

OATH Reference Architecture, Release 2.0
Initiative for Open AuTHentication (OATH)

The Initiative for Open AuTHentication (OATH) welcomes input, suggestions, and other feedback on this
work from as broad a range of industry participants as possible, in order to improve its quality. Feedback
should be sent to oath_technical@v2.listbox.com.

If you are interested in getting more information about OATH or joining OATH, please contact
info@openauthentication.org or visit http://www.openauthentication.org.

Copyright(c) 2004-2007, Initiative for Open AuTHentication. All Rights Reserved.

OATH Reference Architecture, Release 2.0
1

OATH Reference Architecture, Release 2.0
2

CONTENTS

1. Executive Summary .. 5
2. Abbreviations.. 6
3. OATH Vision and Goals... 8
4. Usage Scenarios .. 10

4.1. Remote Access.. 10
4.2. Online Banking ... 10
4.3. Telecommuting ... 10
4.4. Client and Business Partner Extranet.. 11
4.5. eGovernment... 11
4.6. 24x7 IT Infrastructure Support ... 11
4.7. Wireless Roaming... 11
4.8. Desktop Logon.. 11
4.9. Closed network ... 12

5. Authentication Framework ... 13
5.1. Client Framework ... 13
5.2. Provisioning and Management Framework .. 13
5.3. Validation Framework .. 14
5.4. Applications .. 14
5.5. Authorization .. 14
5.6. User Store.. 14
5.7. Policy Store... 14
5.8. Audit Store .. 14
5.9. Authentication and Identity Sharing ... 14
5.10. Risk evaluation and sharing .. 15

6. OATH Reference Architecture ... 16
6.1. Client Framework ... 16

6.1.1. High-Level Architecture ... 16
6.1.2. Salient Features... 17
6.1.3. Authentication Methods.. 18
6.1.4. Authentication Tokens .. 19
6.1.5. Token Interface ... 20
6.1.6. Authentication Protocols... 21

6.2. Validation Framework .. 22
6.2.1. High-Level Architecture ... 22
6.2.2. Salient Features... 24
6.2.3. Existing Standards and Technologies ... 25
6.2.4. OATH Focus Areas... 26

6.3. Risk evaluation and sharing framework ... 26
6.3.1. High-level architecture.. 26
6.3.2. Salient features.. 27
6.3.3. Existing Standards and Technologies ... 28
6.3.4. OATH Focus Areas... 28

6.4. Provisioning and Management Framework .. 28
6.4.1. High-Level Architecture ... 29

OATH Reference Architecture, Release 2.0
3

6.4.2. Salient Features... 30
6.4.3. Existing Standards and Technologies ... 31
6.4.4. OATH Focus Areas... 32

6.5. Common Data Model.. 33
6.5.1. Existing Standards and Technologies ... 33
6.5.2. OATH Focus Areas... 34

6.6. Authentication and Identity Sharing ... 34
6.6.1. Authentication Sharing ... 35
6.6.2. Identity Sharing... 38
6.6.3. Traditional Federated Identity... 38
6.6.4. User-centric Identity Sharing.. 39
6.6.5. OATH Focus Areas... 40

7. Example Deployment Scenario... 41
8. Summary of OATH Focus Areas.. 44
9. References... 46
10. Contributing members .. 49

OATH Reference Architecture, Release 2.0
4

1. Executive Summary
This document specifies version 2.0 of the reference architecture for the Initiative for Open
AuTHentication (OATH). The OATH Reference Architecture document describes a high-level technical
framework for open authentication, as envisioned by the OATH member companies.

The reference architecture is intended to explain OATH’s vision for authentication, as well as to provide a
high-level technical roadmap for its work. The intended audience includes decision makers and technical
architects from OATH member and nonmember companies, IT managers and architects from
organizations that are considering deploying strong authentication solutions, and other standards
organizations that share all, or part, of the OATH vision.

The work has been driven by the following guiding principles:

• Open and royalty-free specification - OATH intends to establish an open and royalty-free
specification for strong authentication by leveraging existing open standards, where possible, and
leading standardization efforts in well-established technical standards bodies where existing
standards are not available.

• Device innovation and embedding - OATH intends to specify components for low-cost, multi-

function authentication devices (e.g. tokens and smart cards that can support multiple
authentication methods) and transform today’s mobile devices (e.g., mobile phones, PDAs,
laptops, etc.) into strong authentication devices.

• Native platform support - OATH intends to facilitate native support (e.g. platform connectors) for

strong device and user authentication in application and identity management platforms. It also
intends to leverage existing infrastructure building blocks, such as LDAP directories and AAA
servers.

• Interoperable modules - OATH intends to enable best-of-breed solutions through a framework

of interoperable components. In this way, a user organization will be able to deploy modules
(both software and service-based) and devices (both hardware and embedded) from different
vendors, in a comprehensive authentication solution.

An open reference architecture, such as the one described in this document, will serve as a powerful tool
for fostering competition and innovation among key solution providers, such as device manufacturers,
identity management vendors, security service providers and application developers. It will, consequently,
lower the complexity and cost of deploying strong authentication in applications, thereby helping to realize
the OATH vision of “universal” strong authentication.

The rest of this document is structured, first of all, to provide a context for the work, in the OATH Vision
and Goals Section (Section 3) and the Usage Scenarios section (Section 4). The high-level
Authentication Framework is then introduced (Section 5). The next six sections provide greater detail in
the areas upon which OATH is planning to focus, viz. Client Framework (Section 6.1), Validation
Framework (Section 6.2), Risk evaluation and sharing (Section 6.3), Provisioning and Management
Framework (Section 6.4), Common Data Models (Section 6.5) and Identity-Sharing (Section 6.6). The
document concludes by describing an example deployment scenario (Section 7) and by summarizing the
OATH focus areas (Section 8).

OATH Reference Architecture, Release 2.0
5

2. Abbreviations

AAA Authentication, Authorization and Auditing
CA Certification Authority
CAP Chip Authentication Program
CMC Certificate Management Protocols over CMS
CNG Microsoft Cryptographic API: Next Generation
CMP Certificate Management Protocols
CMS Cryptographic Message Syntax
CRL Certificate Revocation List
CRM Customer Relationship Management
CRMF Certificate Request Message Format
CTKIP Crypto Token Key Initialization Protocols
DLOTA Download Over-the-Air Protocol
DRM Digital Rights Management
EAP Extensible Authentication Protocol
EIS Enterprise Information Systems
EMV Europay MasterCard Visa
ERP Enterprise Rights Management
GSM Global System for Mobile Communications
GSSAPI Generic Security Service Application Program Interface
GUI Graphical User Interface
HTTP Hyper Text Transfer Protocol
HOTP HMAC-based OTP
IdP, IDP Identity Provider
IETF Internet Engineering Task Force
I/O Input / Output
IPsec Internet Protocol Security
ISP Internet Service Provider
JAAS Java Authentication and Authorization Service
LDAP Lightweight Directory Access Protocol
MIDP Mobile Information Device Profile
MINA Multipurpose Infrastructure for Network Applications
OATH Initiative for Open AuTHentication
OCRA OATH Challenge Response Algorithm
OCSP Online Certificate Status Protocol
OMA Open Mobile Alliance
OTA Over-The-Air
OTP One-Time-Password
PAM Pluggable Authentication Module
PAP Password Authentication Protocol
PDA Personal Digital Assistant
PKCS Public Key Cryptography Standards
PKI Public Key Infrastructure
PSKC Portable Symmetric Key Container
RADIUS Remote Authentication Dial In User Service
RFC Request for Comments
SAML Security Assertions Markup Language
SASL Simple Authentication and Security Layer
SCEP Simple Certificate Enrollment Protocol
SI System Integrator
SIM Subscriber Identity Module
SME Small and Medium Enterprise
SMS Short Message Service

