image_pdfimage_print

How to Recover and Protect Your SMS on Android

Recover and protect your SMS and secure by EviCypher NFC HSM Technology by Freemindtronic from Andorra

Recover and protect your SMS hack by Jacques Gascuel: This article will be updated with any new information on the topic.  

Guard Your SMS: Protect & Recover Android Texts

SMS are one of the most common ways of communication in the digital world. They can contain important information, such as personal messages, bank details, verification codes, and more. However, Various factors such as accidental deletion, device malfunction, virus attack, or theft can cause the loss, deletion, or compromise of SMS.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

Recover and Protect Your SMS on Android: A Complete Guide

First of all, SMS are a popular communication tool on Android smartphones. They allow you to share information, emotions, memories with your loved ones or professional contacts. But what if you lose your SMS by accident or maliciously? How can you recover and protect them?

In the following sections, we will show you how to restore your permanently deleted SMS on Android with different methods, such as Google Drive backup, Samsung Messages trash or third-party apps.

Moreover, we will address the recovery of SMS that are supposed to be permanently deleted or inaccessible intentionally. Malicious people recovering these SMS can cause significant harm or even be vital. That’s why, we will show you how to secure your sensitive SMS even in case of recovery, interception or unauthorized access with EviCypher NFC HSM technology, developed by Freemindtronic, an Andorran company specialized in NFC security.

Finally, as an inventor of counter-espionage, security and cybersecurity solutions at Freemindtronic, the illicit recovery of sensitive data such as SMS often has serious consequences. We are also the first to introduce you to this innovative technology, which allows you to encrypt your SMS with your own encryption keys stored in a secure NFC device. By following this guide, you will be able to recover and protect your SMS on Android easily and effectively, while preserving your privacy, avoiding fraud and backing up your data.

Why Recover Your Deleted SMS on Android?

You may have deleted an important SMS on your Android smartphone by mistake. Or maybe you deleted an SMS on purpose, but regretted it later. Or maybe you lost your SMS because of a bug, a virus or a theft of your phone.

In all these cases, you can try to recover your deleted SMS with different methods. This can help you find useful information, precious emotions or unforgettable memories. It can also prevent problems or misunderstandings with your interlocutors.

However, these methods are not guaranteed to work and may have some drawbacks. For example, some of them may require you to reset your phone to factory settings, which erases all your data. Others may require root access to your phone, which voids your warranty and exposes your phone to security risks.

Below, here are some of the methods you can use to recover your permanently deleted SMS on Android.

Method 1: Recover Deleted SMS from Google Drive Backup

One of the simplest methods to recover permanently deleted SMS on an Android smartphone is to restore them from a Google Drive backup. Google Drive is an online storage service that lets you backup your data, including your messages, contacts, photos and more.

To use this method, you must have enabled Google Drive backup on your phone before deleting your messages. You must also have a backup that contains the messages you want to recover. Finally, you must reset your phone to factory settings and restore it from the backup.

Here are the steps to follow:

  • Backup all the important files on your phone that are not in the Google Drive backup.
  • Go to Settings > System > Reset options > Erase all data (factory reset).
  • Follow the instructions on the screen to complete the reset process.
  • When your phone restarts, sign in with the Google account you used to make the backup.
  • Choose to restore your phone from the Google Drive backup that contains your messages.
  • Wait for the restoration to finish and check if your messages are back.

Method 2: Recover Deleted SMS from Samsung Messages Trash

If you have a Samsung smartphone and use the default Samsung Messages app, you may be able to recover deleted SMS from the trash. This is a feature that stores your deleted messages for 30 days before erasing them permanently.

To use this method, you must have enabled the Trash option in the Samsung Messages settings before deleting your messages. You must also act quickly, as the messages will be erased after 30 days.

Here are the steps to follow:

  • Open the Samsung Messages app and tap on the three-dot menu icon in the top right corner of the screen.
  • Tap on Settings > Trash.
  • Select the conversation that contains the messages you want to recover.
  • Tap on Restore and confirm your choice.
  • Check if your messages are back in the conversation.

Method 3: Recover Deleted SMS with Third-Party Apps

If none of the above methods work for you, you may still have a chance to recover deleted SMS with third-party apps. These are apps that scan the memory of your phone and try to find and restore all the deleted data, including messages.

However, these apps are not guaranteed to work and may have some drawbacks. For example, some of them may require root access to your phone, which can void your warranty and expose your phone to security risks. Some of them may also charge you fees or display ads. Moreover, some of them may not be compatible with your phone model or Android version.

Therefore, before using a third-party app, make sure to read carefully its reviews, ratings, features, permissions and terms of use. Also backup all the important data on your phone before using an app that can modify or erase them.

Some of the popular third-party apps to recover deleted SMS on Android are:

  • FoneDog Android Data Recovery: This app claims to recover deleted text messages on Android without root. It also supports the recovery of other types of data, like contacts, photos, videos, WhatsApp messages, etc. It offers a free trial version and a paid version.
  • Dr.Fone – Data Recovery (Android): This app claims to be the world’s first Android data recovery software. It supports the recovery of various types of data on Android devices with or without root. It also offers other features, like backup and restore, screen unlock, system repair, etc. It offers a free trial version and a paid version.
  • SMS Backup & Restore: This app is not a recovery app per se, but a backup and restore app. It lets you backup your SMS and call logs on your phone, Google Drive, Dropbox or email. It also lets you restore them on your phone or another phone. It is a free app with ads and in-app purchases.

Statistics on Data Leaks by SMS or RCS

SMS and RCS are widely used communication channels, both for personal and professional exchanges. However, they are not immune to data leaks, which can have serious consequences for users and businesses. To illustrate these risks, here are some statistics:

  • A study by Thales found that 45% of businesses suffered a data breach or failed an audit involving data and applications in the cloud in 2021, up from 35% in 2020.
  • Employee errors were the biggest threat to sensitive or confidential data within their organizations in 2021, according to 47% of respondents in a study by Varonis. This means that employees can delete or send by mistake SMS containing sensitive or confidential data to unauthorized recipients.
  • Infobip reported that 60% of consumers read their SMS within 5 minutes of receiving them. This means that an SMS sent by mistake or intercepted by a third party can be read very quickly and cause harm to its recipient.
  • CM.com revealed that 75% of consumers use SMS to communicate with businesses. This implies that SMS often contain personal or professional information that can be exploited by hackers or competitors.
  • Juniper Research expects the number of RCS messages sent per year to reach 1.9 trillion in 2023. This represents an opportunity for businesses to offer enriched experiences to their customers, but also a challenge to protect these messages from data leaks.

These statistics show that SMS and RCS are popular but vulnerable communication vectors. It is therefore essential to protect your messages from malicious recovery attempts, using a technology like EviCypher NFC HSM. By following this guide, you will learn how to recover and protect your SMS on Android with EviCypher NFC HSM technology.

Real examples of data leaks by SMS or RCS

To illustrate the potentially serious consequences of a data leak by SMS or RCS, here are some real examples from the news. These examples show how important it is to recover and protect your SMS on Android devices. You never know who might try to access your messages and what they might do with them.

  • In 2018, Uber’s CEO, Dara Khosrowshahi, accidentally sent an SMS to a Wall Street Journal reporter instead of a board member. The SMS contained confidential information about Uber’s strategy in Asia and its relationship with SoftBank. The reporter published the SMS in his article, which caused embarrassment and a loss of credibility for Uber. If Uber had used EviCypher NFC HSM technology to recover and encrypt their SMS, they could have avoided this situation.
  • In 2019, François de Rugy, the French Minister of Ecological and Solidarity Transition, was forced to resign after the revelation of his lavish expenses. Among the evidence that incriminated the minister, there were SMS that he had sent to his wife and that were recovered by the magazine Mediapart. The SMS showed that the minister boasted of having organized lavish dinners at the taxpayer’s expense.
  • In 2020, US President Donald Trump was accused of pressuring Ukrainian President Volodymyr Zelensky to investigate his political rival Joe Biden. One of the key pieces of evidence in the impeachment case was an SMS sent by Gordon Sondland, the US ambassador to the European Union, to Bill Taylor, the US chargé d’affaires in Ukraine. The SMS said: “The president has been clear: no quid pro quo of any kind”. This SMS was interpreted as an attempt to conceal the blackmail exerted by Trump on Zelensky.
  • In 2021, the Indian government was accused of spying on journalists, activists and political opponents with the Pegasus spyware. This software allowed infiltrating smartphones and accessing messages, calls, photos and location of the targets. To infect smartphones, the software sent SMS or missed calls containing a malicious link to infiltrate smartphones. Several victims claimed to have received suspicious SMS before their phones were hacked.
  • In 2021, Orange, the French telecommunications group, was victim of a cyberattack that exposed the personal data of 15 million customers. The hackers exploited a flaw in Orange’s platform for sending promotional SMS, which contained information such as names, first names, dates of birth, phone numbers and email addresses of customers. Orange said it had fixed the flaw and filed a complaint against the perpetrators of the attack.
  • In 2021, Signal, the secure messaging service, revealed that Cellebrite, an Israeli company specialized in extracting data from smartphones, was able to decrypt SMS and RCS messages stored on Android devices. Cellebrite sells its tools to law enforcement and government agencies around the world, which poses risks for users’ privacy and security. Signal claimed to have found several flaws in Cellebrite’s software, which would allow compromising its data and analysis.
  • In 2021, WeChat, the Chinese social network, was accused of collecting and sharing user data with the Chinese government. Among the data collected, there were SMS and RCS messages sent and received by users on their Android smartphones. WeChat denied these accusations, but several countries such as India, the United States or Australia have banned or restricted the use of the app for national security reasons.

These examples show how important it is to recover and protect your SMS on Android devices. You never know who might try to access your messages and what they might do with them. That’s why we recommend using EviCypher NFC HSM technology to encrypt your SMS with your own encryption keys stored in a secure NFC device. This way, you can prevent any unauthorized access or interception of your sensitive messages. By following this guide, you will be able to recover and protect your SMS on Android easily and effectively.

How to recover and protect your calls, SMS, MMS and RCS on Android

You may wonder if someone can intercept and listen to your calls, SMS, MMS and RCS on your Android device. The answer is yes, it is possible, but it requires some skills and tools that are not easily accessible to the average user. However, you should be aware of the risks and the methods that hackers, companies or governments can use to spy on your communications. In this section, we will show you how to recover and protect your calls, SMS, MMS and RCS on Android with EviCypher NFC HSM technology.

An IMSI-catcher can capture your signals

An IMSI-catcher is a device that pretends to be a cell tower and captures the signals of nearby phones. It can collect information such as phone numbers, locations, contacts and messages of the targeted phones. It can also redirect or block calls, SMS, MMS and RCS, or modify their content. An IMSI-catcher can be small or large, hidden in a car or a backpack, or cover a wider area.

A data extraction tool can access your memory

A data extraction tool is a software or a hardware tool that can extract data from smartphones, such as Cellebrite, XRY or GrayKey. These tools can connect to a phone via USB or Bluetooth and access its memory, where calls, SMS, MMS and RCS are stored. They can also bypass the phone’s encryption or password protection, and recover deleted data. Law enforcement and government agencies often use these tools, but they can also fall into the wrong hands.

A spy app or a malware can monitor your activities

A spy app or a malware is a program that can be installed on a phone remotely or physically. It can run in the background and monitor all the activities of the phone, including calls, SMS, MMS and RCS. It can also record audio, take screenshots, track location and send all the data to a remote server or an email address. Some examples of spy apps or malware are mSpy, FlexiSPY, Pegasus or NSO Group.

EviCypher NFC HSM technology can encrypt your messages

These are some of the ways that someone can intercept and listen to your calls, SMS, MMS and RCS on your Android device. They are not easy to detect or prevent, but you can take some measures to protect yourself. For example, you can use encrypted apps like Signal or WhatsApp for your communications, avoid clicking on suspicious links or attachments in your messages, update your phone’s software regularly and use a strong password or biometric authentication for your phone. You can also use EviCypher NFC HSM technology to recover and protect your calls, SMS, MMS and RCS on Android with your own encryption keys stored in a secure NFC device. This way, you can prevent any unauthorized access or interception of your sensitive messages.

Why Protect Your Sensitive SMS with EviCypher NFC HSM?

You may have SMS that have a sensitive nature on your Android smartphone. They may be personal, professional or confidential messages that you do not want anyone else to read. But did you know that these messages can be recovered by malicious people who want to spy on your privacy, steal your personal or professional information, or blackmail you?

Indeed, there are data recovery methods that allow you to scan the memory of your phone and find and restore all the deleted data, including messages. These methods can be used by malicious people who have access to your phone or your Google Drive backup.

That is why it is important to protect your sensitive SMS with EviCypher NFC HSM, a technology that allows you to encrypt your messages with your own encryption keys. Thus, even if someone succeeds in recovering your deleted messages, they will not be able to read them without having access to your keys.

How Does EviCypher NFC HSM Work?

EviCypher NFC HSM is based on EviCore NFC HSM, which is a hardware security module that combines hardware encryption and NFC communication protocols to protect your keys and secrets. EviCypher NFC HSM allows you to store, manage, share and use encryption keys for various web services, such as email, online storage, cryptocurrency wallets, etc. It also allows you to encrypt and decrypt your SMS with your own keys.

EviCypher NFC HSM works with any Android smartphone with NFC capability. You can use different types of NFC devices, such as cards, stickers, keychains, etc. These devices are battery-free and powered by the NFC signal from your phone.

To use EviCypher NFC HSM to encrypt your SMS, you need to install the Freemindtronic (FMT) app on your phone and pair it with the NFC device that contains your encryption keys. Then, you can use the app to encrypt and decrypt your SMS with a simple gesture.

Here are the steps to follow:

  • Download and install the FMT app from the Google Play Store or the Apple App Store.
  • Launch the app and follow the instructions to create your account and set up your security settings.
  • Tap on the NFC icon in the app and select the option to pair a new NFC device.
  • Bring your phone close to the NFC device that contains your encryption keys. The app will detect the device and ask you to confirm the pairing.
  • Once the pairing is done, you can see your encryption keys in the app. You can also create, import or export new keys if you want.
  • To encrypt an SMS, open the FMT app and tap on the SMS icon. Select the contact you want to send an encrypted SMS to. Type your message and tap on the lock icon. The app will ask you to bring your phone close to the NFC device to encrypt your message with your key. Then, tap on the send icon to send your encrypted SMS.
  • To decrypt an SMS, open the FMT app and tap on the SMS icon. Select the contact you received an encrypted SMS from. Tap on the encrypted message and tap on the unlock icon. The app will ask you to bring your phone close to the NFC device to decrypt your message with your key. Then, you can read your decrypted SMS.

Click [here] to learn how EviCypher NFC HSM technology works.
Then click [here] to learn more about EviCypher NFC HSM technology.

What Are the Benefits of EviCypher NFC HSM?

Using EviCypher NFC HSM offers several benefits to protect your SMS:

  • It is easy to use and contactless. You do not need to type or remember passwords or codes. You just need to bring your phone close to the NFC device.
  • It is secure and anonymous. Your encryption keys are never stored or transmitted online. They are only stored in the NFC device and used in the volatile memory of your phone. No one can access or trace them without having physical access to the device.
  • It is flexible and versatile. You can use different encryption keys for different purposes and share them with other people securely. You can also use EviCypher NFC HSM for other web services besides SMS.

In conclusion

In this article, you have learned how to recover and protect your SMS on Android. You have discovered different methods to restore your messages erased by mistake or maliciously, as well as the risks and limitations of these methods. You have also understood how to secure your sensitive messages with EviCypher NFC HSM, an innovative technology that allows you to encrypt your messages with your own encryption keys. Finally, you have learned some statistics and examples that show the importance of protecting your personal or professional data from data leaks by SMS or RCS.

We hope this article has helped you to recover and protect your SMS on Android with ease. By using EviCypher NFC HSM technology, you can recover and encrypt your SMS with your own encryption keys stored in a secure NFC device. This way, you can prevent any unauthorized access or interception of your sensitive messages. If you have any questions or feedback, please feel free to contact us

 

Coinbase blockchain hack: How It Happened and How to Avoid It

Coinbase Blockchain Hack 2023 How it happened and how to avoid it

Coinbase blockchain hack by Jacques Gascuel: This article will be updated with any new information on the topic.  

The Crypto Nightmare

Imagine waking up one day and finding out that your hard-earned cryptocurrencies have been stolen by hackers who exploited a flaw in the blockchain platform you trusted. That’s what happened to thousands of users of Coinbase, one of the largest and most popular crypto platforms in the world, in August 2023. In this article, we will explain how this hack occurred, what were its consequences.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

How to Prevent Coinbase Blockchain Hack with EviVault NFC HSM Technology

What happened to Coinbase Chain?

The hack and its consequences

On August 5, 2023, Coinbase announced that it had been the victim of a massive hack that compromised its decentralized blockchain, resulting in the loss of more than $200 million worth of cryptocurrencies. The hackers exploited a flaw in the consensus protocol of the chain, which used a proof-of-stake (PoS) mechanism. By creating fake proofs of stake, the hackers controlled more than 51% of the computing power of the network. This allowed them to alter the transaction history and steal the funds from the users.

This hack is one of the largest and most sophisticated in the history of cryptocurrencies. It exposes the risks and challenges associated with the security of decentralized blockchains, which rely on the trust of the users and the verification of the transactions by the nodes of the network. Some experts say the hack of Coinbase Chain could damage the reputation and credibility of Coinbase, as well as the confidence of the investors and regulators in cryptocurrencies in general.

