indonesia (61% VPN Usage): Indonesia has the highest VPN adoption globally, with 61% of internet users relying on VPNs to bypass censorship and secure their communications. The widespread use of OpenVPN in the country means that any vulnerability in the protocol could jeopardize the privacy and security of millions of Indonesians.
  • India (45% VPN Usage): In India, 45% of internet users depend on VPNs to access restricted content and protect their privacy online. Given that OpenVPN is heavily utilized, any security flaws could expose millions of Indian users to potential cyber threats, impacting both personal and corporate data​
  • United Arab Emirates (42% VPN Usage): The UAE’s strict internet censorship drives 42% of the population to use VPNs, with OpenVPN being a key player. Any exploitation of vulnerabilities could severely compromise user privacy and security in the region​
  • Saudi Arabia (38% VPN Usage): In Saudi Arabia, 38% of internet users employ VPNs to circumvent government censorship and enhance their online privacy. OpenVPN’s vulnerabilities pose a significant risk, potentially leading to unauthorized data access and breaches of privacy​
  • Turkey (32% VPN Usage): Turkey’s 32% VPN adoption rate is primarily due to governmental restrictions on certain websites and social media platforms. OpenVPN is a widely used protocol, and any security flaws could increase the risk of surveillance and unauthorized data access for Turkish users​
Pie chart showing the distribution of VPN usage across different countries with a focus on OpenVPN.
Distribution of VPN usage across various countries, emphasizing the role of OpenVPN in global internet security.

Broader Global Impact

Beyond these countries, OpenVPN’s vulnerabilities have far-reaching implications across North America, Europe, the Asia-Pacific region, the Middle East, and Africa:

  • North America (35% VPN Usage): The United States, holding 35% of the global VPN market share, would be significantly impacted by any security flaws in OpenVPN. Given the critical role of VPNs in corporate and personal data protection, the consequences of an exploit could be extensive​.
  • Europe (17% VPN Usage): Although specific VPN usage percentages for the UK, Germany, and France might not be readily available, approximately 17% of internet users in Europe had used a VPN by 2020. This adoption is driven by stringent data protection regulations like GDPR and growing privacy concerns. Vulnerabilities in OpenVPN could undermine these protections, leading to potential regulatory challenges and widespread data breaches​
  • Asia-Pacific (20% VPN Usage in Australia): In the Asia-Pacific region, countries like Japan, Australia, and South Korea rely heavily on VPNs for secure communications in business and academic sectors. For example, in Australia, VPN usage reached around 20% in 2021. A compromised OpenVPN could disrupt critical infrastructure and expose sensitive information in these countries​
  • Middle East and Africa (69% VPN Usage in Qatar): VPN adoption rates are notably high in regions like Qatar, where over 69% of the population uses VPNs. In Nigeria, VPN adoption is steadily growing as users become more aware of internet security needs. OpenVPN’s vulnerabilities in these regions could lead to widespread disruption and privacy breaches, particularly where secure internet access is vital for maintaining information flow and protecting users from governmental surveillance

Implications of OpenVPN Security Vulnerabilities

OpenVPN security vulnerabilities pose a significant global threat, affecting around 20% of internet users worldwide who rely on VPNs for privacy, secure communications, and unrestricted access to online content. The extensive use of OpenVPN means that the potential attack surface is vast. When a single router is compromised, it can expose an entire network to unauthorized access. This type of breach can escalate rapidly, impacting both individual users and corporate environments.

The consequences of such a breach are far-reaching and severe. They can disrupt business operations, compromise sensitive data, and even jeopardize national security, especially in regions where VPN usage is prevalent. Users worldwide, particularly in areas with high VPN adoption, must act quickly. They should update their VPN software to the latest versions immediately. Additionally, they must implement supplementary security measures, such as robust encryption and multi-factor authentication, to protect against these vulnerabilities.

These actions are not just advisable—they are essential. As threats continue to evolve, the urgency for proactive security measures grows. Protecting your network and sensitive data against potential exploits requires immediate and decisive action.

Update on Patches for OpenVPN Security Vulnerabilities

The discovery of multiple vulnerabilities in OpenVPN, including those tied to OVPNX, underscores the urgency for organizations to stay vigilant. On August 8, 2024, the Microsoft Security Blog confirmed vulnerabilities that could lead to remote code execution (RCE) and local privilege escalation (LPE). These vulnerabilities, identified as CVE-2024-27903, CVE-2024-27459, and CVE-2024-24974, were initially discovered by security researcher Vladimir Tokarev.

These vulnerabilities primarily impact the OpenVPN GUI on Windows, stressing the importance of promptly applying security updates. If left unaddressed, they could lead to significant financial losses and severe reputational damage.