OATH Reference Architecture, Release 2.0
6

SPEKE Simple Password-authenticated Exponential Key Exchange
SSL Secure Sockets Layer
TACACS Terminal Access Controller Access Control System
TDS Transaction Digital Signing
TPM Trusted Platform Module
TLS Transport Layer Security
XKISS XML Key Information Service Specification
XKMS XML Key Management Specification
XKRSS XML Key Registration Service Specification
USB Universal Serial Bus
VoIP Voice over Internet Protocol
VPN Virtual Private Network

OATH Reference Architecture, Release 2.0
7

3. OATH Vision and Goals
More and more, organizations are leveraging the benefits of e-business by opening up their networks and
applications for access by employees, business partners and customers. The traditional method of
securing that access, the static password, is coming under increased scrutiny by IT and business
executives, as they come to the realization that password-based access-control, by itself, cannot meet
their information security and regulatory compliance requirements. A stronger digital identity must be
issued to information system users, in order to ensure that valuable information is not accessed, modified
or stolen by unauthorized users, and to ensure that the security, privacy and reporting requirements of
various industry regulations are met.

For this reason, OATH believes that the path toward strong digital identity must start with strong
authentication.

Strong authentication is the first pillar of trusted networks, in which identities can be trusted by
independent partners. It is the foundation for a more secure network, where all users and all devices are
strongly and mutually authenticated in an open, interoperable and federated environment. This
authentication ecosystem is depicted in the figure below.

Part
ne

rs
an

d
Cus

tom
ers

Chips and Devices

Plat
for

msApplications

Secure
IC & SIM

Token &
Smart card

Mobile
phone & PDA

Desktops,
Printers,
switches

Identity
mgt

Federated
Identity

sys

App
server

Web
serverVPN

Wi-Fi

Roaming

E & M
Commerce

DRM

ERP/CRM

Gov

SIs

Federation

Fortune
500

ISPs &
.com

Fraud
reporting

Figure 1 - Authentication ecosystem

In order to drive adoption of strong authentication across the entire user community— from corporate
employees, to Internet users, to people accessing all types of resources from healthcare records to
government services—the industry must collaborate to lower the complexity of, and the financial barriers
to, strong authentication. Open technical standards and deployment profiles that promote interoperable

OATH Reference Architecture, Release 2.0
8

components are powerful tools for lowering complexity and cost. Therefore, the development of an open
and royalty-free specification for strong authentication will be OATH’s initial focus. Open, universal,
strong authentication is intended to provide key constituencies (device manufacturers, identity
management vendors, security service providers and application developers) with a common framework
for strongly authenticating users and devices.

The open authentication vision has the following initial goals:

• To establish an open reference architecture for strong authentication, by leveraging existing open
standards, where possible, and leading standardization efforts in well-established technical
standards bodies where existing standards are not available.

• To propagate device credentials, strong authentication algorithms and authentication software to

many network end-points (e.g. desktop computers, servers, switches, WiFi access points and set-
top boxes).

• To propagate low-cost, multi-function authentication devices (e.g. tokens and smart cards).

• To transform today’s mobile devices (e.g. mobile phones, PDAs and laptops) into strong

authentication devices.

• To build upon well-established infrastructure components, such as directories and RADIUS
servers.

• To facilitate native support (e.g. platform connectors) for strong device and user authentication on

application and identity management platforms.

• To enable sharing of strong authentication tokens and credentials across organizations and

networks. To leverage emerging user-centric identity technologies and federated identity
protocols as powerful propagation and sharing mechanisms for strong authentication.

• To promote a vision of risk-based strong authentication where the authentication level is adjusted

commensurate with the perceived risk of each transaction. To enable better evaluation of risk
across organizations by enabling sharing of fraud patterns and other related information.

• To increase the number of packaged applications (e.g. enterprise resource planning (ERP),

material requirements planning (MRP) and customer relationship management (CRM)
applications) that support strong authentication, by providing a standard interface for
management and verification of strong authentication credentials.

• To enable best-of-breed solutions through interoperable components.

To be effective, the architecture must be jointly defined and published by key industry partners that share
the vision of universal strong authentication. By laying the groundwork for ubiquity, integration and
interoperability, an open architecture can decrease the risk and complexity of deploying strong
authentication products. In turn, the promise of reduced risk and cost will drive adoption among
enterprises, service providers and governments around the World. Ultimately, by making strong
authentication, for all users and all devices, part of the network fabric, the entire user community will
benefit. Last but not least, by increasing trust in the network end-points, new types of secure interaction
will become possible.

OATH Reference Architecture, Release 2.0
9

4. Usage Scenarios
In this section, we present some usage scenarios that highlight the need for strong authentication.

4.1. Remote Access
Salespeople, care workers, engineers and traveling executives need secure access to the corporate
network while ‘on the road’. These users demand the most flexible range of access methods including
the following.

• VPN over wireless, whenever their laptop / PDA can connect to a WiFi hotspot
• VPN over a broadband connection from a laptop when at home
• Wireless email and other lightweight applications from a PDA or other handheld device
• Web access to email and other Web-enabled applications from an Internet café or other insecure

PC

These users must be able to use a single set of secure authentication credentials at all of the access
points that the enterprise has enabled.

4.2. Online Banking
These days more and more banks are making their services available via the Internet. Online banking is
popular because it enables convenient 24x7 access for the bank’s customers while at the same time
lowers the overall transaction costs for the bank.

At the same time banks are cognizant about the increasing number and severity of threats on the Internet
and are considering deploying, strong authentication, as one of the key components of a multi-pronged
strategy. The key requirements for this use case are that the authentication credentials be easy to use by
a diverse user population, and easy and cost-effective to deploy. Additionally, users may be required to
authenticate and/or digitally sign their transactions.

In the simplest scenario banks have been using simple one-time password devices to augment traditional
username-password authentication for their online commercial banking applications. Another scenario
that is becoming popular in certain geographies is an EMV banking card on which separate CAP [CAP04]
application has been installed. This, together with an unconnected portable reader, is capable of
performing one-time-password challenge/response authentication and transaction signing (combining
challenge, amount and currency). This form-factor can be used directly in the online banking channel and
in ‘card not present’, 3dSecure transactions (where a user signs the data in an ecommerce transaction).