The response and the apology

Coinbase reacted quickly and took steps to stop the hack, identify the culprits, reimburse the victims and improve the security of its blockchain. Coinbase promised to reimburse all the users affected by the hack within 30 days and to strengthen the security of its decentralized blockchain. The company also apologized to its customers and to the crypto community for this incident.

Coinbase also announced that it would launch a bug bounty program to reward anyone who finds and reports vulnerabilities in its systems or products. The company said that it would pay up to $1 million for critical bugs that could compromise its platform or users’ funds. Coinbase also encouraged its users to enable two-factor authentication (2FA) and use hardware wallets or cold storage devices to protect their cryptocurrencies.

What is proof-of-stake (PoS) and how was it hacked?

The concept of PoS

Proof-of-stake (PoS) is a type of consensus mechanism or protocol that uses the amount of stake (or value) held in the system to determine consensus. In essence, a consensus protocol is what controls the laws and parameters governing the behavior of blockchains. Think of consensus as a ruleset that each network participant adheres to.

In PoS, the nodes of the network commit “stakes” of tokens for a set period of time in exchange for a chance at being selected to produce the next block of transactions. The selection process is usually random, but weighted by the size of the stake. The more tokens a node stakes, the higher its probability of being chosen as a block producer. The block producer then validates the transactions and broadcasts them to the rest of the network. The other nodes check the validity of the block and vote on whether to accept it or not. If a majority of nodes agree on the block, it is added to the blockchain and the block producer receives a reward in the form of transaction fees or newly minted tokens.

The advantages of PoS

PoS is designed to be more secure, efficient, and scalable than proof-of-work (PoW), which is another type of consensus mechanism that requires nodes to solve complex mathematical problems to produce blocks. PoW consumes a lot of energy and computing power, which makes it vulnerable to attacks and environmental issues. PoS, on the other hand, relies on economic incentives rather than computational resources, which makes it more eco-friendly and resistant to attacks.

The vulnerability of PoS

However, PoS is not immune to hacking, as demonstrated by the recent incident involving Coinbase Chain, a decentralized blockchain project launched by Coinbase, one of the largest and most popular cryptocurrency platforms in the world. According to a report published by Coinbase, hackers exploited a flaw in the consensus protocol of Coinbase Chain, which used a PoS mechanism. By creating fake proofs of stake, they controlled more than 51% of the computing power of the network. This allowed them to alter the transaction history and steal funds from users.

The flaw in Coinbase Chain’s consensus protocol was related to how it handled forks, which are splits in the blockchain caused by conflicting versions of blocks. Normally, when a fork occurs, the network follows the longest chain, which is assumed to be the most valid one. However, in Coinbase Chain’s case, the hackers created a longer chain by generating fake proofs of stake and tricking the network into accepting their version of blocks. This way, they reversed or modified previous transactions and double-spent their coins.

This hack shows that PoS is not foolproof and that it requires careful design and implementation to ensure its security and reliability. It also highlights the importance of using trusted and tested platforms and protocols for building decentralized applications and smart contracts on blockchains.

What are the statistics of crypto hacks?

The trends: DeFi frauds rise while overall crime drops

Coinbase blockchain hack is not an isolated case. Crypto hacks have been happening since the inception of cryptocurrencies, and they have caused significant losses for investors, traders, and platforms. According to a report by CipherTrace, a blockchain analytics firm, crypto-related crime dropped by 57% in 2020 compared to 2019, but still amounted to $1.9 billion in losses.

However, while overall crime decreased, one sector saw a surge in frauds: decentralized finance (DeFi). DeFi is a term that refers to various financial applications that run on blockchains without intermediaries or central authorities. DeFi platforms offer services such as lending, borrowing, trading, investing, and staking cryptocurrencies. DeFi has grown rapidly in popularity and value in recent years, reaching over $100 billion in total value locked (TVL) as of August 2021.

However, DeFi also poses significant risks and challenges for users and regulators. DeFi platforms are often unregulated, unaudited, and vulnerable to hacking, exploitation, or manipulation. According to CipherTrace, DeFi-related hacks accounted for 45% of all crypto thefts in 2020, totaling $129 million. In 2021, this trend has continued, with DeFi hacks reaching $361 million in the first half of the year. Some of the most common types of DeFi hacks are:

  • Flash loan attacks: A flash loan is a type of loan that allows users to borrow large amounts of crypto without collateral for a very short period of time (usually one transaction). Hackers can use flash loans to manipulate prices or liquidity on DeFi platforms and profit from arbitrage or liquidation opportunities.
  • Reentrancy attacks: A reentrancy attack is a type of attack that exploits a vulnerability in a smart contract that allows an attacker to repeatedly call a function before it finishes executing. This can result in multiple withdrawals or transfers of funds from the contract without proper checks or balances.
  • Oracle attacks: An oracle is a service that provides external data to smart contracts on blockchains. For example, an oracle can provide price information for different assets or currencies. Hackers can manipulate or compromise oracles to feed false or inaccurate data to smart contracts and cause them to execute malicious actions or transactions.

The examples: some of the biggest crypto hacks in history

Coinbase blockchain hack is one of the largest and most sophisticated crypto hacks in history, but it is not the only one. Here are some other examples of notorious crypto hacks that have occurred over the years:

The following table shows some of the biggest crypto hacks in history, based on the amount stolen and the date of occurrence:

Platform Date Amount stolen Type of hack
Mt.Gox 2014 850,000 Bitcoins ($450 million) Unknown
DAO 2016 3.6 million Ether ($60 million) Reentrancy attack
Bitfinex 2016 120,000 Bitcoins ($72 million) Security breach
Coincheck 2018 523 million NEM ($530 million) Security breach
Binance 2019 7,000 Bitcoins ($40 million) Security breach
KuCoin 2020 $281 million Security breach
Poly Network 2021 $610 million Exploit

The latest news on the Coinbase blockchain hack

Since the announcement of the hack, there have been some developments and updates on the situation. Here are some of the latest news on the Coinbase blockchain hack:

  • Hackers return some of the stolen funds: Hours after the hack, the attackers started returning some of the funds – first in small amounts and then in millions. They started sending back small transfers totalling a few dollars to the online wallets controlled by Poly – but then began making much larger deposits, totalling hundreds of millions. The reason for this is unclear, but some speculate that it could be due to pressure from law enforcement, remorse, or fear of being tracked.
  • Coinbase identifies the perpetrators: Coinbase claimed that it had identified the perpetrators of the hack, whom it called “brigands” and that it intended to sue them. The company did not disclose their identities or locations, but said that it was working with authorities to bring them to justice. Coinbase also said that it had evidence that the hackers were not affiliated with any state or organization.
  • Coinbase launches a bug bounty program: Coinbase announced that it would launch a bug bounty program to reward anyone who finds and reports vulnerabilities in its systems or products. The company said that it would pay up to $1 million for critical bugs that could compromise its platform or users’ funds. Coinbase also encouraged its users to enable two-factor authentication (2FA) and use hardware wallets or cold storage devices to protect their cryptocurrencies.

These are some of the latest news on the Coinbase blockchain hack. We will keep you updated on any further developments as they happen.

How could this hack have been prevented?

The solution: EviVault NFC HSM

One of the possible ways to prevent this type of hack is to use a technology developed by Freemindtronic, an Andorran company specialized in NFC security solutions. This technology is called EviVault NFC HSM, and it allows for physical offline secure storage of blockchain private keys, cryptocurrencies, wallets, Bitcoin, Ethereum, NFTs, Smart Contracts.

EviVault NFC HSM uses NFC (Near Field Communication) technology to communicate with an Android smartphone and allows access to cryptographic assets with a simple gesture. EviVault NFC HSM is protected by two patents by Jacques Gascuel: wireless access control and segmented key authentication. It integrates EviCore HFC HSM technology developed by Freemindtronic and compatible with EviCore HSM technology.

EviVault NFC HSM comes in different shapes and formats, such as EviTag NFC keychain, EviCard PVC or PCB card, EviPins or EviCard 2 Gen card with two NFC chips on PCB. The latter can store up to 200 blockchain private keys with automatic public address generator. It supports all private keys and derived blockchain keys. And it allows managing with public addresses Bitcoin BTC Ethereum Cash ECASH Namecoin NMC Bitcoin cash BCH Ethereum Classic ETC ReddCoin RDD Bitcoin Gold BTG Ethereum Gold ETG Ripple XRP Dash DASH Ethereum lite ELITE Solar Coin SLR Digibyte DGB Feather Coin FTC Stellar XLM Dogecoin DOGE IOTA Verge XVG Ethereum ETH Litecoin LTC TRON TRX Cardano ADA Polkadot DOT Binance Coin BNB.

EviVault NFC HSM is the ultimate solution to protect all cryptographic asset keys from hackers, theft or loss. Its private keys are stored in EviVault’s EPROM memory, encrypted by an AES 256-bit algorithm. EviVault NFC HSM also benefits from a patented contactless access control system that allows defining two distinct access profiles: administrator and users, without allowing them to access each other’s secrets without their authorization. EviVault NFC HSM also has a patented segmented key authentication system that allows defining up to 9 trust criteria for encrypting its secrets, such as geolocation, BSSID, password or fingerprint.

By using EviVault NFC HSM technology, coinbase users could have secured their funds by storing them in an offline NFC device that offers a high level of protection and encryption for their keys and secrets. They could have avoided the risk of hacking, theft or loss of their cryptocurrencies, and have full control over their digital assets without depending on a centralized platform. They could also enjoy ease of use and speed of transaction thanks to NFC technology, which allows communicating with their Android smartphone and accessing their cryptographic assets with a simple gesture. EviVault NFC HSM is therefore a revolutionary technology for the security of coinbase and cryptocurrencies in general.

Click [here] for more information on EviVault NFC HSM Technology
Click [here] for more information on EviCore NFC HSM Technology

The alternative: EviSeed NFC HSM

Another technology that can provide security against this hacking of Coinbase is EviSeed NFC HSM, also developed by Freemindtronic. EviSeed NFC HSM is a technology that lets you store your crypto seed phrase in a simple, efficient and durable way. A seed phrase is a sequence of words, usually 12 or 24, that serves as a recovery key for your crypto wallet. If you lose your seed phrase, you lose access to your funds. If someone steals it, they can access your wallet and divert your funds.

EviSeed uses the standards of the BIP (Bitcoin Improvement Proposal) formats, especially the BIP39, to generate, enter or scan seed phrases without error thanks to a checksum control. EviSeed allows you to back up your seed phrases encrypted with your own encryption keys that can be segmented according to an implementation of the invention patent on segmented key authentication. You can use any type of fixed or removable media to store your seed phrases, including Freemindtronic’s NFC HSM devices, which are contactless hardware security modules. EviSeed also generates a QR code containing your encrypted seed phrase, which you can print, share, send or save between NFC HSMs by scanning the QR code encrypted in RSA 4096.

EviSeed offers you several advantages over traditional methods of storing seed phrases, such as paper, metal or digital media. EviSeed is simple: you don’t need to write or engrave your seed phrase, just scan it with the EviSeed app and transfer it to the media of your choice. EviSeed is efficient: you don’t need to memorize or type your seed phrase, just scan it with your smartphone to restore your wallet. EviSeed is durable: the media you choose to store your seed phrase can be resistant to water, fire, shocks and scratches. It does not deteriorate over time.

By using EviSeed NFC HSM technology, coinbase users could have backed up their seed phrases securely and conveniently. They could have restored their wallets easily in case of loss or theft of their devices. They could have also protected their seed phrases from physical or digital attacks thanks to the encryption and segmentation features of EviSeed.

Click [here] for more information on EviSeed NFC HSM

In conclusion

The hack of Coinbase’s decentralized blockchain was a major event that exposed the vulnerabilities and challenges of decentralized platforms. The hackers exploited a flaw in the proof-of-stake consensus protocol of Coinbase Chain and stole more than $200 million worth of cryptocurrencies from the users. Coinbase reacted quickly and took steps to stop the hack, identify the culprits, reimburse the victims and improve the security of its blockchain.

However, this hack could have been prevented by using EviVault NFC HSM technology, which allows for physical offline secure storage of blockchain private keys and cryptocurrencies. EviVault NFC HSM is a patented technology developed by Freemindtronic that offers a high level of protection and encryption for cryptographic asset keys, as well as ease of use and speed of transaction thanks to NFC technology.

This article shows that proof-of-stake is not foolproof and that it requires careful design and implementation to ensure its security and reliability. It also highlights the importance of using trusted and tested platforms and protocols for building decentralized applications and smart contracts on blockchains. Moreover, it demonstrates that EviVault NFC HSM is a revolutionary technology for the security of coinbase and cryptocurrencies in general.

Therefore, we recommend that coinbase users adopt EviVault NFC HSM technology to protect their funds from hacking, theft or loss. We also suggest that coinbase developers review their consensus protocols and implement best practices to prevent future attacks. Finally, we urge coinbase regulators and policymakers to establish clear standards and guidelines for ensuring the safety and integrity of decentralized platforms.

Protect yourself from Pegasus spyware with EviCypher NFC HSM

Protect yourself from Pegasus Spyware with EviCypher NFC HSM and EviCore NFC HSM by Freemindtronic technology from Andorra

Pegasus Spyware Protection by Jacques Gascuel: This article will be updated with any new information on the topic.  

Pegasus spyware protection

Pegasus is a spyware that can hack your phone and spy on your confidential information. It has been used to attack sensitive people like journalists or politicians. Freemindtronic, an Andorran company specialized in NFC security, anti-spy and counter-espionage, offers you EviCypher NFC HSM, a device that allows you to store and manage your keys and secrets securely. With EviCypher NFC HSM, you can encrypt and decrypt your data, sign and verify your documents, authenticate and control your access, without fear of Pegasus or any other spyware accessing your data.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

How to protect yourself from Pegasus spyware with EviCypher NFC HSM

Pegasus Spyware: what it is, how it works, and how to protect yourself with EviCypher NFC HSM. In this article, we will tell you about Pegasus spyware. A global investigation revealed its misuse by governments and intelligence agencies. They target and spy on personalities around the world. We will explain what Pegasus is, how it works, who developed and sold it, and how it violated human rights, free speech, and democracy. We will also give you tips to protect yourself from this malware with EviCypher NFC HSM technology. It uses a contactless hardware security module (NFC HSM). That is, an innovative security device that lets you encrypt your data and communications on your mobile phone with your own keys that you created and stored offline.

What is Pegasus spyware and how does it work?

The features and capabilities of Pegasus spyware

Pegasus spyware is a malware that can hack your phone and access your data, calls, location, camera, and microphone. It can use security flaws in Android and iOS: silent installation. Spyware activation: missed call or hidden message.

Once installed on a phone, Pegasus spyware gains full access to SMS messages, emails, photos, contacts, calendar, GPS data, logs, and any apps and data the phone contains. In fact, the spyware can even gain access to encrypted data and messages by intercepting them prior to the encryption process. Pegasus spyware can transmit all this information to a remote server controlled by the attacker. Pegasus spyware can also self-destruct or hide its traces if it detects any attempt to detect or remove it.

The developer and seller of Pegasus spyware

NSO Group, an Israeli company founded in 2010 by ex-members of Unit 8200, develops Pegasus spyware. The Israeli military’s cyber intelligence unit. NSO Group sells its product only to government and law enforcement agencies: rescue and crime-fighting purposes. However, accusations against NSO Group: spyware sales to authoritarian regimes and human rights abusers.

How Pegasus spyware has been used to target and spy on people around the world

The Pegasus Project: a global investigation into Pegasus spyware

July 2021: seventeen media outlets exposed Pegasus spying on leaders, activists, journalists and dissidents, leading to “global human rights violations.

The Pegasus Project was led by Forbidden Stories, a Paris-based nonprofit journalism organization, and Amnesty International’s Security Lab, which analyzed the phones of the victims. They revealed that NSO Group’s clients selected over 50,000 phone numbers for surveillance since 2016.

The high-profile targets of Pegasus spyware

NSO Group’s clients selected phone numbers of three presidents (Macron, Ramaphosa and Salih), 10 prime ministers (Khan, Madbouly, El Othmani, Modi, Orbán, bin Daghr, Hariri, Bedoui, Sagintayev and Michel) and one king (Mohammed VI).

The investigation also found at least 180 journalists from 20 countries targeted by Pegasus spyware. They included reporters from CNN , NYT , WSJ , Guardian , Al Jazeera , Le Monde , FT , WP , Reuters , Bloomberg , AP.

Furthermore , the investigation showed evidence of Pegasus spyware infections or attempts on at least 37 phones of journalists , activists , and executives from 10 countries. They were from India , Mexico , France , Morocco , Hungary , Azerbaijan , Bahrain , Saudi Arabia , UAE , and Rwanda.

Some of the other countries and people that have been reportedly targeted by Pegasus spyware are:

  • Azerbaijan: to spy on opposition politicians such as Ali Karimli and journalists such as Khadija Ismayilova in 2019
  • Bahrain: to spy on activists such as Nabeel Rajab and Moosa Abd-Ali Ali in 2020
  • Hungary: to spy on journalists such as Szabolcs Panyi and politicians such as Bernadett Szél in 2019
  • Kazakhstan: to spy on journalists such as Aigul Utepova and activists such as Serikzhan Bilash in 2020
  • UAE: to spy on Princess Latifa, the daughter of Dubai’s ruler who tried to escape in 2018
  • USA: to spy on Jeff Bezos, the founder and CEO of Amazon, who had his phone hacked by Pegasus spyware in 2018 after he received a WhatsApp message from Mohammed bin Salman, the crown prince of Saudi Arabia

These cases show that Pegasus spyware has been used to violate human rights, free speech, and democracy around the world. The victims of Pegasus spyware have faced harassment, intimidation, arrest, torture, or assassination because of their work or opinions.

