Technology Readiness Levels: TRL10 Framework

Documentary-style poster illustrating Technology Readiness Levels TRL 1 to TRL10 applied to cybersecurity, defense, and sovereign R&D innovation

Technology Readiness Levels (TRL) provide a structured framework to measure the maturity of innovations, from basic research to mission-proven systems. This Chronicle offers a sovereign perspective on how the TRL 1–9 scale shapes strategic adoption in defense, critical infrastructure, and digital security.

Executive Summary — Technology Readiness Levels

⮞ Reading Note

If you only want the essentials, this Executive Summary (≈4 minutes) explains how the TRL framework (1–9) maps the maturity of technologies. For the full Chronicle (≈25 minutes), continue below.

⚡ Key Idea

The TRL framework provides a common language to evaluate innovation — from scientific principles (TRL1) to proven mission operations (TRL9). Each step marks a critical threshold for sovereign technology adoption.

✦ Why it Matters

  • Ensures consistency in R&D funding and evaluation.
  • Reduces risk in defense, aerospace, and critical infrastructure projects.
  • Supports sovereign decision-making in supply chains and digital security.

✓ Sovereign Countermeasure

Using TRL milestones, sovereign actors can validate innovations without relying on external certification chains. This reinforces trust in critical systems and prevents strategic dependency.

Key Insights include:
• TRL 1–9: a universal framework for innovation maturity
• Each stage defines exit criteria, reducing ambiguity in sovereign procurement
• Prevents premature deployment of immature systems in critical domains
• Strategic relevance for AI, quantum computing, and sovereign cybersecurity adoption

Chronicle to Read

Introductory Reading Time: ≈ 4 minutes
Full Reading Time: ~25 minutes
Complexity: Advanced — R&D, defense, sovereign IT
Languages: EN, FR, ES, CAT
Editorial type: Cyberculture – Strategic Chronicle
About the Author: Jacques Gascuel is the inventor and founder of Freemindtronic®. His work focuses on sovereign hardware-based security, including NFC encryption devices, zero-trust architectures, and counter-espionage resilience systems.

TL;DR — Technology Readiness Levels (TRL 1–9) trace the journey from laboratory research to mission-proven systems. Each stage secures integration, performance, and resilience, ensuring innovations are strategically trustworthy for sovereign cybersecurity adoption and critical infrastructure defense.
Technology Readiness Levels TRL scale 1 to 9 illustrating technology maturity progression from basic principles to mission-proven systems

2015 Cyberculture

Technology Readiness Levels: TRL10 Framework

2024 Cyberculture Digital Security

Russian Cyberattack Microsoft: An Unprecedented Threat

2024 2025 Cyberculture

Quantum Threats to Encryption: RSA, AES & ECC Defense

2025 Cyberculture

SMS vs RCS: Strategic Comparison Guide

2025 Cyberculture

Loi andorrane double usage 2025 (FR)

2025 Cyberculture

NGOs Legal UN Recognition

2025 Cyberculture Legal information

French IT Liability Case: A Landmark in IT Accountability

2024 Cyberculture

French Digital Surveillance: Escaping Oversight

2024 Cyberculture

Electronic Warfare in Military Intelligence

2024 Articles Cyberculture Legal information

ANSSI Cryptography Authorization: Complete Declaration Guide

2021 Cyberculture Digital Security Phishing

Phishing Cyber victims caught between the hammer and the anvil

2024 Articles Cyberculture

EAN Code Andorra: Why It Shares Spain’s 84 Code

2024 Cyberculture

Cybercrime Treaty 2024: UN’s Historic Agreement

2024 Cyberculture

Encryption Dual-Use Regulation under EU Law

2024 Cyberculture DataShielder

Google Workspace Data Security: Legal Insights

2024 Cyberculture EviSeed SeedNFC HSM

Crypto Regulations Transform Europe’s Market: MiCA Insights

Awards Cyberculture EviCypher Technology International Inventions Geneva NFC HSM technology

Geneva International Exhibition of Inventions 2021

2024 Articles Cyberculture legal Legal information News

End-to-End Messaging Encryption Regulation – A European Issue

Articles Contactless passwordless Cyberculture EviOTP NFC HSM Technology EviPass NFC HSM technology multi-factor authentication Passwordless MFA

How to choose the best multi-factor authentication method for your online security

2024 Cyberculture Digital Security News Training

Andorra National Cyberattack Simulation: A Global First in Cyber Defense

Articles Cyberculture Digital Security Technical News

Protect Meta Account Identity Theft with EviPass and EviOTP

2024 Articles Cyberculture EviPass Password

Human Limitations in Strong Passwords Creation

2023 Articles Cyberculture EviCypher NFC HSM News Technologies

Telegram and the Information War in Ukraine

Articles Cyberculture EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology

Communication Vulnerabilities 2023: Avoiding Cyber Threats

Articles Cyberculture NFC HSM technology Technical News

RSA Encryption: How the Marvin Attack Exposes a 25-Year-Old Flaw

2023 Articles Cyberculture Digital Security Technical News

Strong Passwords in the Quantum Computing Era

2023 Articles Cyberculture EviCore HSM OpenPGP Technology EviCore NFC HSM Browser Extension EviCore NFC HSM Technology Legal information Licences Freemindtronic

Unitary patent system: why some EU countries are not on board

2024 Crypto Currency Cryptocurrency Cyberculture Legal information

EU Sanctions Cryptocurrency Regulation: A Comprehensive Overview

2023 Articles Cyberculture Eco-friendly Electronics GreenTech Technologies

The first wood transistor for green electronics

2024 Cyberculture Legal information

Encrypted messaging: ECHR says no to states that want to spy on them

2018 Articles Cyberculture Legal information News

Why does the Freemindtronic hardware wallet comply with the law?

2021 Articles Cyberculture Digital Security EviPass EviPass NFC HSM technology EviPass Technology Technical News

766 trillion years to find 20-character code like a randomly generated password

2023 Articles Cyberculture Technologies

NRE Cost Optimization for Electronics: A Comprehensive Guide

In Cyberculture ↑ Correlate this Chronicle with other sovereign threat analyses in the same editorial rubric.

Historical Genesis (NASA → DoD → EU)

Initially developed by NASA to assess the maturity of space technologies and reduce mission risk, the Technology Readiness Levels (TRL) scale quickly proved its strategic value. It was subsequently adopted and adapted by defense organizations such as the U.S. Department of Defense (DoD) to standardize acquisition milestones. Over time, it became a reference framework for European research and innovation programs, aligning pre-industrial validation with deployment strategies.

As a result, the TRL framework is now embedded in sovereign programs where reliability, auditability, and interoperability are non-negotiable.

⮞ Summary

The TRL scale evolved from NASA’s internal assurance tool into a globally recognized decision-making framework. It now structures funding, testing, and certification across sovereign ecosystems — from space systems to cybersecurity.

For formal reference, see the international standard ISO 16290:2013 – Space systems — Definition of Technology Readiness Levels (TRLs).

Understanding TRL 1-9 – Technology Readiness Scale in Depth

The Technology Readiness Level (TRL) framework, standardized by NASA and adopted in EU research & innovation policy (e.g. Horizon 2020, Horizon Europe), gives a rigorous scale from TRL 1 (basic principles) to TRL 9 (mission-proven systems). It enables innovation maturity assessment in defense supply chains and supports prototype validation in relevant operational environments.

TRL Definition Detailed Description Criteria / Exit Conditions
1 Basic principles observed Scientific research begins; underlying scientific truths are documented. Hypotheses, mathematical models, basic research. Peer-reviewed publication or formal report of basic scientific principles. No prototype.
2 Technology concept formulated Conceptualization of practical application. Speculative, analytical work; no experimental proof yet. Documented concept study; feasibility analysis; early software/hardware mockups.
3 Proof-of-concept (analytical & experimental) Active R&D; small scale models or experiments validate critical functions in lab settings. Laboratory tests; modeling; limited scale demonstrators.
4 Component / Subsystem validation in laboratory environment Integration of components; validation of subsystems under controlled conditions; no full environment yet. Subsystem test benches; performance metrics measured; validation under simulated loads.
5 Component / Subsystem validation in relevant environment Breadboard or subsystem tested in conditions representative of actual use (interfaces, perturbations). Environmental stress tests; compatibility verification with system interfaces.
6 Prototype demonstration in relevant environment Fully functional prototype or system/model demonstrated in a relevant (realistic) operational environment with actual interfaces. System-level testing; integration; performance under representative environmental and operational conditions.
7 System prototype demonstration in operational environment Prototype works under operational stresses; system demonstrator in the field, with all relevant interfaces, perhaps non-flight but live use. Field trials, near-mission deployment; reliability metrics collected; safety/risk testing.
8 Actual system completed & qualified The system has been fully built, qualified through test and demonstration under operational conditions; ready for commissioning or deployment. Full qualification; certification if relevant; readiness for integration/deployment.
9 Actual system proven through successful mission operations System has been operated in live mission context; meets performance, reliability, and safety requirements. Mission success; feedback loops; maintenance/readiness assurance; audit & post-operation evaluation.