Since banking transactions have various levels of risk associated with them, banks are starting to deploy
risk-based authentication technologies. These technologies vary the authentication technique used
commensurate with the value of the transaction (e.g. viewing account balance versus transferring
$50000) and the risk associated with the request (e.g. request originating from a familiar device1 versus a
request originating from a kiosk). If the risk perceived is higher then the application should use a stronger
authentication technique.

4.3. Telecommuting
In this use-case, home-based staff access their office network over a DSL or cable broadband Internet
connection. The connection is typically secured using an IPsec or SSL VPN tunnel to provide the user
with, essentially, the same working experience as they would have if they had been physically present in

1 To identify the client device, the server typically calculates a ‘fingerprint template’ for each user’s computing
device (desktop or mobile) by capturing information from the device (such as a persistent cookie, the device’s IP
address and its browser type and version).

OATH Reference Architecture, Release 2.0
10

the corporate office. Increasingly, both computing and VoIP telephony services are being delivered to
remote employees over a broadband connection, allowing telephone, email and other services to be
delivered to them, as though they were present in the office.

The security of the remote location cannot be policed by the organization. So, it is critical that the user be
strongly authenticated before he or she is allowed access to the corporate assets. It is essential that
members of the user’s family, friends and housemates be prevented from impersonating the authorized
user.

4.4. Client and Business Partner Extranet
Specific individuals at client and business partner locations need to be granted deep and broad access to
core business systems, typically through Web portals. They need to be securely authenticated; it is no
longer sufficient to rely on just the IP address of the remote network to validate identity.

These individuals may be logging in from any Web-enabled system: a corporate desktop or home PC, for
example. And so, there should be no requirement for any form of reader device to be plugged into the
client system.

4.5. eGovernment
There is an increasing demand for ‘joined-up’ government, in which local authorities, central government
departments, law enforcement agencies, healthcare providers and other agencies communicate closely,
in order to provide the citizen with a more coherent and personalized service.

In order to comply with privacy regulations, it is essential that only the specific individuals at each agency,
who are responsible for a citizen’s case, be allowed access to their file, and this access must be
independently auditable.

Secure authentication of all officials and citizens is fundamental to the secure delivery of eGovernment
services.

4.6. 24x7 IT Infrastructure Support
Increasingly, SME, corporate and public-sector IT systems have to be operational 24x7, in order to
support the nonstop demands of their workforces, customers and partners. IT staff and outsourced
support engineers need to be able to gain instant access to core network infrastructure and servers from
a remote office; from home or wherever else they happen to be when they are alerted.

The access privileges granted to some of these users give them substantial power over the organization’s
entire IT infrastructure. And, if any of their identities were to be stolen, then the thief would have
complete control. Therefore, these users must be issued a strong form of authentication.

4.7. Wireless Roaming
Wireless users increasingly require ‘anywhere access’ throughout corporate offices and from public WiFi
hotspots. This use case is analogous to roaming on a mobile-phone network. The end-user can
seamlessly roam on a guest network. In this case, the guest network communicates with the user’s home
network to authenticate them. The home network could be a corporate network or a wireless service
provider to which the user subscribes.

4.8. Desktop Logon
In this use case, the user is required to present strong authentication credentials in order to log into a
desktop, which may be a Windows, LINUX or UNIX console. The user is typically required to present a
password or a PIN. Additionally, he or she may be required to present a second factor, such as a
smartcard, OTP token or a biometric sample.

OATH Reference Architecture, Release 2.0
11

4.9. Closed network
Information services, such as cable television, WiMax, etc. control access as a way of effectively charging
for the services. Device authentication is used to ensure that only identified and authorized devices can
receive the services of the network.

OATH Reference Architecture, Release 2.0
12

5. Authentication Framework
In this section, the high-level architecture for an open authentication system is presented. Figure 2
shows the high-level components of a generic authentication system. These components are described
briefly in this section. And some of the components (viz. the client, validation, risk evaluation,
provisioning and authentication and identity sharing frameworks) are discussed in greater details in
Section 6.

Client framework

Authentication
protocols

Authentication
protocols

Provisioning/
Management

protocols

Provisioning/
Management

protocols

Authentication
methods

Authentication
methods

Applications
VPN

Web app
Network

Web service
Terminal

…
AAA server

Applications
VPN

Web app
Network

Web service
Terminal

…
AAA server

Provisioning
And

management

Lifecycle
Help desk

…
Self-service

Provisioning
And

management

Lifecycle
Help desk

…
Self-service

Authentication
and

Identity sharing

Authentication
and

Identity sharing

ValidationValidation

AuthorizationAuthorization

User storeUser store

Policy storePolicy store

Audit storeAudit store

Risk evaluation
and sharing

Risk evaluation
and sharing

Authentication
tokens

Authentication
tokens

Token interfaceToken interface

Authentication
protocols

Authentication
protocols

Server framework

Figure 2 - Authentication architecture

5.1. Client Framework
The client framework enables a range of authentication methods, tokens and protocols to be supported
when deploying strong authentication in an enterprise or service-provider infrastructure. The client
framework allows standard-based integration of multiple forms of strong authentication using either
existing or new authentication technologies, and communicating using standard authentication protocols.

5.2. Provisioning and Management Framework
The provisioning and management component is responsible for provisioning and managing the entire
life-cycle of software modules and / or security credentials for an authentication device. The purpose of
this process is to bring the device from a “clean state” to a state where it can be used as an
authentication token (e.g. generating keys and provisioning an instance of an OTP token in software or
provisioning a connected token). The goal of the provisioning architecture is to accommodate secure and
reliable delivery of software and / or security credentials to any client device, using standard-based
protocols or programmatic interfaces.

OATH Reference Architecture, Release 2.0
13

5.3. Validation Framework
The validation component is responsible for validating authentication credentials of all types. The level of
assurance in the authentication event should be commensurate with the risk attached to subsequent user
actions. This risk may be evaluated statically (i.e. for all actions of the same type at any time) or
dynamically (i.e. taking into account contextual information, such as the user’s habitual behavior or
transaction pattern) by communicating with the risk evaluation and sharing module. Various applications
(such as VPN gateways and Web applications) that enforce authentication policies communicate with the
validation module using standard validation protocols. The goal of the validation framework is to enable
system architects to deploy validation services of different types in a consistent manner throughout their
systems.

5.4. Applications
Applications served by the authentication framework include those that need to strongly authenticate the
end-user (e.g. VPNs, Web applications, network routers, WiFi gateways, Web services, etc.). The
application communicates with the client framework using one of the standard-based authentication
protocols. Once the application has received the end-user’s credential, it communicates with the
validation module, using one of the supported validation protocols, to validate the credential.

5.5. Authorization
Once the user has been authenticated, the application may consult an authorization module before
granting the user access to the requested resources. The authorization component is responsible for
determining whether the user is authorized to access a particular resource, based on the applicable
access policy. The authorization component, although not used to authenticate the user, is included in
this architecture for completeness.

5.6. User Store
The user store is responsible for storing all end-user profile information. This may include a unique user
identifier (i.e. username), profile information (such as address, first name, last name, etc.), application-
specific attributes and authentication information (such as a password or token information, etc.). The
user store is typically an LDAP directory or a database.