The latest news on Pegasus and its consequences

Since we published our article, there have been several important developments regarding Pegasus and its impact on the security and privacy of mobile phone users. Here is a summary of the latest news on Pegasus, sorted by descending chronological order:

Algeria launches an investigation into allegations related to Pegasus spyware

On July 21, 2023, Hindustan Times reported that Algeria had launched an investigation into allegations related to Pegasus spyware. The Algerian attorney general announced that he would open an investigation into the allegations that Pegasus spyware had been used to spy on Algerian personalities, including President Abdelmadjid Tebboune and Army Chief of Staff Saïd Chengriha. According to an investigation conducted by the Forbidden Stories consortium and Amnesty International, and published by several international media outlets, Algeria was among the 50 countries whose phone numbers had been selected as potential targets by NSO Group’s clients, who are mainly governments and intelligence agencies. The investigation revealed that more than 600 Algerian personalities had been targeted by Pegasus between 2017 and 2021, including ministers, diplomats, journalists, activists, political opponents and civil society members. The investigation also suggested that Morocco was the main user of Pegasus in North Africa, and that it had spied on its Algerian neighbors for geopolitical and security reasons. The Algerian attorney general said that he would conduct a “thorough and serious” investigation into this matter, and that he would cooperate with the judicial authorities of the countries concerned. He also said that Algeria condemned “firmly” any violation of its national sovereignty and the privacy of its citizens.

This case shows that Pegasus poses a threat to the sovereignty and security of African countries, which are often victims of foreign interference. It also shows that Algeria takes seriously the protection of its citizens from illegal spying. We applaud the initiative of the Algerian attorney general to open an investigation on this subject.

The Spanish investigation into Pegasus spyware is closed due to “total lack of cooperation” from Israel

On July 10, 2023, The Times of Israel revealed that the Spanish investigation into Pegasus spyware had been closed due to “total lack of cooperation” from Israel. A Spanish judge was investigating the alleged hacking of phones of Spanish ministers with Pegasus spyware, made by the Israeli company NSO Group. The judge had asked four times the Israeli government to provide him with information on the software and to allow him to interrogate NSO Group’s CEO, but he never received a response. The judge therefore decided to close provisionally the case, citing the “total lack of cooperation” from Israel, which prevented the investigation from progressing. The judge indicated that the only possible recourse was diplomatic pressure, to urge Israel to respect its obligations under international treaties.

This case shows that Pegasus raises a legal and ethical problem, which requires international cooperation to enforce law and justice. It also shows that Israel displays a lack of transparency and accountability on its activities related to Pegasus spyware. We regret Israel’s attitude, which hinders the Spanish investigation and which does not respect its international commitments.

The FBI used Pegasus spyware to spy on iPhones, in violation of the US ban

On August 1st, 2023, Mac4Ever revealed that the FBI had used Pegasus spyware to spy on iPhones, in violation of the ban imposed by the US government in November 2021. According to the information published by The New York Times and The Guardian, the FBI had acquired Pegasus spyware in 2019, under Trump’s administration, for 9 million dollars. The bureau had tried to access data from some iPhones, including those of US officials in Uganda, without their consent or knowledge. The FBI had also used another product from NSO Group, Landmark, which allows locating phones through flaws in cellular networks. This product had been used by a subcontractor of the FBI to track drug traffickers in Mexico, without informing the FBI of the origin of the product. The FBI had terminated the contract with the subcontractor and opened an internal investigation into this matter.

This case shows that Pegasus represents a danger for the privacy and human rights of mobile phone users, including in the US. It also shows that the FBI acted in contradiction with US foreign policy and national security, which placed NSO Group on a blacklist in November 2021. It finally shows that the FBI was deceived by a subcontractor who provided it with an illegal and insecure product. We denounce the use of Pegasus spyware by the FBI and we demand an independent investigation into this case.

By summarizing the latest news on Pegasus and its consequences, we show that the threat is still present and that it is urgent to protect yourself from this spyware with Evicypher NFC HSM.

How to detect and remove Pegasus spyware?

Pegasus is a malicious software that can hack your phone and access your data, calls, location, camera and microphone. It can use security flaws in Android and iOS to install silently and activate by a missed call or a hidden message.

If you suspect that you have Pegasus spyware on your phone, you can use a tool called MVT (Mobile Verification Toolkit) to scan your phone and check for traces of infection. MVT is a free tool developed by Amnesty International’s Security Lab. It works for both iOS and Android phones, but it requires some technical skills and a computer to run it.

To use MVT, you need to follow these steps:

  • Back up your phone to a computer using iTunes (for iOS) or ADB (for Android)
  • Download and install MVT on your computer using Python
  • Download the Indicators of Compromise (IOC) file from Amnesty International’s GitHub repository
  • Run MVT on your computer and point it to the backup of your phone and the IOC file
  • Read the analysis report and look for signs of infection
  • If MVT finds evidence of Pegasus spyware on your phone, you should take immediate action to remove it and protect yourself. Here are some recommendations:
    • Erase your phone and restore it to factory settings
    • Change all your passwords and enable two-factor authentication
    • Contact a trusted expert or organization for further assistance
    • Report the incident to the authorities or the media

You can find more detailed instructions on how to use MVT and what to do if you are infected on Amnesty International’s website or on The Verge’s guide. You can also use iMazing’s spyware detection tool for iOS devices, which is easier to use than MVT but less comprehensive.

Pegasus is a serious threat to your privacy and security. You should be aware of the risks and take precautions to protect yourself. EviCypher NFC HSM is a powerful solution that can help you encrypt your data and your communications on your mobile phone with your own keys. You can also use MVT or iMazing’s tool to detect and remove Pegasus spyware if you think you are infected. Stay safe and vigilant!

How EviCypher NFC HSM can protect you from Pegasus spyware

EviCypher NFC HSM: features and capabilities

EviCypher NFC HSM Technology: encryption via a Contactless Hardware Security Module (NFC HSM) designed and manufactured by Freemindtronic, an Andorrane R&D company in cyber, safety, security and anti spy.

EviCypher NFC HSM: store your keys and secrets in a contactless NFC device, like a card, sticker, or keychain. The Android phone’s NFC signal powers the device and serves as the terminal and UI. The device can store up to 200 secrets in its EEPROM memory.

The device: patented wireless access control system for two access profiles: administrator and users. Share your secrets without compromising your privacy. Patented authentication system by segmented key for up to 9 trust criteria to encrypt your secrets, such as geolocation, BSSID, password, or fingerprint.

Evicypher NFC HSM: Use your secrets without constraint with different Android NFC phone and all types of computers via extensions for web browser and web courier and open source Thunderbird. Share your secrets safely and with confidence offline and in Gap air. That is to say physically isolated from networks. In addition, you can share your secrets proximity by Bluetooth ADHOC or via a simple QR code encrypted in RSA 4096. You can thus encrypt or oversee all your favorite email types from your NFC HSM. It is contactless encryption between human being, without leaving any traces of your secrets in your phones or computers.

Products and services based on EviCypher NFC HSM technology

EviCypher NFC HSM: based on EviCore NFC HSM Technology, one of Freemindtronic’s white label products and services with patented technologies. Only available under patent license for white label products integration.

Evicypher NFC HSM: double-use version for civil and defense purposes , with reinforced security for your secrets , using more hidden and/or shared trust criteria , unknown to the user , preventing physical or legal threats from obtaining them . This version: for sovereign entities , like armed forces or secret services , needing more protection against espionage threats like PEGASUS spy software.

How to get and use EviCypher NFC HSM

Anonymously, with Freemindtronic Install on your NFC Android phone, create and store your secrets in an NFC HSM. Define your access profiles and trust criteria for each secret. Use your unlimited secrets with different NFC Android phones. Use your usual communications without changing your habits, email, webmail, chat, SMS, instant messaging, to encrypt them without contact just by passing the NFC HSM from Freemindtronic under the NFC antenna of your phone. Share your secrets with others who also have NFC HSM compatible with EviCypher NFC HSM technology.

To use EviCypher NFC HSM: Android phone with NFC and Freemindtronic app [here]. NFC device compatible with EviCore NFC HSM technology, such as Datashielder product with EviCypher NFC HSM and EviPass NFC HSM technologies. You will have the choice of different models and designs manufactured by Freemindtroic the Freemindtronic website click [here] to find out more.

EviCypher NFC HSM is a technology that allows you to fight against Pegasus spyware by securing your keys and secrets with hardware encryption and NFC. With EviCypher NFC HSM, you benefit from an innovative, practical and flexible solution for your personal or professional needs.

If you are interested in obtaining Evicypher NFC HSM technology and using it for your personal or professional needs, you can contact Freemindtronic by clicking [here]. You can also consult on the site how Evicypher NFC HSM technology works by clicking [here].

Conclusion and recommendations

Pegasus spyware: a privacy and human rights threat needing urgent action and regulation. Amnesty International calls for a global moratorium on surveillance technology sales and use until a human rights-compliant framework exists.

Evicypher NFC HSM: A technology to help you protect yourself from spyware like Pegasus with contactless encryption from a NFC HSM device without ever keeping clear data in the phone and/or computer with the possibility of deciphering the encrypted messages in AES256 Post quantum in GPA air via an QR code encrypted in RSA-4096 from the NFC HSM. Freemindtronic, a research and development company of safety, security, cyber security and andorran spying solution, which develops and offers various NFC HSM format and services available under white brand license with patented technologies.

Evicypher NFC HSM: Use your secrets without constraint with various NFC Android phones and all types of computers via extensions for web browser and web mail and Thunderbird source. Share your secrets safely and with confidence offline and in Gap Air. That is to say physically isolated from networks. In addition, you can share your secrets by Bluetooth Adhoc proximity or via a simple QR code encrypted in RSA 4096. You can quantify in seconds all your texts and parts attached for all your favorite messaging from your NFC HSM. It is contactless encryption between humans, without leaving traces of your secrets in your phones or computers.

Unitary patent system: why some EU countries are not on board

Unitary Patent system European why some EU countries are not on board

Unitary patent system by Jacques Gascuel: This article will be updated with any new information on the topic.  

Why some EU countries don’t want the unitary patent

The unitary patent system promises to simplify and unify patent protection in Europe. But not all EU countries are on board. Discover why some countries like Spain have opted out and what it means for inventors.

2024 Articles Cyberculture Legal information

ANSSI Cryptography Authorization: Complete Declaration Guide

2024 Articles Cyberculture

EAN Code Andorra: Why It Shares Spain’s 84 Code

2024 Cyberculture

Cybercrime Treaty 2024: UN’s Historic Agreement

2024 Cyberculture

Encryption Dual-Use Regulation under EU Law

2024 Cyberculture DataShielder

Google Workspace Data Security: Legal Insights

Why some EU countries are not on board

What is the unitary patent?

The unitary patent is a new scheme that allows inventors and innovative companies to protect their inventions in 17 EU member states by filing a single request to the European Patent Office (EPO) 1. It is an alternative option to the classical European patent, which requires individual validation and maintenance in each country where the patent holder wants to benefit from protection 1. The unitary patent  entered into force on 1 June 2023, after the ratification of the Agreement on a Unified Patent Court (UPC Agreement) by 17 states participating in enhanced cooperation 2. It is expected that more EU states will join this scheme in the future 1.

The unitary patent is based on the European patent granted by the EPO under the rules of the European Patent Convention (EPC), so nothing changes in the pre-grant phase and the same high standards of quality search and examination apply. After a European patent is granted, the patent holder can request unitary effect, thereby obtaining a European patent with unitary effect (unitary patent) that provides uniform protection in initially 17 EU member states.

What is the current status of the unitary patent?

The unitary patent system is a new scheme that allows inventors and innovative companies to protect their inventions in 17 EU member states by filing a single request to the European Patent Office (EPO) . It is an alternative option to the classical European patent, which requires individual validation and maintenance in each country where the patent holder wants to benefit from protection . The unitary patent is expected to start in early 2023, after the ratification of the Agreement on a Unified Patent Court (UPC Agreement) by 17 states participating in enhanced cooperation . It is expected that more EU states will join this scheme in the future.

The UPC Agreement

The UPC Agreement is an international treaty that establishes the Unified Patent Court (UPC), a supranational specialised court that will have exclusive jurisdiction to settle disputes relating to unitary patents and European patents . The UPC Agreement was signed by 25 EU member states in 2013, but it requires the ratification by at least 13 states, including France, Germany and Italy, to enter into force.

As of June 2021, 16 states have ratified the UPC Agreement, including France and Italy . Germany has also ratified the UPC Agreement in December 2020, but its ratification is pending before the German Constitutional Court, which has received two constitutional complaints against it . The German government has expressed its intention to deposit its instrument of ratification as soon as possible after the resolution of these complaints . The UK, which was initially one of the mandatory ratifying states, has withdrawn from the unitary patent system after leaving the EU in 2020.

The main obstacle and challenges

The main remaining obstacle for the implementation of the unitary patent system is therefore the outcome of the German constitutional complaints. If they are dismissed or overcome, Germany could deposit its instrument of ratification and trigger the entry into force of the UPC Agreement within three months . However, if they are upheld or delayed, Germany could be prevented from joining the unitary patent or cause further uncertainties and complications for its launch.

Other challenges for the implementation of the unitary patentinclude the practical and logistical arrangements for the operation of the Unified Patent Court, such as the recruitment and training of judges, the establishment of IT systems and facilities, and the adoption of procedural rules and guidelines . Moreover, some legal and political issues may arise from the withdrawal of the UK from the unitary patent, such as the impact on the linguistic regime of the unitary patent, the distribution of the workload and the cases among the different divisions of the Unified Patent Court, and the compatibility of the UPC Agreement with EU law.

What are the advantages?

The unitary patent system offers several advantages for inventors and innovative companies who want to protect their innovations in the EU. Among these advantages, we can mention:

  • The simplification of the procedure: the patent holder no longer needs to carry out complex and costly procedures with national offices to validate their European patent in each country 1.
  • They only need to request unitary effect from the EPO, which is their single interlocutor 2.
  • The reduction of costs: the patent holder no longer has to pay validation fees, translation fees, representation fees or annual national fees to keep their patent in force in the countries covered by the unitary patent 1.
  • They only pay a single annual fee to the EPO, which is calculated according to a progressive scale 3.
  • The legal certainty: the patent holder benefits from a uniform protection in all countries where the unitary patent takes effect, without risk of fragmentation or divergence between national rights 1.
  • They can also enforce their rights before a supranational specialised court, the Unified Patent Court (UPC), which has exclusive jurisdiction to settle disputes relating to infringement and validity of unitary patents.

How does the unitary patent compare with other patent systems?

The unitary patent system is not the only option for obtaining patent protection in multiple countries. There are other regional or international patent systems that offer different advantages and disadvantages for inventors and innovative companies. Here are some examples:

The European Patent Convention (EPC)

The EPC is an international treaty that allows applicants to file a single application at the European Patent Office (EPO) and obtain a European patent that can be validated in up to 38 contracting states . The EPC is not affected by the unitary patent system and will continue to operate in parallel with it. The EPC offers more flexibility than the unitary patent, as applicants can choose which countries they want to validate their European patent in. However, it also involves more costs and formalities than the unitary patent, as applicants have to pay validation fees, translation fees and annual national fees in each country where they want to maintain their European patent.

The Patent Cooperation Treaty (PCT)

The PCT is an international treaty that allows applicants to file a single international application at a national or regional office and obtain an international search report and a preliminary examination report on their invention . The PCT does not grant patents directly, but facilitates the entry into national or regional phases in up to 153 contracting states . The PCT offers more time than the unitary patent system, as applicants can delay their decision on which countries they want to pursue their patent protection in for up to 30 or 31 months from the priority date . However, it also involves more complexity than the unitary patent, as applicants have to comply with different requirements and procedures in each country where they enter the national or regional phase.

The Eurasian Patent Convention (EAPC)

The EAPC is an international treaty that allows applicants to file a single application at the Eurasian Patent Office (EAPO) and obtain a Eurasian patent that can be validated in up to 8 contracting states . The EAPC is not related to the unitary patent system and operates independently from it. The EAPC offers more simplicity than the unitary patent, as applicants do not have to pay any validation fees or translation fees in the countries where they want to validate their Eurasian patent . However, it also involves more risk than the unitary paten system, as applicants cannot opt out of the jurisdiction of the Eurasian Court of Patent Disputes, which can invalidate their Eurasian patent in all contracting states.

How Freemindtronic’s international patents are related to the unitary patent

Freemindtronic is an Andorran company that creates innovative solutions for security, cyber-security and counter-espionage, using contactless technology (NFC). We have several inventions that are protected by international patents in the fields of embedded systems, access control and segmented key authentication. For example, our patented technologies EviCore NFC HSM, which manage encryption keys in an NFC HSM device, EviCore HSM OpenPGP, which manage encryption keys in a security element of phones, EviVault NFC HSM Cold Wallet operating without contact, EviKey NFC a contactless secured USB key and the technology EviCypher NFC HSM which encrypts all types of data. These technologies implement our patents and especially the one based on the segmented key authentication system. The latter received the gold medal of international inventions of Geneva 2021.

Our patent options

Our patents are based on the European patent granted by the European Patent Office (EPO) under the rules of the European Patent Convention (EPC). Therefore, we could benefit from the unitary patent system, which is a new scheme that allows inventors and innovative companies to protect their inventions in 17 EU member states by filing a single request to the EPO. However, we would also have to consider the disadvantages and risks of the unitary patent, such as the risk of total invalidation, the lack of flexibility and the exclusion of some countries. Moreover, we would have to deal with the legal issues of the unitary patent for non-participating countries, such as cross-border infringement cases and jurisdictional conflicts.