⮞ Practical Summary

Use this table as the definitive guide when assessing technology readiness: each level has clearly defined exit criteria. Avoid ambiguity by demanding full documentation at each TRL checkpoint.

⧉ Beyond TRL — Comparative Readiness Scales

Scale Purpose Domain
TRL (Technology Readiness Levels) Measures innovation maturity from principles (TRL 1) to mission-proven systems (TRL 9). Defense, aerospace, cybersecurity, R&D policy.
MRL (Manufacturing Readiness Level) Evaluates readiness of industrial processes, supply chain, and production scalability. Industry, automotive, defense acquisition.
SRL (System Readiness Level) Assesses integration maturity of multi-subsystem architectures. Complex systems (space, telecom, defense).
CRL (Commercial Readiness Level) Measures market adoption, economic sustainability, and business viability. Energy, infrastructure, green tech.
Key Point: TRL is necessary but not sufficient. Combining TRL with MRL, SRL, or CRL gives a holistic maturity picture.

Weak Signals — Early Indicators

⮞ Weak Signals Identified
– TRL increasingly referenced in EU cyber regulations (NIS2, CRA)
– Ethical and environmental compliance as hidden readiness layer
– Risk of dependency on non-sovereign testbeds for validation

Standards & Governance

  • ISO 16290:2013 — Defines TRL scale for space systems, internationally recognized.
  • European Commission (Horizon Europe) — Projects must indicate initial and targeted TRL levels.
  • NATO STANAG — Aligns TRL with defense procurement standards.
  • EARTO (2014 Report) — Recommends TRL as R&I policy tool for EU innovation strategy.
Takeaway: These standards ensure TRL is not only a technical metric, but also a sovereign decision-making instrument.

Research Frontiers — Beyond TRL 9?

Some research forums suggest extending the TRL concept toward sustainability and resilience readiness. Proposals include:

  • TRL 10 — Long-term resilience, lifecycle maintenance, and sustainability assurance.
  • Ethical TRL — Incorporating ethical and regulatory compliance in readiness assessment.
  • Digital TRL — Adaptations for AI, quantum computing, and zero-trust cybersecurity environments.
Future Outlook: Extending TRL frameworks could reinforce sovereign digital trust through TRL checkpoints in emerging domains.

All About — The Future of Technology Readiness Level (TRL) 10

While the official TRL framework ends at level 9, some research communities and defense innovation bodies have begun exploring the concept of a TRL 10. This extension aims to address domains beyond operational proof, emphasizing resilience, lifecycle assurance, and sovereign trust.

Technology Readiness Levels TRL 1 to TRL 10 table — from scientific principles to sovereign durability and long-term resilience, including lifecycle assurance and zero-incident operation.
Comprehensive Technology Readiness Levels (TRL 1–10) framework — from basic principles to sovereign trust. TRL10 highlights long-term resilience, lifecycle assurance, and zero-incident operation.
  • Long-Term Resilience: Ensures that technology can withstand decades of use, evolving threats, and environmental pressures without critical failure.
  • Lifecycle Security: Covers supply chain integrity, maintenance assurance, and update reliability throughout the entire operational life of the system.
  • Ethical & Regulatory Alignment: Integrates compliance with cybersecurity acts such as the EU NIS2 Directive and the EU Cyber Resilience Act.
  • Sovereign Trust Layer: Adds validation that systems remain independent of foreign certification monopolies, ensuring autonomy in defense and critical infrastructure.

⮞ Key Takeaway

TRL 10 represents the next frontier of technology readiness — moving from systems that are mission-proven (TRL 9) to systems that are sovereignly trusted, resilient, and future-proof. It is not yet an official standard, but it is already being debated in policy circles, think-tanks, and sovereign R&D programs.

For context, see the internationally recognized ISO 16290:2013 — Space systems — Definition of Technology Readiness Levels (TRLs), which remains the reference for TRL 1–9, and evolving EU policy frameworks such as Horizon Europe Calls where TRL milestones are mandatory for project funding.

Sovereign Implications

Adopting TRL frameworks ensures that states and organizations can independently evaluate maturity without depending on external certification monopolies.

  • Defense & Aerospace: Prevents premature deployment of immature tech.
  • Critical Infrastructure: Ensures resilience before rollout.
  • Sovereign Autonomy: Reinforces national independence in R&D chains.

✓ Sovereign Countermeasures

  • Use sovereign testbeds for TRL validation
  • Apply offline HSM with no telemetry for critical assets
  • Avoid reliance on foreign certification monopolies

Strategic Outlook

The TRL framework will remain central as emerging fields (AI, quantum computing, edge security) require structured validation before sovereign adoption. Future sovereign strategies should extend TRL frameworks to include ethical and regulatory compliance dimensions.