5.7. Policy Store
The policy store is responsible for storing all policies. There are two deployment models for the policy
store. The first model uses a common policy store for all components of the architecture, as shown in
Figure 2. In the second model, some components (such as the validation and authorization components)
may have their own policy stores.

5.8. Audit Store
The audit store is a central repository for all audit and (optionally) operational events. As with the policy
store, an enterprise may choose to deploy a central audit store that collects audit events from all
components, or it may allow some of the components to have their own audit stores.

5.9. Authentication and Identity Sharing
The authentication and identity-sharing component is responsible for implementing the technology
primitives and models that enable sharing of authentication and/or identity information based on the
models discussed below.

OATH Reference Architecture, Release 2.0
14

5.10. Risk evaluation and sharing
Risk evaluation and sharing module is used to determine the risk associated with the particular
transaction. It determines the risk by comparing the transaction against known patterns for a particular
user’s behavior as well as by comparing it with known patterns of fraudulent activity. For e.g. based on
prior known fraudulent activity a certain set of IP addresses may be deemed as high risk.

It is well known that the fraudsters typically repeat fraudulent activity across enterprises. The risk module
enables sharing of fraud patterns across networks. This enables the risk module to update its fraud
patterns from one or more inter-organization fraud information exchange networks and update any
fraudulent patterns it has detect to one or more networks.

OATH Reference Architecture, Release 2.0
15

6. OATH Reference Architecture

6.1. Client Framework
The OATH reference architecture includes a flexible client framework for authenticating users and
devices. It supports a wide range of authentication methods, tokens and protocols, for strong
authentication in an enterprise or service-provider infrastructure. The client framework allows standard-
based integration of multiple forms of strong authentication, implemented using either existing or new
authentication technologies, and communicating using standard authentication protocols.

This section presents the high-level architecture for the OATH client framework, showing its salient
features. It then identifies the existing standards / technologies and OATH focus areas for four key
aspects of the client framework:

• Authentication methods
• Authentication tokens
• Token interfaces
• Authentication protocols

6.1.1. High-Level Architecture
The OATH client framework is shown in Figure 3, and the framework components and interfaces are
described below.

A

ut
he

nt
ic

at
io

n
To

ke
n

(h
ar

dw
ar

e
to

ke
n,

 s
m

ar
t c

ar
d,

 m
ob

ile

ph
on

e/
S

IM
 c

ar
d,

 T
P

M
, s

of
tw

ar
e)

OTP OTP

CertificateCertificate

Challenge/
response

Challenge/
response

BiometricBiometric

CookieCookie

…

Client

C

lie
nt

 A
pp

lic
at

io
ns

Token
Interface

(PKCS#11,
MS-CNG,
OTP-API,
GUI, etc.

Provisioning/
Management

protocols

Authentication
protocols

EAP-*, SSL/TLS,
HTTP Auth, Kerberos,
SASL, WS-Security,

Authentication
methods

Figure 3 – Client framework

Authentication method - A function for authenticating users or devices, including one-time-password
(OTP), symmetric key challenge / response, public key certificates and other methods.

Authentication token - A hardware or software container that implements one or more authentication
methods, and performs the security-critical client-side authentication operations and secure storage of
authentication credentials.

OATH Reference Architecture, Release 2.0
16

Token interface - The interface by which an authentication token communicates authentication data and
credentials with the client application. This interface may be either an API, in the case of a token that is
connected to the client application or a GUI, in the case of a standalone token, such as an OTP token.

Authentication protocol – The over-the-wire protocol used to exchange authentication data between the
client application and the server application. Authentication protocols support one or more authentication
methods, and there are many existing industry standard protocols.

Provisioning / management protocol - The protocol used to provision authentication credentials and
authentication token software, as well as providing ongoing life-cycle management. The OATH reference
architecture does not address user / identity provisioning, which is covered by other standards
organizations. The provisioning and management functions are addressed separately in Section 6.4.

Client Application - The software client that uses strong authentication to control access to an
application function, either locally or remotely over a network connection (such as the Web, VPN or email),
utilizing an authentication protocol to exchange authentication data with remote server applications. The
client application includes a provisioning agent to support client provisioning and management, as defined
in Section 6.4. The client application supports one or more token interfaces, and typically runs on a PC or
mobile device owned by a consumer or enterprise user.

6.1.2. Salient Features
The OATH client framework includes the following key features, to allow flexible strong authentication
deployments that offer cost, security, user convenience, functionality and performance characteristics that
suit the application.

User and device – Supports authentication of both users and devices.

Standalone and embedded - Supports both standalone token devices and embedded token / integrated-
device implementations.

Connected and unconnected - Supports both connected and unconnected modes of token operation.

Multi-vendor interoperability - Supports standard authentication algorithms to enable multi-vendor
interoperability of authentication tokens and validation servers.

Multi-key - Supports multi-key tokens (e.g. multiple instances of OTP credentials on one device, each
having a unique token ID associated with its service provider).

Multi-function - Supports multi-function authentication tokens (i.e. multiple authentication methods
supported on a single device, such as OTP and certificate-based authentication on the same smart card).

Multi-factor - Supports multi-factor authentication (i.e. two or three factor authentication as part of a
single session negotiation).

Wired and wireless - Supports Internet-based client applications and mobile / wireless client applications
for strong authentication from anywhere and from any device.

Multiple token interfaces - Supports multiple token interface APIs: PKCS #11, MSCNG and others in the
future.

Multiple clients - Supports multiple client applications (potentially implementing different authentication
protocols) with a common authentication token.

OATH Reference Architecture, Release 2.0
17

Trusted proxy - Supports a trusted proxy server implementation of the client authentication token
function to support low-end mass-market client devices (e.g. server-side OTP generation with SMS
transmission to mobile phones).

6.1.3. Authentication Methods
Authentication methods describe how to authenticate individual users and / or devices. Some
authentication methods and their relationships to authentication protocols are described below.

Existing Standards and Technologies
Password – The password authentication method is the oldest and still most commonly used method for
user authentication. However, password authentication is no longer considered adequately secure in
many applications, because users can share their passwords and because replay attacks have become
common. Password authentication, on its own, is not recommended by OATH. But, in order to provide a
more complete picture of available methods, it is described here. The password authentication method is
based on data matching. The user is identified by a user ID and their authentication password is matched
with the corresponding data stored by the validation service for that user.

One-Time-Password – The one-time-password, or OTP, authentication method can be divided into two
sub-types. Time-based methods rely on the transformation of a shared secret and a time value that is
synchronized between the server and the client. Event-based methods rely on the transformation of a
shared secret and an event count that is synchronized between the server and the client. Typically, the
event that is counted is the pressing of a button on the token. [HOTP]

Challenge / Response – The challenge / response authentication method is usually based on a shared-
secret transformation using symmetric-key hashing techniques. The server side sends the client a
challenge, and the client uses this challenge and the shared secret as input to the transformation. The
resulting output is the response, which is then sent to the server.