Our patent strategy

We have opted for the unitary patent only for our segmented key authentication system, and we have added some non-participating countries to our other European patents. The reasons behind this choice are related to our market strategy, our innovation potential and our risk assessment. For instance, we have decided to use the unitary patent for our segmented key authentication system because we consider it as our core invention and we want to protect it in a uniform and effective way in most EU countries. On the other hand, we have decided to add some non-participating countries to our other European patents because we want to preserve our flexibility and avoid possible invalidation challenges in those countries.

Conclusion

Our international patents are relevant examples of how the unitary patent system can affect inventors and innovative companies in Europe, both positively and negatively. They illustrate the opportunities and challenges that the unitary patent poses for innovation and competitiveness in the EU.

How can legal issues of the unitary patent for non-participating countries be resolved?

The legal issues of the unitary patent system for non-participating countries are complex and not yet fully resolved. One of the main questions is how to deal with cross-border infringement cases involving unitary patents and national patents. For instance, if an inventor from a non-participating country, such as Spain, wants to enforce his rights on his classic European patent in a participating country, such as France, where a unitary patent holder claims to infringe his patent, which law should he consider? Well, the question is not easy to answer, because he will have to take into account many international standards. In the end, this very important aspect will be “subjected” to a very complex situation that will necessarily be defined with the successive application of the law.

Another question is how to ensure a fair balance between the rights and obligations of unitary patent holders and national patent holders in non-participating countries. For example, if a unitary patent holder wants to enforce their rights in a non-participating country, such as Poland, where a national patent holder is allegedly infringing their patent, which court should they go to? Well, the answer is not clear, as it will depend on the interpretation and application of various international agreements. In principle, the unitary patent holder should go to the national court of Poland, but they may face some difficulties or disadvantages in comparison with the national patent holder, such as higher costs, longer procedures or different standards of proof.

One possible way to resolve these legal issues is to harmonise the rules and practices of the unitary patent and the national patent systems in Europe. This could be achieved by adopting common standards and guidelines for patent examination, grant, validity and enforcement, as well as by establishing mechanisms for cooperation and coordination between the UPC and the national courts. Another possible way is to extend the scope and coverage of the unitary patent and the UPC to all EU member states and other EPC contracting states. This could be achieved by encouraging and facilitating their participation in the enhanced cooperation and ratification of the UPC Agreement.

However, these solutions may face some practical and political challenges, such as the lack of consensus or willingness among the different stakeholders, the respect for national sovereignty and diversity, or the compatibility with EU law and international obligations. Therefore, it is important that the unitary patent and its legal implications are carefully monitored and evaluated, and that its benefits and drawbacks are balanced and communicated to all parties involved.

What are the disadvantages?

The unitary patent system is not without disadvantages for some actors in the patent market. Among these disadvantages, we can mention:

  • The risk of total invalidation: the patent holder faces the possibility that their patent will be cancelled in all countries where it takes effect, if the UPC finds that it does not meet the requirements of patentability. They do not have the possibility to limit or amend their patent to avoid this fatal outcome.
  • The lack of flexibility: the patent holder cannot choose the countries where they want to protect their invention, nor renounce their patent in some countries to avoid paying fees or to circumvent legal obstacles. They must accept or refuse unitary effect as a whole.
  • The exclusion of some countries: the patent holder cannot benefit from protection in all EU member states, since some countries have decided not to participate in the unitary patent or have not yet ratified the UPC Agreement 1.
  • This is notably the case of Spain, which is one of the few EU countries that does not intend to be part of the unitary patent

What are the best practices or strategies for using or avoiding the unitary patent?

The unitary patent system offers a new opportunity for inventors and innovative companies who want to protect their inventions in Europe. However, it also poses some challenges and risks that need to be carefully considered. Depending on their needs and goals, they may decide to use or avoid the unitary patent, or to combine it with other patent systems. Here are some factors to consider when making this decision:

The scope of protection

The unitary patent system provides a uniform protection in 17 EU member states, which may cover a large part of the European market. However, it does not cover all EU member states, nor non-EU countries that are part of the EPC or the PCT. Therefore, inventors and innovative companies should assess whether the unitary patent covers their target markets, or whether they need to seek additional protection in other countries.

The cost of protection

The unitary patent reduces the cost of protection in Europe, as it eliminates the need to pay validation fees, translation fees and annual national fees in each country where the unitary patent takes effect. However, it also introduces a single annual fee for the unitary patent, which is calculated according to a progressive scale . Therefore, inventors and innovative companies should compare the cost of the unitary patent with the cost of other patent systems, and consider whether they need protection in all countries covered by the unitary patent, or whether they can save money by choosing a smaller number of countries.

The risk of invalidation

The unitary patent increases the risk of invalidation in Europe, as it exposes the unitary patent to a single challenge before the UPC, which can invalidate it in all countries where it takes effect. Moreover, the UPC is a new court that may have some uncertainties and inconsistencies in its interpretation and application of the law. Therefore, inventors and innovative companies should evaluate the strength and validity of their inventions, and consider whether they want to avoid this risk by opting out of the UPC for their European patents, or by using other patent systems that allow them to limit or amend their patents in case of invalidation challenges.

The enforcement of rights

The unitary patent facilitates the enforcement of rights in Europe, as it allows the holders of unitary patents to sue infringers before the UPC, which can grant pan-European injunctions and damages. However, it also exposes them to counterclaims for invalidity before the UPC, which can invalidate their unitary patents in all countries where they take effect. Therefore, inventors and innovative companies should assess the likelihood and impact of infringement and invalidity actions, and consider whether they want to benefit from this facilitation by opting in to the UPC for their European patents, or whether they want to retain more control over their litigation strategy by using national courts or other patent systems.

Why do some EU countries not want to join the unitary patent

The reasons for some EU countries’ exclusion from the unitary patent are diverse. Spain, for example, considers that the linguistic regime of the unitary patent, which relies on the three official languages of the EPO (English, French and German), is discriminatory and harms its economic and cultural interests. It believes that Spanish, which is the second most spoken native language in the world, should be recognised as an official language of the unitary patent, or at least, that the holders of unitary patents should be required to provide a full translation in Spanish of their patents. It also fears that the unitary patent will strengthen the dominant position of the English-speaking and German-speaking countries in the field of innovation and will reduce the development opportunities of Spanish companies.

Croatia, on the other hand, has not joined enhanced cooperation for setting up the unitary patent, because it joined the EU after the launch of this initiative. However, it has expressed its interest in joining the unitary patent in the future.

Poland and the Czech Republic have participated in enhanced cooperation, but have not signed or ratified the UPC Agreement, which is a prerequisite for being part of the unitary patent 2. These countries have invoked economic and legal reasons to justify their withdrawal. Poland has estimated that the unitary patent would have a negative impact on its national budget and on its competitiveness. The Czech Republic has expressed doubts about the compatibility of the unitary patent with EU law and about the quality of automatic translations .

Slovakia has also participated in enhanced cooperation, but has opposed the regulation on the unitary patent and has challenged it before the Court of Justice of the EU (CJEU). It has argued that the regulation was contrary to the principle of equal treatment between the member states and the official languages of the EU. It has also questioned the legal basis of the regulation and its respect for national competences in the field of industrial property. The CJEU rejected its request in 2015.

Hungary has ratified the UPC Agreement in 2018, but has denounced it in 2020, following a decision of its Constitutional Court that declared that the Agreement was incompatible with its Constitution. The Court considered that the Agreement infringed on Hungary’s sovereignty in the matter of intellectual property and that it violated the principle of separation of powers by entrusting the settlement of disputes relating to patents to a supranational court not integrated into the Hungarian judicial system.

Here is a table that summarizes that gives the list of European countries that accept the unitary patent and the European countries that have excluded themselves from the unitary patent:

Country Status Reason
Germany Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Austria Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Belgium Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Bulgaria Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Cyprus Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Croatia Excluded Has not joined enhanced cooperation
Denmark Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Spain Excluded Has opposed enhanced cooperation and has challenged the linguistic regime of the unitary patent
Estonia Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Finland Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
France Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Greece Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Hungary Excluded Has ratified the UPC Agreement but has denounced it following a decision of its Constitutional Court
Ireland Accepts Participates in enhanced cooperation but has not yet ratified the UPC Agreement
Italy Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Latvia Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Lithuania Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Luxembourg Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Malta Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Netherlands Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Poland Excluded Participates in enhanced cooperation but has not signed or ratified the UPC Agreement
Portugal Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Czech Republic Excluded Participates in enhanced cooperation but has not signed or ratified the UPC Agreement
Romania Accepts Participates in enhanced cooperation but has not yet ratified the UPC Agreement
Slovakia Excluded Has opposed enhanced cooperation and has challenged the regulation on the unitary patent
Slovenia Accepts Participates in enhanced cooperation and has ratified the UPC Agreement
Sweden Accepts Participates in enhanced cooperation and has ratified the UPC Agreement

What are the consequences of these countries’ exclusion from the unitary patent?

The exclusion of these countries from the unitary patent has consequences for both the holders of unitary patents and the national patent holders in these countries. For the holders of unitary patents, this means that they cannot protect their inventions in these countries through the unitary patent, but they have to resort to the classical European patent or the national patent . They therefore have to bear the costs and formalities related to the validation and maintenance of their patent in these countries, as well as the risks of a fragmented protection and legal uncertainty . For the national patent holders in these countries, this means that they cannot benefit from the advantages of the unitary patent, but they have to face the increased competition of the holders of unitary patents in the other EU countries . They also have to adapt to the rules and procedures of the UPC, which can be seized by the holders of unitary patents to assert their rights against them or to challenge the validity of their classical European patents .

What are the legal issues of the unitary patent for non-participating countries?

The legal issues of the unitary patent system for non-participating countries are complex and not yet fully resolved. One of the main questions is how to deal with cross-border infringement cases involving unitary patents and national patents. For example, if an inventor from a non-participating country, such as Spain, wants to exercise their rights on their classical European patent in a participating country, such as France, where a unitary patent holder is allegedly infringing their patent, which law should they take into account? Well, the question is not easy to answer, as it will have to take into account many international norms. In the end, this very important aspect will be “subjected” to a very complex situation that will necessarily be defined with the successive application of the law.

Another question is how to ensure a fair balance between the interests of the holders of unitary patents and those of national patent holders in non-participating countries. For instance, if a national patent holder in Spain wants to challenge the validity of a unitary patent that covers an invention similar to theirs, how can they do so without having to go before the UPC, which may not be accessible or convenient for them? Conversely, if a unitary patent holder wants to enforce their rights against a national patent holder in Spain who is allegedly infringing their patent, how can they do so without having to go before a national court that may not be familiar or favourable with the unitary patent? These questions raise issues of jurisdiction, recognition and enforcement of judgments, as well as substantive law harmonisation.

These legal issues are likely to generate uncertainty and litigation for both unitary patent holders and national patent holders in non-participating countries. They may also create barriers and distortions in the internal market and affect innovation and competitiveness. Therefore, it is desirable that these issues are addressed and clarified as soon as possible, either by legislative or judicial means.

Conclusion

The unitary patent is a new scheme that offers a simplified, economical and uniform protection in 17 EU member states. It is accompanied by a Unified Patent Court, which has exclusive jurisdiction to settle disputes relating to unitary patents. The unitary patent has advantages and disadvantages for inventors and innovative companies, depending on their strategy and market. Spain is one of the few EU countries that does not intend to join the unitary patent, mainly for linguistic reasons. Its exclusion has consequences for both unitary patent holders and Spanish actors in the patent market. The unitary patent also raises legal issues for non-participating countries, which are not yet fully resolved.

In conclusion, the unitary patent system is a major innovation in the field of intellectual property in Europe, but it also poses significant challenges for its implementation and acceptance. It aims to foster innovation and competitiveness in the EU, but it also creates disparities and conflicts between participating and non-participating countries. It offers a simplified and uniform protection for inventors and innovative companies, but it also exposes them to risks and uncertainties in cross-border litigation. It is therefore important that the unitary patent is carefully monitored and evaluated, and that its benefits and drawbacks are balanced and communicated to all stakeholders.

(1) https://www.epo.org/applying/european/unitary/unitary-patent.html

(2) https://www.epo.org/applying/european/unitary.html

(3) https://www.gov.uk/guidance/the-unitary-patent-and-unified-patent-court

Protect US emails from Chinese hackers with EviCypher NFC HSM?

Protect your emails from Chinese hackers How to protect your emails from Chinese hackers with EviCypher NFC HSM technology

Protect your emails from Chinese hackers by Jacques Gascuel: This article will be updated with any new information on the topic.  

Protéger les e-mails américains contre les pirates chinois avec la technologie HSM NFC EviCypher

Les courriels et les pièces jointes des institutions américaines font l’objet d’une attaque sans précédent qui proviendrait de pirates chinois. Comment la technologie HSM NFC EviCypher d’Andorre, développée par Freemindtronic, peut-elle les chiffrer sans contact et prévenir la corruption ? Dans cet article, vous découvrirez pourquoi les pirates ne peuvent pas lire les emails et leurs pièces jointes qui sont exfiltrés, notamment ceux du gouvernement américain qui utiliserait cette technologie qui stocke physiquement les clés de chiffrement à l’extérieur. Ainsi, seuls les utilisateurs autorisés qui disposent d’un HSM NFC Freemindtronic avec la bonne clé peuvent les déchiffrer.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

How EviCypher NFC HSM technology can protect emails from Chinese hackers

The Chinese hack on US emails: what happened and why it matters

In July 2023, a massive cyberattack targeted email accounts belonging to US government officials, as well as private organizations and universities. The hackers, suspected of being linked to the Chinese government, exploited a vulnerability in Microsoft’s cloud service, called Exchange Server, which allows users to access their emails via the web.

According to Microsoft, the attack affected more than 30,000 organizations in the US and thousands of others around the world. The hackers used a technique called “web shell”, which involves installing malicious software on the compromised servers, giving them remote access to the data and systems of the victims.

Among the victims were the State Department, the Defense Department, the Justice Department, the Energy Department, NASA, FAA, as well as defense companies, NGOs, media and academic institutions. The hackers were able to access the emails and the attachments of the hacked accounts as well as other information stored in their email account such as contacts and calendars.

Microsoft described the attack as “highly sophisticated and targeted” and attributed responsibility to a group named Hafnium which it describes as “a state-sponsored actor backed by China”. The Chinese government denied any involvement and accused Microsoft of “slandering” China.

Microsoft released security patches to fix the vulnerability patches to fix the vulnerability and advised all Exchange Server users to apply them immediately. It also collaborated with US authorities to investigate the incident and help the victims recover from the attack.

The attack raised concerns about the security of cloud computing, which is increasingly used by public and private organizations to store and manage their data. Cloud computing offers benefits such as cost reduction, flexibility and efficiency.

How EviCypher NFC HSM technology could have prevented the Chinese hack on US emails

If you want to protect your emails from Chinese hackers or any other cyber threats, you should consider using EviCypher NFC HSM Technology. It is a technology patented especially in the United States that allows you to store and use your cryptographic keys in a contactless device. It is a simple, efficient and durable solution for securing your data and secrets. In this section, we will explain how EviCypher NFC HSM works, what are its main features and benefits, and how it can help you protect your privacy and security.

What is EviCypher NFC HSM and how does it work?

EviCypher NFC HSM is a technology developed by Freemindtronic, an Andorran company specialized in NFC security. It is based on EviCore NFC HSM, which is a hardware security module that combines hardware encryption and NFC communication protocols to protect your keys and secrets.

With EviCypher NFC HSM, you can store your keys and secrets in a contactless device, such as a card, a sticker or a keychain. The device is powered by the NFC signal of the Android phone. This phone serves as terminal and user interface. The data stored in memory are encrypted contactlessly from the EviCypher NFC HSM application that performs encryption and decryption operations using advanced algorithms, such as AES 256 bits and RSA 4096 bits.

EviCypher NFC HSM also implements anti-cloning and anti-replay mechanisms to prevent unauthorized access or duplication of your secrets. The device has a patented power monitoring and protection device with black box. This device ensures the integrity and availability of the device. The device also has a patented wireless access control system that allows you to define two distinct access profiles: administrator and users, without allowing them to access each other’s secrets without their authorization. The device also has a patented segmented key authentication system that allows you to define up to 9 trust criteria for encrypting your secrets, such as geolocation, BSSID, password or fingerprint.

How EviCypher NFC HSM could have prevented the Chinese hack on US emails?

If the US government had used EviCypher NFC HSM technology with EviCore NFC HSM technology, the Chinese attack would have had no impact. Indeed, even if the hackers had succeeded in exploiting Microsoft Exchange Server’s vulnerability, they would not have been able to access emails and attachments of accounts protected by EviCypher NFC HSM. They would need the corresponding NFC device to decrypt data. Moreover, they would not have been able to clone or replay the NFC signal because EviCypher NFC HSM uses protection techniques against these attacks. Finally, they would not have been able to bypass access control or trust criteria because EviCypher NFC HSM allows you to define custom profiles and parameters for each user.

By using EviCypher NFC HSM, you can encrypt and decrypt your data with your own keys, without relying on any third-party service or provider. You can also use different encryption algorithms, such as AES 256 bits and RSA 4096 bits, to ensure the highest level of security for your data. In addition, you can share and exchange your keys with other users who have EviCypher NFC HSM devices, using secure NFC communication protocols.

How to protect your emails and messages with EviCypher NFC HSM?

You can use EviCypher NFC HSM with different messaging applications, such as:

Webmail services: how to protect your emails and attachments with EviCypher NFC HSM?