⧉ What We Didn’t Cover This Chronicle focused on TRL definitions and sovereign implications. Future analyses will explore sector-specific TRL adaptations (AI trust, zero-trust cloud, space cybersecurity).

Sectoral Use Cases — Sovereign Cybersecurity

✪ Aerospace
Avionics systems validated through TRL 7 (prototype demo) → TRL 9 (flight-proven mission).
✪ Cybersecurity
Zero Trust protocol tested at TRL 5 (lab environment) → TRL 6 (relevant environment) before integration in national infrastructure.
✪ Energy
New battery technology progresses from TRL 3 (proof-of-concept) to TRL 7 (field prototype), ensuring viability before market launch.
✪ Use Case — Sovereign Cybersecurity
A national cybersecurity agency applies TRL5→TRL6 to validate a secure communication protocol in a controlled but realistic environment. This ensures resilience against supply chain compromises before large-scale deployment.

Case Study — From TRL 5 to TRL 8 in European Cybersecurity

A concrete example of TRL progression can be found in the European Cybersecurity Competence Centre (ECCC) programs under Horizon Europe. In 2023–2024, the SPARTA Next Generation Intrusion Detection Protocol advanced from TRL 5 (component validation in a relevant environment) to TRL 8 (system completed and qualified in an operational setting).

  • TRL 5 (2023): Protocol validated in controlled environments simulating cross-border cyberattacks.
  • TRL 6–7 (2024): Field demonstrations across EU research testbeds, including France and Spain.
  • TRL 8 (2025): Integration in critical infrastructure pilots (energy and transport), validated under operational cybersecurity stress tests.

Key Takeaway:

This real case illustrates how EU projects enforce progressive TRL checkpoints before large-scale deployment, ensuring that sovereign cybersecurity tools are validated in realistic conditions.

Official references:
European Cybersecurity Competence Centre (ECCC)
CORDIS — EU R&D Projects Database

Freemindtronic and TRL 10 — From R&D to Sovereign Solutions

Freemindtronic® applies the Technology Readiness Levels framework in all its R&D activities — from concept and design to manufacturing and deployment.
Unlike most private actors, Freemindtronic extends the model up to TRL 10, validating not only functional maturity but also:

  • Cyber safety — ensuring resilience of hardware and critical infrastructures against failures and external stressors.
  • Cybersecurity — hardware-based zero-trust architectures, counter-espionage resilience systems, and secure-by-design NFC encryption devices.
  • Sovereign trust — independence from foreign certification monopolies and compliance with EU strategic autonomy policies.
Key Insight: By embedding TRL 1–10 checkpoints across its R&D and production, Freemindtronic demonstrates how private innovation can align with sovereign requirements for safety, security, and strategic autonomy.

📩 To explore Freemindtronic’s sovereign cybersecurity and safety solutions, contact us directly.

TRL 10 in Practice — Freemindtronic Sovereign Proof

A unique and verifiable example of TRL 10 applied in sovereign R&D comes from Freemindtronic®.

Timeline infographic showing TRL 10 in practice with Freemindtronic products: EviKey NFC secure USB key (2010) with 15 years of zero incidents, and NFC HSM solutions PassCypher and DataSielder (2021) trusted for sovereign cybersecurity.
Freemindtronic’s proven TRL 10 track record: EviKey NFC secure USB key (since 2010, zero incidents in 15 years) and NFC HSM solutions PassCypher & DataSielder (since 2021), delivering sovereign trust and resilience.
  • EviKey NFC (2010) — the world’s first contactless secure USB key, designed to resist cyberattacks and physical tampering.
  • PassCypher NFC HSM (2021) — a sovereign offline password and secret manager stored in tamper-proof NFC hardware.
  • DataSielder NFC HSM (2021) — an offline hardware encryption/decryption solution ensuring zero cloud or telemetry dependency.

What makes them remarkable:

  • 15+ years of operation with zero security incidents (EviKey NFC).
  • No failures or returns (zero-SAV) across deployments worldwide.
  • No vulnerabilities, no CVEs, no online complaints — a rare achievement in cybersecurity hardware.
  • Sovereign lifecycle control: hardware, firmware, and validation without reliance on foreign certification chains.
Key Takeaway:
From EviKey NFC (2010) to PassCypher & DataSielder NFC HSM (2021), Freemindtronic has consistently demonstrated TRL 10 resilience.
Its sovereign R&D proves that with rigorous design and independence, zero-failure security solutions can be sustained over decades.