Transaction Signing – This method is a more advanced version of challenge / response, where the user
confirms certain details of the transaction (e.g. target account number, amount and currency, for a funds
transfer transaction). These details are then input into the algorithmic computation, often based on
symmetric cryptography. EMV-CAP Mode 2 with TDS [CAP04], APACS prompted Data Signing or OCRA
are examples of algorithms that support transaction signing. Usually the server would transmit the
specific details and the user would type them into a token or an unconnected smart card reader. The
token / reader would then display a response that is sent to the server for verification.

User certificate – Certificate-based authentication uses public-key encryption techniques, supported by a
public-key infrastructure (PKI) for key and certificate management. Digital certificates are issued by a
certification authority and they bind the user’s identity to their public key. In a typical certificate-based
authentication protocol, the client uses its private key to sign a challenge from the server, and the server
verifies the signature using the client’s certificate. [PKIX]

Biometric - Biometric authentication methods are based on a physiological characteristic of a user, such
as a fingerprint, iris image or facial image. Biometric authentication represents the “what you are”
component of multi-factor authentication. Biometric authentication is based on data-matching of the
captured biometric characteristic to a stored template.

Device fingerprint – A Web application may examine a persistent cookie, the source IP address and the
type and version of the remote user agent. This information can be used to identify suspected
impersonation attacks. However, because users legitimately change or update their browsers periodically,
this technique is subject to “false positives”. Nevertheless, it can be used as one in a set of risk metrics to
decide when step-up authentication is required.

OATH Reference Architecture, Release 2.0
18

Device certificate – Certificates can be embedded in a variety of network devices, such as cable
modems, set-top boxes and WiMax-compliant subscriber stations.

Trusted platform module – Trusted platform modules can be used to strongly authenticate appropriately
equipped computing devices. [TPM]

OATH Focus Areas
OATH has endorsed a new OTP algorithm standard called HMAC-based OTP [HOTP], based on the
HMAC SHA1 algorithm. It is an event-based OTP algorithm, in which a counter value is used in the OTP
calculation and incremented on both the client and server after each use. The algorithm has been
approved by the IETF for standardization as an Informational RFC [RFC4226]. OATH has also
developed a challenge / response algorithm based on HOTP, called OCRA (OATH Challenge-Response
Algorithm) and has submitted this specification to the IETF as an Internet Draft. OCRA also supports
short digital signatures. It will be submitted to the IETF for publication as an RFC in 2007. A time-based
OTP algorithm variant based on HOTP is also being developed as a 2007 roadmap item.

Areas of future work include additional extensions to the current HOTP algorithm.

• Develop a counter-based resynchronization method for clients that can send the count value to
the server along with the OTP value

• Develop a composite shared-secret (e.g. based on a user’s PIN or other deterministic data, for
computing the shared secret)

• Add a data field for computing OTP values

Additionally, OATH will promote standardization of other low-cost authentication technologies, specifically
ones that address consumer usage scenarios.

Some of the areas that OATH is investigating include scratch cards and methods derived from battleship
or bingo cards2.

6.1.4. Authentication Tokens
The OATH client framework is designed to support existing hardware token implementations, as well as
soft-token implementations on PCs, mobile phones and PDAs, and new technologies that combine
multiple authentication methods on a single token. Typical authentication system deployments support
multiple types of tokens to cover a broad range of user profiles, security requirements and application
scenarios. By using standard token interfaces and standard authentication algorithms, such as the
[HOTP], a range of authentication tokens can be supported in a uniform way within the OATH reference
architecture.

Existing Token Types
There are many forms of authentication token deployed today, including:

• Standalone OTP generators
• Smart cards
• EMV payment or debit cards containing a separate CAP application, in conjunction with an

unconnected reader
• USB key fobs
• Software tokens

2 In a battleship or bingo card, each user has a card printed with a unique two-dimensional grid of
characters. During authentication, the application challenges the user to enter characters that are located
at a dynamically-chosen set of coordinates in the grid.

OATH Reference Architecture, Release 2.0
19

• Trusted platform modules [TPM]

OATH Focus Areas
OATH’s objective is to foster innovation by encouraging the embedding of strong authentication
technologies into devices that the user carries for another purpose, such as a mobile phone, and to
provide flexibility and reduced cost through multi-function tokens. To allow for innovative token solutions,
OATH intends to champion the development of standards that are easily implemented on a range of
token types, as in the case of the HOTP algorithm. Specific areas of focus for tokens include the
following.

• Define soft tokens on mobile devices
• Define SIM-based authentication tokens
• Develop multi-key tokens to access multiple services using the same physical token
• Develop a reference implementation of the HOTP algorithm, to accelerate adoption (e.g. Java

smart card)
• Develop a reference implementation of OCRA on a token
• Develop a profile for an OATH identifier namespace to identify OATH credentials in a standard

vendor-independent format, based on the IEEE EUI-64 standard [EUI64]

6.1.5. Token Interface
The OATH reference architecture includes industry-standard interfaces between the client application and
the authentication token to enable interoperability between different vendors’ tokens and client
applications. The client framework also allows the authentication token to be integrated directly into the
application, as is the case for a soft token or SIM card on a mobile device, or to be operated as a
standalone device in either connected or unconnected mode. In connected mode, the token device may
interface to the client application either via a cryptographic API, such as PKCS #11 or MSCNG, or via an
API dedicated to the particular authentication method. In unconnected mode, the token requires a user
interface to display authentication values, such as one-time-passwords, and, optionally, a keypad to enter
a PIN, password or transaction details. Token Interfaces may support either single function or multi-
function tokens (i.e. those that support more than one authentication method, such as OTP and
certificate-based authentication, on a USB token).

Existing Standards and Technologies
Token interface standards already exist for PKI-based authentication, specifically:

PKCS #11 – See [PKCS#11].

MSCNG - Microsoft Cryptographic API: Next Generation [MSCNG] for Windows.

Other authentication methods rely on proprietary token interfaces.

OATH Focus Areas
The OATH reference architecture envisions both extensions to existing industry standard APIs and the
development of new APIs for the authentication token interface.

• Develop extensions to existing APIs to support OTP algorithms
• MSCNG will require extensions to support HOTP
• Other device-specific API extensions will be required as HOTP gains adoption
• New token interface APIs are foreseen
• A platform-agnostic thin API standard for the OTP token interface is required to allow multi-

vendor interoperability of hard / soft tokens and client applications, while insulating the application
developer from platform-specific implementations (the OTP retrieval API may be documented

OATH Reference Architecture, Release 2.0
20

separately from the token provisioning / management API, since many application developers will
not require access to the token provisioning and life-cycle management functions)

• HTML tags will be defined to identify authentication data elements in Web applications

6.1.6. Authentication Protocols
Over-the-wire authentication protocols are used to exchange authentication data between the client and
the server. Each authentication protocol supports one or more authentication methods. The OATH
reference architecture accommodates existing protocols, and envisions the development of extensible
protocols that can support new authentication methods as they are defined.

Existing Standards and Technologies
Providing a comprehensive framework for authentication services requires that we first have an
understanding of protocols and mechanisms currently in use. Listed below are the most common
authentication protocols with short descriptions of their use and references to more detailed descriptions.