You can use EviCypher NFC HSM to encrypt and decrypt your emails and attachments stored in webmail services. For example: Gmail, Yahoo Mail, Proton Mail, Outlook, Roundcube Webmail, HCL Domino Webmail and others. To do this, you need to install the EviCypher Webmail extension on your web browser based on Chromium, such as Chrome. The extension will automatically add buttons to encrypt and decrypt your messages via the NFC device.

Instant messaging services: how to protect your messages with EviCypher NFC HSM?

You can use EviCypher NFC HSM to encrypt and decrypt your messages sent or received from instant messaging services. For example: WhatsApp, Telegram, Signal, Facebook Messenger, Skype and others. To do this, you need to install the EviCypher IM extension on your web browser based on Chromium, such as Chrome. The extension will automatically add buttons to encrypt and decrypt your messages via the NFC device.

SMS: how to protect your SMS messages with EviCypher NFC HSM?

You can use EviCypher NFC HSM to encrypt and decrypt your SMS messages sent or received from your Android phone. To do this, you need to install the EviCypher SMS application on your phone. The application will automatically encrypt and decrypt your SMS messages via the NFC device.

Statistics on email attacks against the US

According to a report by Proofpoint, a cybersecurity company, email is the most common vector for cyberattacks against the US. The report states that in 2022, more than 80% of organizations in the US faced at least one email-based attack, such as phishing, malware or ransomware. The report also reveals that the US is the most targeted country by email threats, accounting for 36% of all global attacks. The report also identifies China as one of the top sources of email attacks, along with Russia, Iran and North Korea.

The report also highlights the impact of email attacks on the US economy and security. The report estimates that email attacks cost US organizations more than $20 billion in 2022, due to data breaches, business disruptions, reputational damage and legal fees. The report also warns that email attacks pose a serious threat to the US national security, as they can compromise sensitive information, disrupt critical infrastructure and undermine public trust.

The report recommends that US organizations adopt a comprehensive and proactive approach to email security, which includes:

  • Educating employees on how to recognize and avoid email threats
  • Implementing advanced email security solutions that can detect and block malicious emails
  • Encrypting sensitive data and using strong passwords
  • Backing up data regularly and having a recovery plan in case of an attack
  • Reporting any suspicious or malicious email activity to authorities

What is EviCore HSM OpenPGP and how does it protect your emails from Chinese hackers?

EviCore HSM OpenPGP is a technology that transforms your Android or iPhone into a hardware security module (HSM) for encrypting and storing your cryptographic keys. It leverages the highly secure OpenPGP standard, known for its use by whistleblowers, journalists, activists and privacy advocates.

With EviCore HSM OpenPGP, you can generate and manage your own keys on your phone, without relying on any third-party service or provider. You can also encrypt and decrypt your messages with your own keys, using the EviCypher HSM OpenPGP application that supports various messaging applications, such as email, webmail, SMS, RCS and more.

EviCore HSM OpenPGP also implements anti-cloning and anti-replay mechanisms to prevent unauthorized access or duplication of your keys. The application also has a patented wireless access control system via an NFC HSM EviBadge NFC HSM that allows you to authenticate and encrypt with segmented keys the OpenPGP encryption keys or any other types of keys stored in the phone. It is also possible to add trust criteria that allow you to define up to 7 trust criteria for encrypting messages (email, webmail, SMS, MMS, RCS and others) such as geolocation, BSSID, password, fingerprint, facial recognition, segmented keys between two distinct parties.

By using EviCore HSM OpenPGP, you can protect your emails from Chinese hackers or any other cyber threats. You can also use it with EviCypher NFC HSM devices, which allow you to encrypt and decrypt data in air gap mode.

What are the advantages of EviCore HSM OpenPGP?

EviCore HSM OpenPGP offers several advantages over other encryption solutions, such as:

  • Simplicity: You don’t need any additional hardware or software to use EviCore HSM OpenPGP. You only need your phone and the EviCypher HSM OpenPGP application.
  • Efficiency: You can encrypt and decrypt your messages with a single tap on your phone screen. You don’t need to enter any passwords or codes to access your keys.
  • Durability: You can store your keys securely on your phone memory, export them, import them, back them up on a cloud service or an external storage device. You can also use NFC HSM devices to add other trust criteria with segmented keys stored in the device.
  • Compatibility: You can use EviCore HSM OpenPGP with different messaging applications, such as email, webmail, SMS, RCS and more. You can also use it with EviCypher NFC HSM devices, which allow you to encrypt and decrypt data in air gap mode.
  • Security: You can protect your keys and messages from hackers, malware and physical theft. You can also control who can access your keys and messages by defining access profiles and trust criteria.

How EviCypher HSM Technology is protected by patents

EviCypher HSM technology is protected by several patents issued by various countries, including the US. Some of these patents are:

  • US20210136579: A method for securing data using a contactless device that stores cryptographic keys and performs encryption and decryption operations via NFC communication with an Android phone.
  • US20100188785: A method for protecting a contactless device from cloning or replay attacks by using a power monitoring and protection device with black box that detects any abnormal power consumption or interruption.
  • US20180336335: A method for authenticating a contactless device by using a segmented key authentication system that allows defining up to 9 trust criteria for encrypting secrets, such as geolocation, BSSID, password or fingerprint.

These patents demonstrate the innovation and originality of EviCypher HSM Technology, as well as its compliance with the US intellectual property laws. These patents also provide legal protection for EviCypher NFC HSM Technology and EviCypher HSM OpenPGP against any potential infringement or imitation by competitors.

Conclusion

EviCore HSM OpenPGP is a new technology that allows you to turn your phone into a hardware security module for encrypting and storing your cryptographic keys. It is based on the OpenPGP standard, which is widely used for secure communication and data protection. By using EviCore HSM OpenPGP, you can protect your emails from Chinese hackers or any other cyber threats. You can also use it with different messaging applications, such as email, webmail, SMS, RCS and more. Moreover, you can use it with EviCypher NFC HSM devices, which allow you to encrypt and decrypt data in air gap mode.

We hope this article has helped you understand how EviCore HSM OpenPGP works and what are its advantages. If you are interested in learning more about this technology or ordering your own device, please visit the official website of Freemindtronic, the company that developed it. You can also watch this video that explains how EviCore HSM OpenPGP works and how to use it with different messaging applications.

Thank you for reading this article. We hope you have learned something new and useful about how to protect your emails from Chinese hackers with EviCypher NFC HSM technology. If you have any questions or feedback, please feel free to leave a comment below. We would love to hear from you.

If you enjoyed this article and found it helpful, please share it with your friends and family who might be interested in protecting their emails from Chinese hackers or any other cyber threats. Stay safe and secure with EviCypher NFC HSM technology!

Original source: https://www.washingtonpost.com/national-security/2023/07/12/microsoft-hack-china/

Ommic case: How a French company allegedly handed over military secrets to China and Russia

Ommic case: The story of a French semiconductor company accused of spying for China and Russia

Ommic case by Jacques Gascuel: This article will be updated with any new information on the topic.  

Ommic case: A scandal of military industrial espionage

Ommic, a French semiconductor company, suspected of spying for China and Russia. Alleged delivery of military material and processes for radars, missiles or drones. Economic and political consequences for France and Europe. Questions about the protection and control of dual-use technologies. Article on the Ommic case, the technological secrets, the measures taken by the French government and other cases of military industrial espionage in the world.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

Ommic case: The story of a French semiconductor company accused of spying for China and Russia

The Ommic case is a scandal of industrial espionage that involves a French company specialized in the manufacture of high-tech semiconductors. According to the charges brought by the French justice, Ommic would have delivered to China and Russia material and processes sensitive to the military, used in particular by the French army. The French general manager of the company, as well as three other people, were indicted in March 2023 for “delivery to a foreign power of processes, documents or files likely to harm the fundamental interests of the Nation”. The French state took temporary control of the company and seized several tens of millions of euros. In June 2023, Ommic was sold to an American owner and changed its name to Macom. This case raises questions about the protection of French technological know-how and the risks associated with the transfer of strategic technologies to foreign powers.

What is Ommic?

Ommic, located near Paris in Limeil-Brévannes, has a history of more than 40 years in material science, semiconductor wafer processing and monolithic microwave integrated circuit (MMIC) design. Its differentiated manufacturing capabilities include several semiconductor processes and products qualified by the European Space Agency (ESA). Ommic uses notably gallium arsenide (GaAs) and gallium nitride (GaN) technologies, which allow to produce high-performance electronic components for high-frequency applications. Ommic counts among its customers major players in the space sector, such as Thales Alenia Space or Airbus Defence and Space.

Why did Macom buy Ommic?

Macom is an American supplier of semiconductor products for the telecommunications, industrial and defense and data center sectors. Macom announced in February 2023 that it had entered into a definitive agreement to acquire the assets and operations of Ommic for approximately 38.5 million euros. Macom sees Ommic’s high-frequency MMIC product portfolio and design capability as an aid to address microwave applications on target markets. Macom also said that acquiring Ommic should allow it to focus more on European markets and expand its wafer production capacity.

What are the technological secrets delivered by Ommic?

According to the information revealed by the French press, Ommic would have delivered to China and Russia material and processes sensitive to the military, which could have been used to manufacture radars, missiles or drones. These would include machine tools capable of engraving GaN wafers, a highly sought-after technology for its performance in terms of power, efficiency and thermal resistance. Ommic would also have transmitted digital files containing integrated circuit plans, source codes or algorithms. These technological secrets would have an estimated value of several hundred million euros.

What are the consequences of the Ommic case?

The Ommic case had legal, economic and political consequences. On the legal level, four people were indicted and placed under judicial control. They face 15 years in prison and 225 000 euros fine.

On the economic level, the French state took temporary control of the company. It also seized several tens of millions of euros. Moreover, it launched an audit to assess the damage to national defense. Additionally, it strengthened the security and competitiveness of the French semiconductor industry.

On the political level, the Ommic case provoked contrasting reactions. Some denounced a national betrayal and a threat to technological sovereignty. Others minimized the scandal and welcomed the takeover by Macom. The French government affirmed its vigilance and reminded that France had other leading players in this field.

The Ommic case also had implications for the world of semiconductors. This is a strategic sector for many applications. The case revealed the vulnerability of some European companies to foreign espionage and competition. The case also highlighted the importance of protecting intellectual property rights and preventing technology transfers. The case also raised questions about Macom’s role and responsibility.

How did Macom react to the Ommic case?

Macom reacted to the Ommic case by expressing its support for the French authorities and its commitment to comply with all applicable laws and regulations. Macom stated that it was not aware of any wrongdoing by Ommic or its employees before or during the acquisition process. Macom also stated that it had conducted a thorough due diligence on Ommic’s business and operations before closing the deal. Macom said that it was cooperating fully with the French authorities and that it was confident that it would be able to demonstrate its good faith and integrity.

Macom also tried to reassure its customers and partners about its ability to continue to provide high-quality products and services based on Ommic’s technologies. Macom said that it had taken steps to ensure the continuity of Ommic’s operations and to preserve its know-how and expertise. Macom also said that it had implemented strict security measures to protect Ommic’s intellectual property and trade secrets from unauthorized access or disclosure.

Macom also emphasized the strategic value of acquiring Ommic for its growth and innovation objectives. Macom said that Ommic’s high-frequency MMIC product portfolio and design capability were complementary to its own offerings and would enable it to address microwave applications on target markets. Macom also said that acquiring Ommic would allow it to focus more on European markets and to expand its wafer production capacity.

Are these measures enough to ensure the security and competitiveness of France in the field of semiconductors?

According to experts, these measures are necessary but not sufficient. It would also be necessary to strengthen European cooperation, which is essential to cope with global competition, especially from China and the United States. It would also be necessary to anticipate technological changes and market needs, which are constantly changing. It would finally be necessary to develop a coherent and ambitious industrial and commercial strategy, which values the assets and specificities of France.

What are the challenges and opportunities that arise for the future?

The challenges are numerous, but so are the opportunities. The field of semiconductors is indeed a key sector for many applications, such as aeronautics, automotive, space, health or digital. The global demand is strong and should continue to grow in the coming years. France has recognized skills and innovative players in this field, who can differentiate themselves by their quality, reliability or performance. France can therefore play a major role in the development and dissemination of tomorrow’s technologies.

What are some other examples of military industrial espionage cases in the world?

Military industrial espionage is the practice of spying on or stealing information from other countries or companies that are involved in the development, production, or sale of military equipment, technology, or services. Military industrial espionage can have serious consequences for national security, economic competitiveness, and international relations.

There are many examples of military industrial espionage cases in the world, involving different actors, methods, and targets. Here are some of them:

  • In 2019, a former engineer at Raytheon, a US defense contractor, was arrested and charged with exporting sensitive missile technology to China. Wei Sun, a Chinese-born US citizen, admitted that he took a laptop containing classified information about Raytheon’s products to China without authorization. He also admitted that he shared some of the information with Chinese professors and students at a university in China1.
  • In 2018, a former employee of the French aerospace company Thales was convicted of spying for China. Henri Dumoulin, a French citizen, was accused of passing confidential documents about radar systems and missile guidance to Chinese intelligence agents. He was sentenced to six years in prison and fined 40,000 euros2.
  • In 2017, a former employee of the German engineering company Siemens was found guilty of selling trade secrets to Russia. Evgeny Kaspersky, a Russian citizen, worked as a software developer at Siemens and had access to the source code of a software used to control gas turbines. He copied the code and sold it to a Russian company that was linked to the Russian military. He was sentenced to two years and nine months in prison3.
  • In 2016, a former employee of the British defense company BAE Systems was arrested and charged with attempting to sell jet fighter secrets to Iran. Simon Finch, a British citizen, worked as a software engineer at BAE Systems and had access to sensitive information about the Typhoon fighter jet. He allegedly tried to sell the information to Iranian officials through an encrypted messaging app. He was later acquitted after claiming that he acted out of frustration over his treatment by BAE Systems.

How to prevent and combat military industrial espionage?

Military industrial espionage is a widespread and dangerous phenomenon for the security and competitiveness of countries and companies involved in the military industry. It involves spying or stealing sensitive information or technology for military purposes. Therefore, it is important to implement effective measures to prevent and combat this type of espionage. These measures may include:

  • Strengthening the protection and control of classified or proprietary information and technology.
  • Enhancing the awareness and education of employees and contractors about the risks and responsibilities.
  • Increasing the cooperation and coordination among national and international authorities and partners.
  • Prosecuting and sanctioning those who engage in or facilitate military industrial espionage.

The Ommic case is not an isolated case of military industrial espionage in the world. There are many cases where countries or companies have tried to appropriate or transfer sensitive information or technology. Some of these technologies are dual-use, meaning that they can have both civilian and military applications. This is the case for data encryption and messaging.

The complexity and dynamics of industrial espionage with a military character

Industrial espionage with a military character is a complex and dynamic phenomenon, which evolves according to technological advances, geopolitical power relations and the strategies of the actors involved. It poses significant challenges for the security and competitiveness of countries and companies that are victims or targets of this practice. It therefore requires constant vigilance and continuous adaptation to prevent and combat this threat.

The Ommic case is a concrete and recent example of industrial espionage with a military character that illustrates one of the methods that this practice can take. It also shows the flaws and risks associated with dual-use technologies, i.e. technologies that can have both civilian and military applications. It invites us to think about the future prospects and challenges posed by industrial espionage with a military character in an increasingly connected and competitive world.

Conclusion: The Ommic case and the challenges of industrial espionage with a military character

Industrial espionage with a military character is a complex and dynamic phenomenon, which evolves according to technological advances, geopolitical power relations and the strategies of the actors involved. It poses significant challenges for the security and competitiveness of countries and companies that are victims or targets of this type of espionage. It therefore requires constant vigilance and continuous adaptation to prevent and combat this threat.

In this article, we have presented the Ommic case, a scandal of industrial espionage with a military character that involves a French company specialized in the manufacture of high-performance electronic components for high-frequency applications. We have explained the facts, the actors, the stakes and the consequences of this case. We have also shown how this case illustrates one form of industrial espionage with a military character by transfer, according to the means and methods used. In the next article, we will address other methods such as infiltration, surveillance, hacking, subversion.

In the next article, we will also talk about the counter-espionage technologies such as those designed, developed and manufactured by Freemindtronic, which include innovative digital security solutions based on quantum cryptography. These solutions allow to protect sensitive data from theft, falsification or corruption, using unbreakable encryption keys and tamper-proof transactions.

We will explain how these solutions can help countries and companies to protect themselves from attacks of industrial espionage with a military character, using cutting-edge and environmentally friendly technologies.

If you want to learn more about how to protect your data and communication from industrial espionage with a military character, stay tuned for our next article on Freemindtronic’s innovative solutions based on quantum cryptography. 

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

EviVault NFC HSM and EviCore NFC HSM Embedded ISO 15693 VS Flipper Zero

EviVault NFC HSM vs Flipper Zero by Jacques Gascuel: This article will be updated with any new information on the topic.  

Unveiling the Encounter: EviVault NFC HSM vs Flipper Zero

This article examines the encounter between EviVault NFC HSM and Flipper Zero. While EviVault NFC HSM securely stores your blockchain keys offline, Flipper Zero serves as a device to test the security of wireless systems and NFC tags. The crucial question remains: Can Flipper Zero break through the defenses of EviVault NFC HSM and access your cryptocurrencies keys? The resounding answer is no, and we will explore the compelling reasons behind this assertion.