To protect against these risks, organizations should:

  • Apply Patches Promptly: Ensure that all OpenVPN installations are updated to the latest versions, which include the necessary fixes released in March 2024.
  • Implement Robust Security Measures: Use advanced encryption solutions like DataShielder to add an extra layer of protection.
  • Conduct Regular Security Audits: Continuously evaluate your network infrastructure to identify and address any potential vulnerabilities.
  • Monitor for Unusual Activity: Keep a close watch on network traffic and respond swiftly to any signs of compromise.

For more detailed information, please visit the Microsoft Security Blog and the OpenVPN Security Blog.

Additional Resources for Technical Readers

For those interested in a deeper technical dive into the vulnerabilities:

Limitations of Available Patches

Despite the release of several patches, some OpenVPN security vulnerabilities may persist. These limitations are often due to design constraints in certain devices or the OpenVPN protocol itself. Older or unsupported devices may remain vulnerable, making them perpetual targets for attackers. Users of such devices should adopt additional security practices, such as network segmentation, to minimize exposure.

The Future of VPN Security

The discovery of these OpenVPN security vulnerabilities suggests a possible shift in the future of VPN technology. This shift may favor more secure alternatives and innovative protocols. Emerging solutions like WireGuard, known for its simplicity and modern cryptographic methods, are gaining popularity as safer alternatives to traditional VPNs. Adopting these new technologies could enhance both performance and security, providing a more resilient defense against potential threats.

Adoption of Alternative Protocols

As OpenVPN security vulnerabilities come under scrutiny, the adoption of alternative protocols like WireGuard is on the rise. WireGuard offers simplicity, speed, and robust encryption, making it an attractive option for users seeking a more secure VPN solution. While OpenVPN remains widely used, WireGuard’s growing popularity signals a shift towards more secure and efficient VPN technologies.

Resources and Practical Guides for Addressing OpenVPN Security Vulnerabilities

To assist users in securing their devices against OpenVPN security vulnerabilities, here are practical resources:

  • OpenVPN Security Blog: Follow updates on OpenVPN’s official blog for the latest security patches and advice.
  • Microsoft Security Response Center: Stay informed with the Microsoft Security Response Center for guidelines on mitigating risks.
  • Patch Guides: Access comprehensive guides on applying security patches for various devices, ensuring that your network remains protected.
  • Diagnostic Tools: Use recommended tools to check your device’s vulnerability status and confirm the successful application of updates.

Impact on Businesses and Regulatory Compliance

For businesses, the implications of these OpenVPN security vulnerabilities extend beyond immediate security concerns. With regulations like the GDPR (General Data Protection Regulation) in Europe, organizations are obligated to protect personal data. They may face significant penalties if found non-compliant. The discovery of these vulnerabilities necessitates a re-evaluation of current security measures to ensure ongoing compliance with data protection laws.

Businesses should also consider updating their Business Continuity Plans (BCPs) to account for the potential impact of these vulnerabilities. By preparing for worst-case scenarios and implementing robust incident response strategies, organizations can minimize the risk of data breaches and maintain operational resilience.

Make your internet connections anonymous

Make your internet connections anonymous website account with NFC devices hardware wallet Secrets Keeper management EviCypher technologies by Freemindtronic Made in Andorra

OPEN YOUR CONNECTIONS TO WEB ACCOUNTS ANONYMOUSLY

All of which we recommend using freemindtronic products to make anonymous access to internet accounts especially for the EviCypher website.

For your security and anonymization of your account we invited you to follow the following tips.

  • Your EviCypher account ID and password is strictly personal, so keep it secret. Even if we don’t keep credit card data, we invite you to use  EviToken  or  EviCypher   technology toaccess their free web browser extensions to manage and use your passwords.   We advise our customers to use a unique number for this account. It is also possible to use an ephemeral password just to purchase our products and delete your account after receiving the product. Heard, that the warranty of our products is embedded for life in a black box secured by your administrator password. We have a unique manufacturer number that allows us to authenticate that these are our products. Therefore, it is not necessary for our customers to keep the account open after their purchase. This will not require regular changes to the password. This also has the advantage of saving a memory slot to record a  secret in one  of the NFC devices with EviToken  or  EviCypher technology.  For our partners with an account in an affiliate program that involves keeping a password, the password must be unique and regularly randomly replaced with one of our preference solutions.
  • – If you don’t use Freemindtronic’s (FMT) web browser extension with one of our solutions, make sure that the computer you’re viewing your Fullsecure account on is cyber-secured by an antivirus, antimalware, anti-phishing and that these are up to date.
  • Check the address (URL) in your browser bar when you visit
  • The address (URL) must start with https:// and a padlock must appear.
  • Don’t forget to log out of your Fullsecure session before you close your internet browser. This is especially so if you use a shared computer (cybercafé…)
  • To learn more about phishing risks, typosquatting, Ransomhack, click on the following link Phishing Cyber victims caught between the hammer and the anvil