Challenge Handshake Authentication Protocol - CHAP is an authentication protocol used to log a user
on to an Internet access provider. It was widely used in early dialup services. See [RFC1334] and
[RFC1994].

Extensible Authentication Protocol - EAP is used between a dialup client and a server to determine
what authentication protocol will be used. EAP is also widely used for other client / server authentication
services. See [RFC3748].

Generic Security Service Application Program Interface – GSSAPI provides security services to
calling applications in a generic fashion, supported by a range of underlying mechanisms and
technologies. It allows source-level portability of applications to different environments. The
authentication method specified by GSSAPI is very generic and further defined in other RFCs that build
on GSSAPI. See [RFC1508].

HTTP Basic and Digest Authentication - HTTP authentication describes username / password
authentication for HTTP 1.1. It is commonly used in combination with SSL to provide confidentiality for
the password (Basic) or a cryptographic hash of the password (Digest) as it is sent over the channel. See
[RFC2617]

Kerberos – The Kerberos network authentication protocol is used in a distributed computing environment.
It is based on the principle that the user authenticates to an authentication server. The server then grants
the user the right to request tickets from one or more ticket granting servers that issue authentication
tickets for any application that the user has the right to access. Kerberos acts much like a single-sign-on
solution between applications and trusted computers. Kerberos is, for example, used in Microsoft
Windows 2000 and above. See [RFC1510].

MSCHAP v1 and v2 - Microsoft's PPP CHAP dialect (MSCHAP) extends the user authentication
functionality provided on Windows networks to remote workstations. MSCHAP is derived from the PPP
Challenge Handshake Authentication Protocol. See [RFC2433] and [RFC2759].

Password Authentication Protocol – PAP is a two-way handshake protocol designed for use with PPP.
PAP is a plain-text password protocol used on older SLIP systems. It is not considered secure, because
it passes the credentials in clear text. See [RFC1334] and [RFC1994].

Simple Authentication and Security Layer - SASL defines a method for adding authentication support
to connection-based protocols. See [RFC2222].

S/Key – S/Key is an early one-time-password system, based on hashing, that protects against password
replay. See [RFC1760] and [RFC2289].

OATH Reference Architecture, Release 2.0
21

SSL/TLS - The transport layer security protocol is widely supported in standard Internet browsers and
Web servers. It is based on digital certificates, and can provide mutual authentication. See [RFC2246].

WS Security – The OASIS Web Services Security specification describes enhancements to SOAP
messaging that protect message integrity, confidentiality and source authentication. These mechanisms
can be used with a wide variety of security models and encryption technologies. WS-Security also
provides a general-purpose mechanism for associating security tokens with messages. See [WSS].

Sideband signaling - In certain types of man-in-the-middle and Trojan attacks, the adversary
impersonates the user by using the user’s genuine credentials on the user’s own device. Sideband
signaling may be used to mitigate this threat. Sideband signaling can be directly integrated into the
authentication protocol. This is a particularly appealing approach in situations where wireless devices
and wired devices are both participating in the authentication process, thereby providing multiple IP
communications paths to the user’s location. In addition to direct integration into the authentication
protocols, sideband signaling may be used to select the authentication protocol to be used. Sideband
signaling can further mitigate these attacks by requiring explicit out-of-band notification and / or
confirmation of high-value transactions.

OATH Focus Areas
OATH’s focus is to ensure that OATH credentials are supported as first class citizens in the various
authentication protocols that exist today.

6.2. Validation Framework
In any large organization, there may be several applications that make use of strong authentication. But,
it is unlikely that the same authentication method will satisfy all application and user constituencies.
Today, such an organization must deploy multiple authentication methods and possibly separate
infrastructures to support those methods.

The OATH validation framework enables vendors to write custom validation modules and it enables
enterprises to deploy multiple types of authenticators in the same infrastructure. Additionally, the
validation framework enables organizations to deploy multiple protocol handlers, such as RADIUS, OCSP,
etc.

The OATH validation framework benefits the organization that deploys strong authentication by enabling
the use of multiple authentication methods in the same infrastructure, thereby enabling phased rollout of
strong authentication solutions across a wider set of applications and user groups.

Today, each authentication vendor has to build a complete validation server. Implementations of the
OATH validation framework will remove the necessity for a vendor to rebuild a complete solution. Some
vendors may specialize in validation servers that comply with this framework. Others that offer identity
management products, such as AAA servers, may choose to implement this framework within their
existing products. Other vendors may choose to provide hosted validation services based on this
framework. This framework also enables vendors to develop pluggable modules that are specific to the
particular authentication method that they offer. The framework enables vendors to bring innovative
solutions to market more quickly.

6.2.1. High-Level Architecture
As shown in Figure 4, the validation framework consists of the following sub-modules.

OATH Reference Architecture, Release 2.0
22

IPSec VPNIPSec VPN

Web
application

Web
application

Router
(802.11)
Router

(802.11)

Validation
clients

Validation
protocols

(RADIUS, OCSP,
WS-Security,

Etc.)

SSL VPNSSL VPN

AAA ServerAAA Server

OtherOther

P
ro

to
co

l h
an

dl
er

 fr
am

ew
or

k

V
al

id
at

io
n

ha
nd

le
r f

ra
m

ew
or

k

Infrastructure layer
Configuration, Credential storage,

Authorization, Audit, Data storage interfaces

Protocol
handlers

Validation
handlers

WS SecurityWS Security

RADIUSRADIUS

OCSPOCSP

OtherOther

HOTPHOTP

Other OTPOther OTP

Challenge/
response

Challenge/
response

PKIPKI

OATH-
WebServices

Validation
Protocol

OATH-
WebServices

Validation
Protocol

Figure 4 - Validation framework

Protocol handler framework - This framework enables deployment of multiple protocol handlers. The
framework is responsible for I/O, threading, loading the handlers, etc. The framework defines the
necessary interfaces and configuration parameters.

Protocol handlers - A protocol handler is the component that implements support for a particular
validation protocol, such as RADIUS, OCSP or the OATH-WebServicesValidation Protocol.

Validation handler framework - This framework enables deployment of multiple validation handlers.
Among other things, the framework defines the necessary interfaces and configuration parameters and is
responsible for loading validation handlers.

Validation handlers - Each validation handler supports validation of a particular authentication method
(e.g., HOTP, RSA SecurID, etc.).

Infrastructure layer - The infrastructure layer provides some of the common functions that can be used
by the other components in the validation system. These include the various protocol and validation
handlers, as well as the frameworks themselves.

Configuration module - This module allows the registration and configuration of the various entities in
the system, such as the validation clients, protocol handlers and validation handlers.

Authorization module - This module configures the access policies that control which validation clients
can access which validation handlers.

Audit / logging module - This module allows the logging of various audit and operational events by the
components of the validation framework.

OATH Reference Architecture, Release 2.0
23

Data store interfaces - The data store interfaces are listed below. These interfaces enable the other
system components to store data, independent of the specific data storage technology.