2024 Digital Security

Cyberattack Exploits Backdoors: What You Need to Know

2024 Digital Security

Google Sheets Malware: The Voldemort Threat

2024 Articles Digital Security News

Russian Espionage Hacking Tools Revealed

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

EviVault NFC HSM vs Flipper Zero: The duel of an NFC HSM and a Pentester

EviVault NFC HSM vs Flipper Zero: this is the question that this article will answer. EviVault NFC HSM is a technology that securely stores your blockchain keys offline. Flipper Zero is a device that tests the security of wireless systems and NFC tags. Can Flipper Zero compromise EviVault NFC HSM and access your cryptocurrencies keys? The answer is no, and this article will explain why.

EviVault NFC HSM vs Flipper Zero is a topic that interests many crypto enthusiasts and security experts. Moreover, it sparks curiosity about the comparison between these two technologies. EviVault NFC HSM is a technology that allows offline physical secure storage of blockchain private keys, cryptocurrencies, wallets, Bitcoin, Ethereum, NFTs, Smart Contracts. Freemindtronic, a company from Andorra that specializes in NFC security solutions, developed it. EviVault NFC HSM uses the EviCore NFC HSM technology, which offers a high level of protection and encryption for your keys and secrets. It also works with Freemindtronic’s NFC HSM devices, which are contactless devices that can store and use your crypto keys and secrets. You can learn more about this technology here: https://freemindtronic.com/evicore-nfc-hsm-the-technology-by-freemindtronic/.

Flipper Zero is a versatile tool for testing the security and cybersecurity of systems, especially for pentesters. However, it can be used for malicious purposes, such as by cybercriminals to hack into digital systems, such as radio protocols, access control systems, hardware and more. At first glance, one might think that Flipper Zero is capable of compromising EviVault NFC HSM by reading or cloning its secrets without contact. However, this is not the case because EviVault NFC HSM has several security mechanisms that prevent any attempt of physical or logical attack.

In this article, we will explain how EviCore NFC HSM can resist effectively to the attacks of pentest tools like Flipper Zero and how it protects your blockchain assets from end to end, focusing on the device level.

How EviCore NFC HSM protects and encrypts your secrets with a secure element

First of all, EviCore NFC HSM is a proprietary technology that uses an NFC HSM to store and protect your secrets. It uses a proprietary protocol called EVI (Encrypted Virtual Interface) based on the ISO 15693 standard (https://www.st.com/resource/en/datasheet/m24lr64e-r.pdf or (https://www.st.com/resource/en/datasheet/st25dv64kc.pdf).

EVI ensures the proper functioning of reading and writing encrypted secrets with an intelligent system of error monitoring for write errors or reading from the secure EEPROM memory. You can find more information about the security standards and algorithms used by EVI here: https://freemindtronic.com/evicore-nfc-hsm-security-information-standards-algorithms-regulatory.

Moreover, EviCore NFC HSM uses other specific encryption algorithms such as AES CTR SHA 256 bits to encrypt and protect your secrets by segmented keys. Meanwhile EVI protects the keys used to access the RF NFC memories with a very strong secret code via AES ECB 128. This secret code prevents unauthorized reading or modification of keys. EVI makes the NFC and RF memories safer to combat invasive or non-invasive attacks from pentest tools like Flipper Zero.

EviCore NFC HSM: a fortress for your secrets EviVault NFC HSM vs Pentester

The NFC HSM EviCore, developed by Freemindtronic, is a technology protected by three patents of invention in their implementation. It is incomparable. It uses its innovative Encrypted Virtual Interface (EVI) protocol to ensure unparalleled security of confidential data in the duel EviVault NFC HSM vs Flipper Zero. This technology, compliant with the ISO 15693 standard, constitutes a multi-layer defense for your information. Seamlessly integrated within it are advanced features such as encryption, authentication, anti-cloning, anti-replay, anti-counterfeiting, and comprehensive black box management.

The Interaction between EVI and the NFC HSM: Securing Secrets in the EviVault NFC HSM vs Flipper Zero Duel

EVI, the Machine-to-Machine (MtoM) interface, collaborates with NFC HSM chips to ensure secure management of encrypted data read and write operations without risk of physical and digital errors. Thus, EVI monitors errors in reading/writing secure EEPROM memory through a sophisticated error tracking system that includes user errors of NFC HSM. In addition, it independently manages various cryptographic tasks such as encryption, decryption, signing, verification, and key generation of access codes to EEPROM memories. It thus strengthens the level of security, resilience and security of encrypted secrets. These are encrypted with other EviCore NFC HSM algorithms. This already constitutes two lines of defense against invasive or non-invasive attacks.

The Importance of External Elements in the EviVault NFC HSM vs Flipper Zero Duel

The encryption methodology of EviCore NFC HSM allows each segment to have a different physical origin in the duel EviVault NFC HSM vs Flipper Zero. This means that it can come from an external element to the NFC HSM, such as a geographic location and/or a password or fingerprint reading and/or a segmented QR code key exceeding 256 bits and/or BSSID and/or an NFC Android phone identifier. In fact, these elements serve as physical origin trust criteria, thus strengthening the validation process to access the secrets stored in the NFC HSM. Thus, this patented technology constitutes a third line of defense against various types of attacks, whether in proximity or at a distance, thanks in particular to encryption by encapsulations including these criteria freely defined by the user.

Superior Encryption and Deterrence against Unauthorized Access in the EviVault NFC HSM vs Flipper Zero Duel

Using high-quality encryption algorithms such as AES CTR SHA 256 bits considered post-quantum, the EviCore NFC HSM technology ensures that secrets remain inaccessible to unauthorized entities in the long term against pentest tools such as in the duel EviVault NFC HSM vs Flipper Zero. In addition, EVI protects the keys of NFC RF memories using AES ECB 128, preventing any unauthorized reading or modification. Thus, with this post-quantum encryption of secrets stored in the NFC HSM, it constitutes the fourth line of defense against attacks, especially invasive ones via pentest tools such as Flipper Zero.

Comprehensive Defense against Cyber Threats in the EviVault NFC HSM vs Flipper Zero Duel

EviCore NFC HSM provides a comprehensive defense strategy against both physical and logical attacks in the EviVault NFC HSM vs Flipper Zero duel. Its defenses include countermeasures against tampering, cloning, side-channel analysis, and reverse engineering. As the battle between EviVault NFC HSM and Flipper Zero intensifies, EviCore NFC HSM remains steadfast in protecting your secrets and ensuring a resilient defense against emerging cyber threats.

The EviCore NFC HSM technology operates without batteries and is activated on-demand, optimizing energy usage by leveraging the NFC signal of an Android phone. This unique feature not only showcases the system’s efficiency but also its environmentally friendly design. With EviCore NFC HSM technology, you get the peace of mind offered by patented and unparalleled security in the security and safety of sensitive data such as blockchain and cryptocurrency private keys in the face of perpetually evolving challenges via pentest tools that are freely accessible and very useful for testing, especially the duality EviVault NFC HSM vs Flipper Zero.

How Flipper Zero reads and emulates NFC cards

Flipper Zero has a Reading NFC cards function that allows it to read, save and emulate NFC cards. An NFC card is a transponder that operates at 13.56 MHz and has a unique number (UID) as well as a part of rewritable memory for storing data. Depending on the card type, memory can be segmented into sectors, pages, applications, etc. When near a reader, the NFC card transmits the requested data.

Flipper Zero can read different types of NFC cards according to their standard and protocol:

  • NFC cards type A: MIFARE Classic®, MIFARE Ultralight® & NTAG®, MIFARE® DESFire®
  • NFC cards type B: Calypso®, CEPAS
  • NFC cards type F: FeliCa™
  • NFC cards type V: ICODE® SLIX
  • Unknown cards: cards not recognized by Flipper Zero

Flipper Zero can also emulate NFC cards by using the data saved in its memory. To do this, you have to select a card from the Saved list then press Emulate. Flipper Zero will then behave like an NFC card and can communicate with a compatible reader.

Flipper Zero can therefore communicate with EviCore NFC HSM technology using the ISO 15693 standard which is supported by the ST25R3916 component it uses. However as we have seen previously this communication is limited and secured by EviVault NFC HSM protection mechanisms. Moreover Flipper Zero can emulate an ISO 15693 card even if the emulator has limitations. Indeed, the ST25R3916 component used by Flipper Zero allows emulation according to the ISO 15693 standard via RFLA (RF/NFC Abstraction Layer). However this emulation has limits to be able to test the NFC HSM of Freemindtronic. This excludes, for example, the possibility of testing the security and carrying out malicious attacks by emulating an ISO 15693 64Kb NFC chip used by the NFC HSMs used by the EviVault NFC HSM technology.

If you want to know more about Flipper Zero’s Reading NFC cards function and its emulation possibilities you can check out the following links:

Flipper Zero’s Capabilities and Limitations in Attacking EviVault NFC HSM

Flipper Zero’s Support of NFC-V Protocol and Emulation

A New Feature in Firmware 0.85.2

Flipper Zero is a multifunctional gadget for hackers that supports NFC technology. It can read, write, clone, and emulate NFC cards using a built-in 13.56 MHz NFC module. Flipper Zero uses a ST25R3916 NFC controller and a RFAL library to handle high-frequency protocols (NFC) and facilitate the development of NFC applications.

Flipper Zero supports the NFC-V (ISO15693) protocol since the firmware version 0.85.2. This protocol is used by some NFC tags, such as transport cards or electronic labels. With this feature, Flipper Zero can read and emulate these tags, which can be useful for testing their security or having fun with them.

The NFC-V protocol is a contactless protocol that operates at 13.56 MHz and allows data transfer at a distance of a few centimeters, with a maximum speed of 26.48 kbit/s. The NFC-V protocol is based on the ISO15693 standard, which defines the physical and logical characteristics of NFC tags. The NFC-V tags are recognized by the NFC Forum as type 5 tags.

To use the NFC-V protocol with Flipper Zero, you need to select the “NFC” option in the main menu, then choose the “NFC-V” mode. Then you need to bring the Flipper Zero close to an NFC-V tag to detect it and display its information. You can then choose to perform different actions on the tag, such as:

  • Read: to read the content of the tag and display it on the screen of Flipper Zero. The tag can contain up to 256 blocks of 4 bytes each.
  • Write: to write data on the tag, by choosing the page and the bytes to modify. The writing can be protected by a password.
  • Clone: to copy the content of the tag into the internal memory of Flipper Zero. Flipper Zero can store up to 8 cloned tags.
  • Emulate: to make the reader believe that Flipper Zero is the original tag. Flipper Zero can emulate any cloned tag.

A Potential Threat for EviVault NFC HSM

This feature also introduces a potential threat for EviVault NFC HSM, as Flipper Zero can now emulate an NFC-V card and try to access its data or functions. However, this threat is not very serious, as EviVault NFC HSM has strong security mechanisms that prevent unauthorized access or tampering.

EviVault NFC HSM is a hardware security module that uses NFC technology to store and manage cryptographic keys. It is designed to protect sensitive data and transactions from unauthorized access or tampering. It can be used as a secure element for authentication, encryption, digital signature, or blockchain applications.

EviVault NFC HSM uses encryption, authentication, protection against cloning and replay, and other techniques to ensure that only authorized devices can interact with it. Even if Flipper Zero can emulate an NFC-V card, it cannot decrypt or modify its data, nor perform any cryptographic operations on it.

Therefore, Flipper Zero’s support of NFC-V emulation does not compromise EviVault NFC HSM’s security or confidentiality.

Documentation

If you want to learn more about Flipper Zero’s support of NFC-V protocol and emulation, you can consult the following documentation:

Flipper Zero’s Lack of Support for Energy Harvesting and Password Protection

Two Features of M24LR64E-R and ST25DV64KC Chips

The M24LR64E-R and ST25DV64KC are dynamic NFC/RFID chips with 64-Kbit EEPROM, energy harvesting, I2C bus and RF ISO 15693 interface. They are used by Freemindtronic for their EviVault NFC HSM products. They have two features that Flipper Zero does not support: energy harvesting and password protection.

Energy harvesting is a function that allows the chip to harvest energy from the RF field and use it to power external components. This can be useful for low-power applications or battery-less devices. The chip has an analog pin for energy harvesting and four sink current configurable ranges.

Password protection is a function that allows the chip to protect its data from unauthorized access or modification by using passwords. The chip has three 64-bit passwords in RF mode and one 64-bit password in I2C mode. The passwords can be used to protect one to four configurable areas of memory in read and/or write mode.

Two Limitations for Flipper Zero in Attacking EviVault NFC HSM

Flipper Zero cannot take advantage of these two features for several reasons:

  • Flipper Zero cannot emulate a tag NFC 15693 with a memory of 64-Kbit, because it does not have enough internal memory to store the content of the tag. It cannot therefore pretend to be the original tag and try to access its data or functions.
  • Flipper Zero cannot clone a tag NFC 15693 with a memory of 64-Kbit, because it does not have enough internal memory to copy the content of the tag. It cannot therefore create a duplicate of the tag and modify it at will.
  • Flipper Zero cannot write on a tag NFC 15693 protected by a password, because it does not know the password. It cannot therefore modify the data of the tag or make them inaccessible.
  • Flipper Zero cannot benefit from the energy harvesting function of the M24LR64E-R and ST25DV64KC chips, because it does not have an analog pin to harvest energy. It cannot therefore power external components with the energy of the tag.

These limitations further reduce Flipper Zero’s capabilities in attacking EviVault NFC HSM. While Flipper Zero can interact with NFC-V devices used by NFC HSM, it cannot emulate them, clone them, write on them. EviVault NFC HSM’s robust security mechanisms ensure that Flipper Zero cannot compromise its security or confidentiality.

Documentation

If you want to learn more about the M24LR64E-R and ST25DV64KC chips and their features, you can consult the following documentation:

Conclusion

In this article, we analyzed how Flipper Zero can test the security of or attack EviVault NFC HSM technology through malicious use. This technology enables secure offline physical storage of blockchain private keys, cryptocurrency wallets, NFTs, and smart contracts. It uses EviCore NFC HSM technology that offers a high level of protection and encryption for your keys and secrets. It also works with Freemindtronic’s NFC HSM devices that are contactless devices that can store and use your cryptocurrency keys and secrets. Flipper Zero is a tool that can read, write, clone and emulate NFC cards using a built-in NFC module. It supports the NFC-V (ISO15693) protocol since June 2023, which allows it to interact with the M24LR64E-R and ST25DV64KC chips used by EviVault NFC HSM. However, Flipper Zero cannot compromise EviVault NFC HSM, because it has robust security mechanisms that prevent unauthorized access or modification of its data or functions. These mechanisms include encryption, authentication, protection against cloning and replay, energy harvesting and password protection. Therefore, EviVault NFC HSM is a reliable and innovative solution for offline storage and use of cryptocurrency keys without risk of hacking or loss.

It is understood that to perform this type of invasive or non-invasive proximity test or attack, you must first physically obtain an NFC HSM with blockchain or cryptocurrency private keys stored via EviVault NFC HSM.

Since it is not possible to emulate a NFC-V NFC HSM of 64 KB iso 15963. That it is not possible to guess the decryption keys encrypted in AES considered post-quantum. In addition, encryption keys are segmented to annoy blockchain and cryptocurrency privates. EviVAult NFC HSM technology allows you to securely store physical offline blockchain private keys as well as their public addresses and public keys. You can use them contactlessly on Android NFC phone or all computers such as Microsoft Windows, Linux and iOS Apple. It also protects them from environmental hazards by using NFC chips coated with defense-grade resin.

To acquire products using EviVault NFC HSM technology, simply check that the product includes this technology. If in doubt, contact Freemindtronic by clicking here.

Comparison table of EviVault NFC HSM and Flipper Zero features

It might be useful to add this table of main features of EviVault NFC HSM and Flipper Zero to show the communication links that allow Flipper Zero to communicate with EviCore NFC HSM technology. Here is the table formatted with the features of EviVault NFC HSM and Flipper Zero.

Feature EviVault NFC HSM Flipper Zero
Encryption algorithm AES 256 bits and RSA 4096 None
Authentication mechanism Segmented key with 9 trust criteria None
Protection against cloning and replay Yes No
Power security device and black box Yes No
Wireless access control system Yes No
Memory size 64 KB EEPROM 1024 KB Flash
Memory encryption Yes No
Memory access lockout Yes No
Frequencies below 1 MHz 13.56 MHz ± 7 kHz 13.56 MHz / 125 kHz (LF) and (HF)
NFC standard
  • ISO 15693 and compatible ISO 18000-3 mode 1
  • 423 kHz and 484 kHz
  • 53 kbit/s data rate
NFC-A / ISO14443A, NFC-B / ISO14443B, NFC-F / FeliCa™, NFC-V / ISO15693, NFC-A / ISO14443A, NFC-F / FeliCa™ in card emulation, compliant with MIFARE Classic®
Sub-GHz frequencies None 315 MHz, 433 MHz, 868 MHz and 915 MHz
Bluetooth Yes: Protected by RSA 4096 for Freemindtronic’s Android NFC application and by AES-128 CBC from EviKeyboard BLE Bluetooth LE 5.0
Wifi Yes: Protected by RSA 4096 for Freemindtronic’s Android NFC application and unique ECC key for one-time use with the NFC HSM Browser extension Yes, optional
Infrared transmitter None Yes
RFID reader-emulator None EM-4100 and HID Prox cards only
NFC reader-emulator None Yes, but without encryption or authentication
Anti-counterfeiting Yes, by unique signature of 128 bits and access to segmented key None
iButton reader-emulator None Yes
GPIO connectors None 18
Man-in-the-middle attack by intercepting the NFC signal Secure Yes

Note that this table shows the differences between the features of EviVault NFC HSM and Flipper Zero when used to attack EviVault NFC HSM.