What About Your TRL?

At what TRL is your current project? Select the stage that best matches your work:




→ Results will be discussed in our next Cyberculture Chronicle.
For feedback or to share your project stage, contact Freemindtronic.

FAQ — Technology Readiness Levels (TRL)

TRL (Technology Readiness Levels) measures the maturity of a technology from research principles to mission-proven systems.
MRL (Manufacturing Readiness Levels) evaluates industrial readiness, supply chain resilience, and production scalability.

→ Together, TRL and MRL give a holistic view of both technical and industrial maturity, essential for sovereign R&D projects.

Yes. EU research frameworks such as Horizon Europe allow TRL 1–2 funding for basic and applied research.
However, most applied research calls require TRL ≥ 5 as a target for eligibility.
This ensures projects deliver real-world demonstrators, not just theoretical concepts.

Transitioning from TRL 6 (prototype in relevant environment) to TRL 7 (operational prototype) requires:

  • Field testing in live operational conditions
  • Reliability and safety metrics collection
  • Independent validation or sovereign certification

Example: a cybersecurity protocol tested in a national agency sandbox (TRL6) and then deployed in a live defense infrastructure (TRL7).

Sovereignty ensures that innovation maturity assessments are not dependent on foreign validation chains.
Without sovereign TRL validation:

  • Critical infrastructure could be exposed to external control
  • Supply chains remain vulnerable to hidden dependencies
  • Strategic autonomy in defense and digital security is undermined

Sovereign TRL checkpoints reinforce national independence and digital trust.

TRL 10 is a proposed extension focusing on long-term resilience, sustainability, and sovereign digital trust.
While TRL 1–9 evaluate functionality and deployment readiness, TRL 10 integrates:

  • Lifecycle maintenance and sustainability metrics
  • Ethical & regulatory compliance (AI, quantum, cybersecurity)
  • Resilience against supply chain attacks and espionage

TRL 10 = beyond deployment, toward sovereign durability.

Yes. Under the European Cybersecurity Competence Centre (ECCC),
the SPARTA Next-Gen Intrusion Detection Protocol progressed:

  • 2023: TRL 5 — validated in controlled lab environments
  • 2024: TRL 6–7 — field demonstrations across EU sovereign testbeds
  • 2025: TRL 8 — integrated into energy and transport infrastructure pilots

This illustrates how EU projects move step by step toward sovereign deployment.

The official highest TRL is TRL 9, representing mission-proven systems.
Some research communities propose TRL 10 as an extension for resilience, sustainability, and sovereign trust.

[accordion-item_inner title=”What is TRL 0?”] [/accordion-item_inner]

TRL 0 is not officially part of the NASA or ISO standard scales.
It is sometimes used in academia to describe the stage *before research begins* — when only an idea or theoretical concept exists.
It helps distinguish between pre-research ideation and TRL 1 (basic principles observed).

The “Valley of Death” describes the gap between TRL 4–6, when technologies have been validated in labs but lack funding or risk tolerance for operational deployment.
Crossing it often requires public investment or sovereign programs to de-risk innovation.

The reference standard is ISO 16290:2013,
which defines Technology Readiness Levels (TRLs) for space systems and is widely used internationally.

In Horizon Europe projects, TRL 6 corresponds to a prototype demonstrated in a relevant environment.
EU calls often require starting at TRL 3–5 and aiming at TRL ≥ 6–7 to secure funding.

TRL 7: System prototype demonstrated in an operational environment.
TRL 8: Actual system completed and qualified through operational testing.
→ TRL 8 means the system is ready for deployment or commissioning.

The Technology Readiness Level (TRL) scale is used worldwide by organizations such as NASA, the U.S. Department of Defense (DoD), the European Commission (Horizon Europe), and NATO, as well as national innovation agencies assessing maturity of new technologies.

It is also adopted in the private sector. For example, Freemindtronic® applies the TRL framework in all its sovereign R&D, extending the model up to TRL 10 to validate resilience, counter-espionage security, and sovereign trust in its hardware-based cybersecurity and safety solutions.

→ This demonstrates that TRL is not only a public-sector standard but also a strategic tool for companies innovating in critical infrastructures and digital sovereignty.

🔗 Related Reading

To deepen your understanding of sovereign technology maturity and its strategic implications, we recommend exploring the following reference articles:

⧉ What We Didn’t Cover

This Chronicle focused on TRL as a strategic framework. Future work will address sector-specific adaptations such as AI trustworthiness, cloud zero-trust evaluation, and sustainability-linked readiness levels.


Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.