• Configuration store interface
• Token store interface
• Audit / log store interface

6.2.2. Salient Features
The salient features of the OATH validation framework are as follows.

Multiple authentication methods - The validation framework supports validation of multiple
authentication methods, such as certificates, OTPs, challenge / response, etc., simultaneously. The
framework enables organizations to change the supported authentication methods by adding or removing
validation handlers. Additionally, the validation framework enables an enterprise to deploy multiple
flavors of a particular authentication method that can, for example, validate OTPs from different vendors
(e.g. HOTP and EMV-CAP), or validate certificates from different certification authorities. The validation
framework also has the ability to validate more than one authentication credential in the same transaction.

Multiple validation protocols - The validation framework enables validation clients to submit validation
requests using a variety of protocols, such as RADIUS, CRLs retrieved via HTTP or LDAP, OCSP,
OATH-WebServiceValidationProtocol, etc., simultaneously. The validation framework enables
organizations to change the supported protocols by adding or removing protocol handlers3. The
framework also enables a deployment with multiple instances of the same validation protocol.

Multiple validation clients - The validation framework enables multiple applications that need to validate
credentials (validation clients) to send requests simultaneously. The framework enables administrators to
configure authorization policies that control which validation clients can access which validation handlers.

Risk adaptive – The ability to enforce authentication methods that match the level of assurance to the
risk of identity fraud.

Standardized configuration - The validation framework supports standard primitives to configure the
validation and protocol handlers. It also provides a standard way to register and query the handlers.

Framework for logging audit and operational events - The validation framework supports common
methods for the handlers, and the framework components, to log audit and operational events.

Deployment agnostic - The validation framework may be deployed either on the premises of the
organization, or as a hosted service. Additionally, validation handlers may make remote calls to
distributed components in order to perform validation.

Data store abstraction - The validation framework provides appropriate data storage interfaces for data
such as token data, audit and operational data and configuration data. This allows an organization to use
the data storage technology that best meets its requirements.

3 Note that not all protocol handlers are able to support all the different authentication methods. I.e. not all
the paths of the 'imaginary crossbar switch' can be active. There are a couple of reasons for this – one is that some
protocols are designed for specific credential types (e.g., OCSP for PKI), and, secondly, it may depend on the
specific mode being used for the protocol, such as RADIUS (e.g., RADIUS CHAP).

OATH Reference Architecture, Release 2.0
24

6.2.3. Existing Standards and Technologies

Existing Validation Protocols
Lightweight Directory Access Protocol - LDAP is a protocol for accessing on-line directory services.
LDAP defines a relatively simple protocol for updating and searching directories over TCP/IP. Directories
are used to store information about end-users, including usernames and passwords. Consequently,
LDAP is often used by applications to validate the username and password of an end-user.

Online Certificate Status Protocol - OCSP is a method for determining the revocation status of an
X.509 digital certificate without directly using a CRL. OCSP's request / response nature leads to OCSP
servers being called OCSP responders. See [RFC2560].

Remote Authentication Dial In User Service - RADIUS is an authentication, authorization and
accounting (AAA) protocol for applications such as network access, which can be used in both local and
roaming situations. See [RFC2138].

Diameter - Similar to RADIUS, Diameter is an authentication, authorization and accounting (AAA)
protocol for applications such as network access or IP mobility. See [RFC3539].

Terminal Access Controller Access-Control System - TACACS is a remote authentication protocol. It
is commonly used in UNIX networks. It allows a remote access server to communicate with an
authentication server in order to determine if the user should be allowed access to the network. See
[RFC1492].

XML Key Management Specification - XKMS provides a secure method for registration and subsequent
life-cycle management of public-key information. The XML Key Management Specification (XKMS)
comprises two parts: the XML Key Information Service Specification (XKISS) and the XML Key
Registration Service Specification (XKRSS). XKISS may be used to validate a signature and the
certificate associated with that signature. See [XKMS].

Existing Authentication and Validation Interfaces
Pluggable Authentication Modules - PAM is a generalized API for authentication-related services,
which allows a system administrator to add new authentication methods simply by installing new PAM
modules, and to modify authentication policies by editing configuration files. PAM was first developed by
Sun Microsystems and is currently supported in Solaris, Linux, FreeBSD and NetBSD. See [PAM].

Java Authentication and Authorization Service - JAAS is an API that enables Java applications to
access authentication and access-control services without being tied to those services. It implements a
Java technology version of the standard Pluggable Authentication Module (PAM) framework, and
supports user-based authorization. This permits Java applications to remain independent of the
underlying authentication technologies. New or updated technologies can be plugged in without requiring
modifications to the application itself. Several sample authentication modules are available that
implement JNDI (Java Naming and Directory Interface), UNIX, Kerberos and Windows NT authentication.
See [JAAS].

Existing Protocol Handler Frameworks
Multipurpose Infrastructure for Network Applications - MINA is a framework for building network
applications with minimal effort. It provides a framework into which protocol providers (such as LDAP,
DNS, etc.) can be plugged, without having to deal with low-level I/O semantics and issues such as
concurrency. MINA provides support for both blocking and non-blocking network I/O, using the Java NIO
libraries. See [MINA].

OATH Reference Architecture, Release 2.0
25

6.2.4. OATH Focus Areas
OATH has chosen the following focus areas.

• OATH intends to promote the development of appropriate interfaces for both protocol and
validation handlers that will enable vendors to write pluggable handlers, as described above. In
particular, it will define JAAS modules for the HOTP and OCRA authentication methods.

• Existing validation protocols may be used by applications to authenticate an end-user’s

credentials. However, these protocols may not be adequate to support all the envisioned
authentication methods, credential types and deployment topologies (enterprise hosted or
outsourced). OATH will evaluate the requirement for standardized extensions to existing
protocols (e.g. RADIUS), and will investigate whether a requirement exists for one or more
additional validation protocols to meet the requirements of strong authentication.

• OATH will develop a Web-services validation protocol specification suitable for a variety of

authentication methods.

• OATH will develop a Web service interface for sharing identity-fraud pattern data.

6.3. Risk evaluation and sharing framework
Many organizations are starting to augment their deployments of strong authentication technologies with
a risk-based approach. The principal goal of the approach is to tailor the strength of authentication to the
level of risk associated with the actions requested by the user.

This approach is also typically more user-friendly. By using this approach the user can use more
convenient4 authentication methods in low-risk situations and needs to use the stronger authentication
technology when the risk is perceived to be high, for e.g. when accessing the application from an
unknown terminal or when transferring a large amount of money.

 Another benefit of this approach is that it reduces the ‘false-positive’ events – i.e. the scenario when a
genuine user is denied access to the application.

Risk can be calculated in a number of different ways. One approach is comparing the user’s current
behavior with their habitual behavior pattern – for example, a bank may have a customer who is a
housewife and typically accesses the application from the home computer. So, if there is an access from
another computer that could be perceived as an anomaly. Another approach is comparing the user’s
current behavior with known patterns of fraudulent behavior (e.g. request originating from known high risk
country), from the level of assurance in the user’s local network, etc.

The rest of this section describes a framework for incorporating risk-based authentication into applications.

6.3.1. High-level architecture
Figure 5 shows the high level architecture for the risk evaluation and sharing framework. .