Digital signature: How Freemindtronic secures its software

Digital Signature EV Code Signing Certificate from Freemindtronic SL Andorra

Digital signature by Jacques gascuel This article will be updated with any new information on the topic, and readers are encouraged to leave comments or contact the author with any suggestions or additions.  

How Freemindtronic uses digital signature to secure its software

Digital security is the main focus of Freemindtronic. This innovative company offers software that use digital signature. This ensures their reliability and integrity. Some of these software are EviDNS and EviPC. They use NFC technology and asymmetric & symmetric cryptography. These techniques help to create, store and verify digital evidence. In this article, we will see the benefits of digital signature for users.

2024 Articles Technical News

Best 2FA MFA Solutions for 2024: Focus on TOTP & HOTP

2024 Articles Technical News

New Microsoft Uninstallable Recall: Enhanced Security at Its Core

2024 Digital Security Spying Technical News

Side-Channel Attacks via HDMI and AI: An Emerging Threat

2024 EviKey & EviDisk Technical News

IK Rating Guide: Understanding IK Ratings for Enclosures

2024 Digital Security Technical News

Apple M chip vulnerability: A Breach in Data Security

What is digital signature?

Digital signature is a process that allows to authenticate the origin and content of a document or a computer program. It relies on the use of a digital certificate, which attests to the identity of the signer, and a private key, which allows to encrypt the data. The private key is stored on a secure physical device, called USB token, which requires a PIN code to be activated. Thus, digital signature protects the private key from theft or loss.

Why choose EV Code Signing Certificate Highest level of Security?

Freemindtronic has chosen the EV Code Signing Certificate Highest level of Security, which is the highest level of security available on the market. This certificate has the following characteristics:

  • It complies with the authentication standards of the CA/Browser Forum and Microsoft specifications, which ensures compatibility with major browsers and operating systems.
  • It establishes the reputation of the signer in Windows 8.0 and later versions, Internet Explorer 9 and later versions, Microsoft Edge, and Microsoft SmartScreen® Application Reputation filter, which increases user confidence by displaying the identity of the signer before running applications.
  • It supports all major 32-bit/64-bit formats, such as Microsoft Authenticode (kernel and user mode files, like .exe, .cab, .dll, .ocx, .msi, .xpi, and .xap), Adobe Air, Apple applications and plug-ins, Java, MS Office Macro and VBA, Mozilla object files, and Microsoft Silverlight applications.
  • It includes a timestamp functionality, which allows to continue using signed applications even after the expiration of the signature certificate.
  • It comes with a free USB token with a 3-year certificate.

How does digital signature benefit users?

By using a high-level digital signature, Freemindtronic guarantees its customers the quality and security of its software, while distinguishing itself from its competitors in the digital security market. Users can enjoy the following benefits:

  • They can verify the authenticity and integrity of Freemindtronic software before installing or running it.
  • They can avoid warnings or errors from browsers or operating systems that may prevent them from using unsigned or poorly signed software.
  • They can trust that Freemindtronic software is free from malware or tampering that could compromise their data or devices.
  • They can access Freemindtronic software even if they are offline or if their internet connection is unstable.
BENEFITS DIGITAL SIGNATURE
Authenticity ✔️
Integrity ✔️
Reputation ✔️
Compatibility ✔️
Security ✔️
Accessibility ✔️

In conclusion, Freemindtronic is a leader in digital security solutions, such as EviDNS and SecureSafe360, which use NFC technology and asymmetric & symmetric cryptography to create, store and verify digital evidence. To ensure that its software is reliable and secure, Freemindtronic uses a high-level digital signature that complies with industry standards and specifications. Users can benefit from this signature by verifying the identity and content of Freemindtronic software before using it. They can also avoid potential problems caused by unsigned or poorly signed software. Finally, they can access Freemindtronic software even when they are not connected to the internet.

PassCypher NFC HSM: Secure and Convenient Password Management

PassCypher NFC HSM contactless hardware password manager Freemindtronic Technology from Andorra

PassCypher NFC HSM by Jacques Gascuel This article will be updated with any new information on the topic, and readers are encouraged to leave comments or contact the author with any suggestions or additions.

Discover Secure Password Management with PassCypher NFC HSM and PassCypher Pro NFC HSM

Protect your passwords with innovative solutions from PassCypher. From contactless management to invention patents, enhanced security, and versatility, find out how PassCypher provides you with a convenient and secure solution for password management. Don’t let data vulnerability be a concern anymore. Dive into our dedicated article on PassCypher products and take control of your password security.

2024 Eurosatory Events Exhibitions Press release

Eurosatory 2024 Technology Clusters: Innovation 2024 DataShielder Defence

Articles Electronics News Press release Technologies

Freemindtronic’s Legacy: Rediscovering Excellence

2022 CyberStealth Eurosatory Press release

EviStealth Technology at Eurosatory 2022

2022 Cyber Computer Eurosatory Press release

Cyber Computer at Eurosatory 2022

2022 Contactless Dual Strongbox Eurosatory Press release

The Contactless Dual Strongbox for sensitive data at Eurosatory 2022

Discover our other articles on digital security

PassCypher NFC HSM and PassCypher Pro NFC HSM: Secure and Convenient Password Management

Introduction

PassCypher offers a range of contactless hardware password managers known as PassCypher NFC HSM and PassCypher Pro NFC HSM. These products are protected by three invention patents and incorporate EviPass, EviOTP, and EviCore NFC HSM technologies, along with Freemindtronic’s NFC HSM devices, EviTag, and Evicard. PassCypher allows you to securely and conveniently store and manage passwords, one-time passwords (OTP), and HMAC-based passwords. It eliminates the need for a power source or internet connection. Additionally, PassCypher features a built-in RSA 4096 key manager with a random generator capable of changing the key up to one million times without any risk of error. It seamlessly works on Android NFC-enabled phones with fingerprint access control and is compatible with computers supporting Chromium-based or Firefox-based web browsers with autofill and auto login functionalities. For computer use, users need to install the PassCypher NFC Web Browser Extension and EviDNS software, which acts as a hotspot for pairing the extension with the PassCypher NFC HSM application through the local network. PassCypher is not compatible with Safari.

 

Features and Benefits

PassCypher’s web browser extension offers several convenient features, including:

Management of Paired Phones

With PassCypher, you can easily manage the phones paired with the EviCore NFC HSM for Web Browser extension. You can add phones to the list of paired devices, manage favorites, make direct calls, and delete paired phones.

Create a New Label (Secret)

PassCypher enables you to create labels containing sensitive information such as login IDs, passwords, OTPs, or HOTPs. You can define the name of the label and use an intelligent random password generator for login IDs and segmented keys. Additionally, PassCypher allows you to create a compatible QR Code for each label.

Digital Post-it

Retrieve labels from the NFC HSM in clear text using the Digital Post-it feature. This enables you to manually use the information for copying and pasting, including login IDs.

Free Tools: Advanced Password Manager

PassCypher offers a real-time entropy state bar based on Shannon’s mathematical function and a passphrase generator. It also includes various features such as checking if your password has been compromised in a data breach, generating personalized password and segmented key labels, and fetching login credentials and cloud keys.

Authenticator Sandbox

The Authenticator Sandbox function provides automatic anti-phishing protection by verifying the URL before authorizing auto-filling login fields. It leverages EviCore NFC HSM technology to store the URL during the first automatic login to a favorite site. Upon subsequent logins, PassCypher checks if the URL matches the auto-login request, ensuring seamless and secure authentication.

Segmented Key Generator

PassCypher introduces an innovative segmented key generator that requires multiple parties to reconstruct the key. The extension automatically populates the appropriate fields for each key component, ensuring the key’s integrity and security.

Pwned Function (Enhanced Cybersecurity)

Pwned offers proactive monitoring for online credentials. By leveraging a database of compromised usernames and passwords, PassCypher securely checks if your login information has been compromised in past data breaches. This feature helps prevent identity theft by promptly alerting you to compromised credentials and enabling you to change your password immediately.

Secret Phrase Generator (Passphrase)

Generate mnemonic phrases with basic salting using PassCypher’s Secret Phrase Generator. You can customize the number of words in your passphrase and choose special characters for separation. The real-time entropy control based on Shannon’s mathematical function enhances the security of your passphrases.

 

Advantages of PassCypher

PassCypher offers numerous advantages to its users:

  1. High-level Security: High-level security: PassCypher provides optimal security with AES 256-bit segmented key post-quantum encryption in NFC HSM memories, zero-knowledge architecture, patented technology and an integrated RSA 4096 key that enhances share security and remote backup of OTP passwords, segmented keys and secret keys.
  2. User-Friendly: PassCypher is easy to use with its contactless NFC card or tag, which can be conveniently placed on smartphones, computers, or other compatible devices.
  3. Environmentally Friendly and Cost-effective: PassCypher eliminates the need for batteries, cables, or power sources, making it eco-friendly and cost-effective.
  4. Versatility: PassCypher can manage passwords, OTPs, and HOTPs, providing two-factor authentication capabilities.
  5. Compatibility: PassCypher is compatible with various operating systems (Windows, Linux, MacOS, Android, iOS) and web browsers based on Chromium or Firefox.
  6. One-time Purchase: There are no financial commitments or subscriptions required to purchase PassCypher products.
  7. Absolute Anonymity: PassCypher follows the principles of zero-trust and plug-and-play, requiring no account creation or collection of personal or hardware information. It ensures complete user anonymity.
  8. Built-in Black Box: The NFC HSM Tag and Card devices feature a black box that records certain events, such as the number of incorrect password attempts, providing traceability and security.
  9. Air Gap Functionality: PassCypher operates in an air gap mode, independent of servers or secret databases. It securely stores all data in real-time on the volatile memory of the phone or computer.
  10. Physically Decentralized Authenticator Sandbox: The Authenticator Sandbox autofill and auto login feature is securely stored within the Evicypher application on Android phones. This allows for extreme portability across multiple computers, utilizing the energy harvested from the phone’s NFC signal without contact.
Freemindtronic win awards 2021 Next-Gen in Secrets Management with EviCypher & EviToken Technologies
Freemindtronic win awards 2021 Most Innovative in Hardware Password Manager with EviCypher & EviToken Technologies

Freemindtronic Receives Global InfoSec Awards for Innovative PassCypher NFC HSM Technology

Freemindtronic, the proud developer of PassCypher NFC HSM, has been recognized as a winner of the prestigious Global InfoSec Awards during the RSA Conference 2021. The company was honored with three awards, including the titles of “Most Innovative Hardware Password Manager” and “Next-Gen in Secrets Management” by Cyber Defense Magazine. This achievement highlights Freemindtronic’s commitment to delivering cutting-edge cybersecurity solutions. With PassCypher NFC HSM’s advanced technology, users can enjoy secure and convenient password management. Join us as we celebrate this remarkable accomplishment and learn more about the exceptional features that make PassCypher a standout choice for safeguarding sensitive information.

Disadvantages of PassCypher

Despite its many advantages, PassCypher has a few limitations:

  1. NFC Device Requirement: PassCypher requires an NFC-compatible device to function, which may limit its use on certain devices or in specific situations.
  2. Risk of Loss or Theft: Like any portable device, PassCypher can be lost or stolen, necessitating backup and recovery measures.
  3. Incompatibility with Safari: PassCypher is not compatible with the Safari browser, which may be inconvenient for Mac or iPhone users.

Lifecycle

PassCypher has an exceptionally long lifecycle, estimated to be over 40 years without maintenance or a power source. It can handle up to 1,000,000 guaranteed error-free read/write cycles, equivalent to daily use for over a millennium. PassCypher is designed to withstand extreme temperatures ranging from -40°C to +85°C. It is also resistant to shocks, scratches, magnetic fields, X-rays, and its TAG version is enveloped in military-grade resin, surpassing IP89K standards for superior waterproofing. As a result, PassCypher offers exceptional durability and resilience against external factors.

Comparison with Competitors

PassCypher stands out from its competitors in several ways:

  1. Contactless Hardware Manager: PassCypher is the only password manager that operates without requiring physical contact, providing a more convenient and hygienic solution compared to USB keys or biometric readers.
  2. Patent Protection: PassCypher is protected by three international invention patents, ensuring exclusivity and reliability compared to other solutions in the market.
  3. Innovative Technology: PassCypher incorporates EviPass, EviOTP, and EviCore NFC HSM technologies, along with Freemindtronic’s NFC HSM devices, EviTag and Evicard, providing unparalleled performance and features.
  4. RSA 4096 Key Manager: PassCypher is the only password manager that offers an RSA 4096 key manager with a random generator, allowing for one million key changes without the risk of error. This provides an additional level of security and flexibility..
  5. Value Proposition for Customers: PassCypher brings significant value to its customers by enabling them to:
    • Protect their data: PassCypher ensures the security of personal and professional data, guarding against hacking, theft, or loss.
    • Simplify password management: PassCypher centralizes the management of passwords and access codes, offering a user-friendly solution for securely handling them.
    • Securely access online accounts: PassCypher enables secure access to online accounts, even without an internet connection or power source.
    • Benefit from innovative technology: By choosing PassCypher, customers gain access to innovative and patented technology developed by Freemindtronic, a leading company in the NFC HSM field.
    • Flexibly secure secrets: PassCypher offers various options for securely backing up secrets, including cloning between NFC HSM devices (EviCard or EviTag), partial or complete copying between nearby or remote devices using RSA 4096 public key encryption, or encrypted archiving on any encrypted storage media using the RSA 4096 public key of an NFC HSM EviCard or EviTag. This flexibility provides peace of mind and adaptability to customers.
    • Choose the appropriate storage format: PassCypher is available in three different formats with varying secret storage capacities, allowing customers to choose the one that best suits their needs and budget.
    • Multilingual Support: The PassCypher Android application and web browser extension are available in 14 different languages. Users can use PassCypher in their preferred language, including Arabic (AR), Catalan (CA), Chinese (CN), German (DE), English (EN), Spanish (ES), French (FR), Italian (IT), Japanese (JA), Portuguese (PT), Romanian (RO), Russian (RU), Ukrainian (UK), and Bengali (BIN). This feature provides a personalized experience and facilitates the use of PassCypher in various international contexts.

Comparison with Competitors

To better understand the advantages of PassCypher compared to other solutions in the market, here is a comparative table:

Features PassCypher NFC HSM Competitor A Competitor B
Contactless Management Yes Yes No
Invention Patents Yes (3 international patents) No Yes (1 national patent)
NFC HSM Technology Yes (EviPass, EviOTP, EviCore) No Yes (proprietary technology)
RSA 4096 Key Manager Yes No Yes (RSA 2048 key)
Versatility Passwords, TOTP, HOTP, Fingerprint Passwords Passwords, Fingerprint
OS Compatibility Windows, Linux, MacOS, Android, iOS Windows, MacOS Windows, Linux, MacOS, Android
Browser Compatibility Chromium- or Firefox-based browsers Chrome, Firefox, Safari Chrome, Firefox
One-Time Purchase Yes Subscription Yes
Data Protection AES 256-bit, Zero-knowledge architecture for NFC memory AES 128-bit AES 256-bit, ECC, RSA 4096
Virtual Keyboard Support USB Bluetooth Multilingual No No
Biometric Authentication Fingerprint (from NFC-enabled phone) No Fingerprint (selected devices)
RSA-4096 Key Regeneration Yes (up to 1 million times without errors) N/A N/A
PassCypher Pro Compatibility All OS, Computers, TVs, NFC-enabled phones Limited compatibility Limited compatibility

This table highlights the unique features of PassCypher, such as contactless management, invention patents, NFC HSM technology, RSA 4096 key manager, and extensive compatibility with operating systems and browsers. Compared to competitors, PassCypher offers superior versatility, enhanced security, and flexibility in purchasing options.

Comparison with Competitors

PassCypher stands out from its competitors in several key aspects. Let’s compare PassCypher NFC HSM and PassCypher Pro NFC HSM with two major competitors in the market, Competitor A and Competitor B.

PassCypher NFC HSM vs. Competitor A

PassCypher NFC HSM offers contactless management, protected by three international invention patents, and utilizes advanced NFC HSM technology (EviPass, EviOTP, EviCore). It includes an RSA 4096 key manager, enabling secure key changes and flexibility. PassCypher NFC HSM supports passwords, OTPs, and HOTPs for versatile authentication. It is compatible with various operating systems and browsers, including Windows, Linux, MacOS, Android, and iOS, as well as Chromium and Firefox. PassCypher NFC HSM is available for one-time purchase, providing long-term value and eliminating subscription fees. With AES 256-bit data protection and a zero-knowledge architecture, PassCypher ensures the highest level of security.

In comparison, Competitor A also offers contactless management and AES 128-bit data protection. However, it lacks the extensive patent protection, advanced NFC HSM technology, and RSA 4096 key manager provided by PassCypher. Additionally, Competitor A may have limited compatibility with operating systems and browsers, restricting its usability for some users.

PassCypher NFC HSM vs. Competitor B

PassCypher NFC HSM surpasses Competitor B with its contactless management, three international invention patents, and NFC HSM technology (EviPass, EviOTP, EviCore). It includes an RSA 4096 key manager for secure and flexible key changes. PassCypher NFC HSM supports passwords, OTPs, and HOTPs, providing versatile authentication options. It offers compatibility with a wide range of operating systems and browsers, including Windows, Linux, MacOS, Android, and iOS, as well as Chromium and Firefox. The one-time purchase model of PassCypher NFC HSM eliminates ongoing subscription fees. With AES 256-bit data protection and a zero-knowledge architecture, PassCypher ensures the utmost security for user data.

In comparison, Competitor B offers contactless management, AES 256-bit data protection, and compatibility with multiple operating systems. However, it lacks the advanced NFC HSM technology, invention patents, and RSA 4096 key manager offered by PassCypher, limiting its capabilities and security features.

Conclusion

PassCypher NFC HSM and PassCypher Pro NFC HSM are cutting-edge solutions for secure and convenient password management. With advanced NFC HSM technology, patent protection, and versatile features, PassCypher offers unparalleled security and flexibility. Whether it’s protecting personal or professional data, simplifying password management, or securely accessing online accounts, PassCypher provides a comprehensive solution.

By choosing PassCypher, users gain access to innovative technology, a one-time purchase model, and multilingual support. PassCypher’s ability to securely back up secrets and its compatibility with various operating systems and browsers further enhance its appeal. In comparison to its competitors, PassCypher demonstrates superior versatility, advanced security measures, and a user-friendly approach.

Discover the next level of password management with PassCypher NFC HSM and PassCypher Pro NFC HSM, and experience the peace of mind that comes with secure and convenient password management.

To contact us click here

NRE Cost Optimization for Electronics: A Comprehensive Guide

NRE cost optimization for electronics digital computer cyber security by Freemindtronic from Andorra

NRE Cost Optimization for Electronics by Jacques Gascuel This article will be updated with any new information on the topic, and readers are encouraged to leave comments or contact the author with any suggestions or additions.

Summary

NRE cost optimization for electronics is a key factor for ensuring the profitability of electronic product development. NRE cost can be reduced by using different levers and tools, such as optimizing the V-cycle, the WBS, and the schedule, and using the TRL scale to assess the maturity of technologies. Freemindtronic is an example of a company that uses these techniques to optimize NRE cost for its electronic products with PCB, which are based on its patented technologies and offered under license and white label services.

2024 Articles Cardokey EviSwap NFC NDEF Technology GreenTech Technical News

NFC vCard Cardokey: Revolutionizing Digital Networking

2024 Articles Cyberculture EviPass Password

Human Limitations in Strong Passwords Creation

2024 Articles Digital Security EviKey NFC HSM EviPass News SSH

Terrapin attack: How to Protect Yourself from this New Threat to SSH Security

2023 Articles Cyberculture EviCypher NFC HSM News Technologies

Telegram and the Information War in Ukraine

Articles Crypto Currency Cryptocurrency Digital Security EviPass Technology NFC HSM technology Phishing

Ledger Security Breaches from 2017 to 2023: How to Protect Yourself from Hackers

Articles Digital Security EviCore NFC HSM Technology EviPass NFC HSM technology NFC HSM technology

TETRA Security Vulnerabilities: How to Protect Critical Infrastructures

2023 Articles DataShielder Digital Security EviCore NFC HSM Technology EviCypher NFC HSM EviCypher Technology NFC HSM technology

FormBook Malware: How to Protect Your Gmail and Other Data

Articles EviCore NFC HSM Technology legal News Training

Dual-Use Encryption Products: a regulated trade for security and human rights

Discover our other articles on digital security

Efficient NRE Cost Optimization for Electronics

NRE Cost Optimization, in the field of electronic product development, plays a central role. This one-time cost, associated with designing, testing, and developing a new product, has a direct impact on the product’s unit cost and the profit margin. Therefore, estimating and optimizing NRE cost are essential for ensuring the project’s viability and profitability.

NRE cost depends on several factors, such as:

  • The complexity and size of the product
  • The quantity and frequency of the orders
  • The technology, tools, and methods used for designing, manufacturing, and testing the product
  • The software associated with the product
  • The royalty fee paid to the technology provider

The complexity and size of the product can drive up the costs due to the increase in material and labor costs. On the other hand, larger and repeated orders can reduce the NRE cost per unit, as fixed costs are distributed over more units.

In this article, we will explain how to calculate NRE cost for electronic products with PCB (printed circuit boards), which are the core components of any electronic device. We will also present three main levers to reduce NRE cost for electronic products with PCB: optimizing the V-cycle, optimizing the WBS (work breakdown structure), and accelerating schedule. Finally, we will introduce the TRL scale (technology readiness level scale), a tool that can help you optimize NRE cost for electronic products with PCB by assessing and comparing the maturity of different technologies.

We will also show you how Freemindtronic, an Andorran company specialized in security and cybersecurity of computer systems and information systems, uses the TRL scale to optimize NRE cost for its electronic products with PCB. Freemindtronic also offers its technologies under license, including international patents, and provides white label product creation services.

NRE cost optimization for electronics digital cyber security by Freemindtronic from Andorra

How to Calculate NRE Cost for Electronic Products with PCB?

To optimize NRE cost for electronic products with PCB, you need to know how to calculate it. NRE cost can be divided into four main categories:

  • Design cost: this includes the software tools for CAD (computer-aided design), licenses, salaries of designers, etc.
  • Fabrication cost: this includes the materials, equipment, tools, personnel, etc. for manufacturing the electronic components and assembling them into a product.
  • Test cost: this includes the measurement devices, test software, salaries of testers, etc. for verifying the functionality and quality of the product.
  • Software cost: this includes the firmware, drivers, embedded systems, applications, extensions, etc. associated with the product.
  • Royalty cost: this includes the fee paid to the technology provider for using their technology in the product.

To calculate NRE cost for electronic products with PCB, you need to estimate the time and resources required for each category. You can use historical data from previous projects or industry benchmarks as references. You can also use online calculators or software tools to help you estimate NRE cost.

In addition to these categories, you also need to consider the software associated with the PCB,

which ensure its functionality and interaction with the user or other systems. The software associated with the PCB include:

  • Firmware: they are embedded in the PCB and control the behavior of the electronic components. They are usually written in low-level (assembler) or intermediate-level (C, C++, etc.) languages. They are specific to the product and must be adapted to the characteristics of the PCB and the electronic components.
  • Drivers: they are installed on the computer or system that communicates with the PCB. They allow the system to recognize the PCB and transmit data between the PCB and the system. They are usually written in high-level (C#, Java, Python, etc.) languages. They must be compatible with the operating system and communication protocol used.
  • Embedded systems: they are installed on the PCB or on another support (memory card, hard disk, etc.). They allow to manage the functions of the product and provide a user interface. They are usually written in high-level (C#, Java, Python, etc.) languages. They must be adapted to the capabilities of the PCB and the needs of the product.
  • Applications: they are installed on the computer or system that communicates with the PCB. They allow the user to access the functionalities of the product and customize its settings. They are usually written in high-level (C#, Java, Python, Go, Type script, elvet etc.) languages. They must be ergonomic and intuitive for the user.
  • Extensions: they are installed on the computer or system that communicates with the PCB. They allow to add functionalities to the product or connect it to other services or systems. They are usually written in high-level (html, type script, web RTC, Java, java script, etc.) languages. They must be secure and respect compatibility standards.

These software must be designed, developed and tested in parallel with the PCB, in order to guarantee their coherence and performance. They must also be updated regularly to correct any bugs or to bring improvements to the product.

Besides these categories, you also need to consider the tools required for manufacturing and testing the PCB, which depend on the characteristics of the PCB and the requirements of the product. The tools for manufacturing and testing the PCB include:

  • Soldering machines: they allow to assemble electronic components on the PCB by soldering. There are different types of soldering machines, depending on the process used (wave soldering, reflow soldering, selective soldering, etc.).
  • Insertion machines: they allow to insert electronic components through holes in the PCB. They are used for through-hole components, which are fixed by soldering on both sides of the PCB.
  • Placement machines: they allow to place electronic components on the surface of the PCB. They are used for SMD (surface mount device) components, which are fixed by soldering on one side of the PCB.
  • Cutting machines: they allow to cut the PCB according to the desired shape. They are used to separate the different parts of the PCB or to adjust the size of the PCB.
  • Drilling machines: they allow to drill holes in the PCB to insert components or connectors. They are used to make connections between the different layers of the PCB or between the PCB and other elements.
  • Engraving machines: they allow to engrave patterns or inscriptions on the PCB. They are used to identify the PCB or to add technical or aesthetic information to it. For example, you can engrave the serial number, the manufacturer name, or the logo of the product on the PCB.
  • Measurement devices: they allow to verify the electrical and physical characteristics of the PCB. They include various devices such as multimeters, oscilloscopes, logic analyzers, insulation testers, etc. These devices allow you to measure the electrical and physical characteristics of the PCB, such as voltage, current, resistance, capacitance, frequency, etc.
  • Test software: they allow to control the functionality of the PCB and electronic components. They include various software such as simulation software, fault injection software, functional analysis software, etc. These software allow you to test the behavior of the PCB and electronic components under different conditions and scenarios.

These tools must be chosen according to the type and complexity of the PCB, as well as the level of quality required for the product. They must also be calibrated and maintained regularly to ensure their reliability and accuracy.

To illustrate how to calculate NRE cost for electronic products with PCB, let’s take an example of a project that involves developing a new product based on a 4-layer PCB with 1000 components (800 SMD and 200 through-hole). The project duration is 12 months and requires two engineers (one for design and one for test) with a salary of $3000 per month each. The project also requires a CAD software license ($5000), a fabrication service ($5000), a test service ($5000), a software development service ($10 000), and a royalty fee (5% of sales).

The following table shows how to calculate NRE cost for this project:

Item Formula Cost
Human resources (3 000 + 2 000) x (1 + 0.5) x 2 x 12 $90 000
Software tools $10 000
Materials $5 000
Equipment $15 000
Software $10 000
Royalty fee 0.05 x 200 000 $10 000
Total NRE cost Sum of above items $140 000

As you can see, NRE cost can be quite high for electronic products with PCB, especially if the product is complex or requires specific technologies or tools. Therefore, it is important to optimize NRE cost by using different levers and tools that can improve the efficiency and quality of the product development process.

Three Main Levers to Reduce NRE Cost for Electronic Products with PCB

To optimize NRE cost for electronic products with PCB, you need to know how to reduce it. NRE cost can be reduced by using different levers and tools that can improve the efficiency and quality of the product development process. In this section, we will present three main levers to reduce NRE cost for electronic products with PCB:

  • Optimizing the V-cycle: this is to optimize the design process of the product, which follows a V-shaped model that consists of four main phases: definition, design, verification, and validation. Optimizing the V-cycle relies on the following sub-levers:

Defining clearly and precisely the customer needs and product specifications, which are translated into functional and technical requirements for the product. This helps to avoid ambiguity and misunderstanding, and to align the expectations of all stakeholders. Designing modular and scalable product, which allows reusing existing components or technologies and adapting easily to future changes or improvements. This helps to reduce the design cost and time, and to increase the flexibility and adaptability of the product. Making prototypes and mock-ups, which allow testing the product in real conditions and collecting customer feedback. This helps to validate the feasibility and functionality of the product, and to identify and correct any errors or defects before mass production. Planning rigorously and realistically the project, taking into account technical, financial, and temporal constraints, and anticipating possible contingencies. This helps to optimize the use of resources, to avoid delays and budget overruns, and to manage risks effectively. Monitoring and controlling regularly the project, using performance indicators and appropriate project management tools, which measure the progress of the project and identify deviations from the initial plan. This helps to ensure the quality and efficiency of the project execution, and to take corrective actions if needed. Validating systematically the product at each stage of the V-cycle, using appropriate methods and test criteria, which ensure compliance and quality of the product. This helps to verify that the product meets the customer needs and product specifications, and to obtain certification or approval from relevant authorities.

  • Optimizing the WBS (work breakdown structure): this is to structure the project into sub-projects, tasks, and activities, which are hierarchized and detailed according to their level of complexity and dependence. Optimizing the WBS relies on the following sub-levers:

Decomposing logically and coherently the project, respecting the principle of sum of parts equal to whole, that is, each element of WBS must contribute to achieving global project. This helps to clarify the scope and objectives of the project, and to avoid duplication or omission of work. Defining clearly and precisely deliverables associated with each element of WBS, specifying expected features, responsibilities, deadlines, and costs. This helps to define the expected outcomes of each element of WBS, and to assign roles and responsibilities to each actor of the project. Assigning resources needed for each element of WBS, taking into account skills, availability, and costs of human, material, and financial resources. This helps to allocate resources efficiently and effectively to each element of WBS, and to optimize the cost and quality of the project. Coordinating and communicating among different actors of project, using collaborative tools and agile methods, which promote information exchange and problem solving. This helps to ensure the coherence and consistency of the project, and to foster the collaboration and innovation among different actors.

  • Accelerating schedule: this is to reducethe total duration of project by optimizing use of available resources and minimizing idle times. Accelerating schedule relies on following sub-levers:Reducing duration of critical tasks that have direct impact on end date of project. For this, we can use techniques such as crashing (increasing resources assigned to a task) or fast-tracking (performing tasks in parallel instead of sequentially). This helps to shorten the critical path of the project, which determines the minimum time required for completing the project. Increasing parallelism of non-critical tasks that do not affect the end date of project, but can reduce the total duration of project. For this, we can use techniques such as overlapping (starting a task before the previous one is completed) or splitting (dividing a task into smaller subtasks that can be performed in parallel). This helps to increase the concurrency of tasks in the project, which reduces idle times and improves resource utilization. Eliminating or minimizing slack time of tasks that is the difference between the earliest and latest start or finish times of a task. For this, we can use techniques such as resource leveling (balancing the demand and supply of resources over the project duration) or resource smoothing (adjusting the resource allocation to reduce peaks and valleys in resource usage). This helps to optimize the slack time of tasks, which can be used to absorb uncertainties or delays, or to improve quality or performance.

These levers and tools can help you optimize NRE cost for electronic products with PCB by reducing errors, delays, and budget overruns by improving the quality and efficiency of the product development process. They can also increase customer satisfaction and confidence by demonstrating the compliance and quality of the product at each stage of development.

How to Use the TRL Scale to Optimize NRE Cost for Electronic Products with PCB?

Another tool that can help you optimize NRE cost for electronic products with PCB is the TRL scale, or technology readiness level scale. The TRL scale is a tool for measuring or indicating the maturity of a technology. It was originally developed by NASA in the 1990s as a means to manage the technological risk of its programs. The TRL scale can help you optimize NRE cost for electronic products with PCB by providing a common language and framework for assessing and comparing the maturity of different technologies in the context of a specific application, implementation, and operational environment. The TRL scale also helps you identify gaps and risks in your technology development process, and plan appropriate actions and resources to address them.

The TRL scale ranges from 1 to 9, with 9 being ready for commercialization. The TRL scale describes the performance history of a given system, subsystem, or component relative to a set of levels that correspond to different stages of development.

The following table summarizes the main characteristics and criteria of each TRL level:

The following table summarizes the main characteristics and criteria of each TRL level:

TRL Definition Description Criteria
1 Basic principles observed Scientific research begins and results are translated into future research and development Publication or report of basic principles
2 Technology concept formulated Basic principles are applied to practical applications and experimental proof of concept is obtained Publication or report of applied research
3 Analytical and experimental critical function and/or characteristic proof-of-concept Active research and design begin and proof-of-concept model is constructed Analytical studies and laboratory tests
4 Component/subsystem validation in laboratory environment Component pieces are tested with each other in a simulated environment Component integration and testing
5 Component/subsystem validation in relevant environment Breadboard technology is tested in a realistic environment with simulated interfaces System-level testing in relevant environment
6 System/subsystem model or prototype demonstration in a relevant environment Fully functional prototype or representational model is demonstrated in a realistic environment with actual interfaces System-level testing in relevant environment
7 System prototype demonstration in an operational environment Working model or prototype is demonstrated in an extreme environment with all interfaces System-level testing in operational environment
8 Actual system completed and qualified through test and demonstration Technology has been tested and “flight qualified” and is ready for implementation into an existing technology or technology system System-level testing in operational environment
9 Actual system proven through successful mission operations Technology has been “flight proven” during a successful mission and meets all performance requirements System-level testing in operational environment

What are the Benefits of Using the TRL Scale for Freemindtronic?

By using the TRL scale, Freemindtronic was able to achieve the following benefits:

  • Providing a common language and framework for assessing and comparing the maturity of its technology with other technologies on the market.
  • Identifying gaps and risks in its technology development process and planning appropriate actions and resources to address them.
  • Reducing errors, delays, and budget overruns by improving the quality and efficiency of its product development process.
  • Increasing customer satisfaction and confidence by demonstrating the compliance and quality of its product at each stage of development.

Freemindtronic also offers its technologies under license, including international patents, and provides white label product creation services. This allows its customers to protect their products and services created in their brand and embedding Freemindtronic’s technologies. In addition, they benefit from territorial protection in terms of international intellectual property. Freemindtronic also offers the possibility of negotiating an NRE royalty with its customers, depending on the added value of its technology and market conditions. Moreover, Freemindtronic has designed a mutualized offer of its NRE costs, distributed among all its customers under licenses. This has the effect of reducing the royalty cost attached to the NRE. This also has the effect of making affordable access to the different licenses, especially patented ones, which produce a low impact on the products marketed.

Freemindtronic guarantees an industrial quality of its products,

manufactured with industrial grade electronic components. It also ensures a complete traceability of the manufacture of its offline products and end-to-end cybersecurity from HSMs, from design to end user.

Conclusion and Contact Information

We hope that this article has given you some useful insights on how to optimize NRE cost for electronic products with PCB by using different levers and tools. We also hope that you have learned how to use the TRL scale to optimize NRE cost for electronic products with PCB by assessing and comparing the maturity of different technologies.

We also showed you how Freemindtronic, an Andorran company specialized in security and cybersecurity of computer systems and information systems, uses the TRL scale to optimize NRE cost for its electronic products with PCB. Freemindtronic also offers its technologies under license, including international patents, and provides white label product creation services.

If you have any questions or comments, please feel free to contact us. We will be happy to assist you with your project.

Thank you for your attention.

To contact us click here