4 There is typically an inconvenience cost associated with any strong authentication technology – maybe
this is because the user has to carry a token, or maybe because the user has to download special
purpose software on their machine.

OATH Reference Architecture, Release 2.0
26

Validation
framework

Risk evaluation
and sharing

Validation
protocol

Fraud
network
interface
(Thraud)

Authentication protocol

Fraud information
exchange network

User
store

Risk
interface

Validation client
(e.g web

application)

Figure 5 - Risk-based authentication architecture

The validation framework or the application (i.e. validation client) directly, queries the risk-evaluation and
sharing module using the risk interface. The risk component returns a risk score associated with that
particular transaction or request. Additionally, it may also return a set of authentication method identifiers
corresponding to the authentication methods that are suitable for that level of risk.

The validation framework or the validation client can then request the user to authenticate using one of
the suitable authentication methods. If the user successfully presents an appropriate authentication
credential then the risk is mitigated to an acceptable level.

As shown in the figure above, the risk evaluation and sharing component can learn the necessary
information about the user request in one of two ways:

1. It can monitor the user message-flow directly, or
2. The information can be supplied via the risk interface.

The risk component may also query the user store to find out what authentication mechanisms are
available to the user in question.

Finally, the framework also enables sharing of fraud patterns by connecting with the fraud information
exchange network. The network enables the risk module to update its database of fraud patterns from the
broader community while at the same time upload information about fraudulent transactions and patterns
that it has detected.

6.3.2. Salient features
The salient features of the OATH risk framework are as follows.

Open network interface – leverages experience across the industry

Step-up authentication – responds to the calculated risk

Personalized authentication methods – selects only authentication methods available to the subject

OATH Reference Architecture, Release 2.0
27

6.3.3. Existing Standards and Technologies
FS-ISAC - Anonymous reporting of incidents through trusted intermediaries, such as FS-ISAC

BITS - BITS and its Partner Group are looking at sharing a ‘negative database’, containing lists of closed,
bad or suspect accounts and players (e.g. bad merchants and individuals), such as is being built by Early
Warning, MasterCard, VISA and others

eFunds – Fraud detection capabilities in Checks and Cards, Merchant networks

RSA - eFraudnetwork sharing information and suspicious patterns

Bharosa - Proactive Fraud Intelligence Net sharing risk models for on-line fraud and fraud patterns

LUCID – Letix Universal Case Identification Database for law enforcement and other government
information-sharing initiatives

6.3.4. OATH Focus Areas
Work items for much of this architecture have already been defined or already exist on the OATH
roadmap. However, the following additional work items have to be completed.

• Fraud-pattern exchange - OATH will complete development of a Web service interface
specification for exchanging identity-fraud pattern data. OATH has currently proposed a draft
standard for exchanging transaction fraud information [THRD].

• Risk interface - The risk interface has to be defined. It allows the validation framework (or

application) to pass relevant information about the request/transaction and obtain, in return, a risk
score and/or identifiers for the set of authentication methods that both satisfy the risk requirement
and are available to the user.

• Validation protocol extension point - Extension points must be added to both the validation

protocol (OATH-WebServicesValidationProtocol) and the risk interface to allow the application to
pass the necessary context information to the risk component (schema for the context information
will not be defined at this stage).

• Language bindings - Bindings for both Java and Web-services are required for the risk interface.

• Database schema - The need to define database schema to contain the identifiers for the

authentication methods available to the user will be explored.

6.4. Provisioning and Management Framework
Devices come in many shapes and sizes, and their capabilities and functionality vary widely. It is
challenging to implement a single protocol for provisioning, and the subsequent life-cycle management, of
software components, for all the different types of security credentials and devices that are available. The
goal of the OATH provisioning and management architecture is to specify a framework that can
accommodate multiple standard-based provisioning protocols, in order to provision different types of
credentials to all types of devices. Additionally, for some platforms, the framework will enable
provisioning of authentication software to the device.

Typically, software components can be provisioned to a device using one of two methods:

1. Embedded at the time of manufacture or personalization of the device, e.g. SIM cards and
hardware tokens.

OATH Reference Architecture, Release 2.0
28

2. Loaded to the device, post-personalization, over a network interface, e.g. PDAs and mobile
phones.

The same options exist for provisioning security credentials.

Security credentials may also be provisioned to a secure repository and made available to a trusted proxy
server, such as an SMS OTP proxy server, in order to generate OTP values on behalf of the device.

The OATH provisioning architecture offers a generic and extensible framework for provisioning the
authentication token software modules and / or associated security credentials to devices.

6.4.1. High-Level Architecture
Figure 6 illustrates the OATH provisioning and management framework.

Challenge/
response

Challenge/
response

CertificateCertificate

OTPOTP

BiometricBiometric

Client framework

A
ut

he
nt

ic
at

io
n

to
ke

n
(H

ar
dw

ar
e

to
ke

n,
 S

m
ar

t c
ar

d,
 M

ob
ile

 p
ho

ne
,

S
IM

 c
ar

d,
 T

P
M

, S
of

tw
ar

e)

Pr
ov

is
io

ni
ng

 c
lie

nt
 a

pp
lic

at
io

n
(C

re
de

nt
ia

l p
ro

vi
si

on
in

g,
S

of
tw

ar
e

pr
ov

is
io

ni
ng

)To
ke

n
in

te
rf

ac
e

(P
K

C
S

#1
1,

 M
S

C
N

G
, G

U
I,

et
c.

)

Pr
ot

oc
ol

 h
an

dl
er

 fr
am

ew
or

k
(C

re
de

nt
ia

l p
ro

vi
si

on
in

g,
 s

of
tw

ar
e

pr
ov

is
io

ni
ng

Pr
ov

is
io

ni
ng

 a
pp

lic
at

io
n

fr
am

ew
or

k
C

re
de

nt
ia

l p
ro

vi
si

on
in

g,
 s

of
tw

ar
e

pr
ov

is
io

ni
ng

)

Infrastructure layer
Security policies, software packages store,

credentials store, communications,
configuration, audit

Provisioning protocol
Handler #1

Provisioning protocol
Handler #1

Provisioning protocol
Handler #3

Provisioning protocol
Handler #3

Provisioning protocol
Handler #2

Provisioning protocol
Handler #2

Provisioning
application #1
Provisioning

application #1

Provisioning
application #1
Provisioning

application #1

Provisioning
application #1
Provisioning

application #1

Provisioning server
C

re
de

nt
ia

l P
ro

vi
si

on
in

g/
M

an
ag

em
en

t p
ro

to
co

ls
So

ftw
ar

e
P

ro
vi

si
on

in
g/

M
an

ag
em

en
t p

ro
to

co
ls

EIS services

BillingBilling

Credential
issuance

Credential
issuance

Users
repository

Users
repository

Figure 6 - Provisioning framework

As shown in the figure, the provisioning architecture consists of three tiers:

• The provisioning client application
• The provisioning server
• The enterprise information systems or services

The Provisioning Client Application
The provisioning client application runs on a device or a personal computer. The provisioning client
application is responsible for provisioning the authentication token software modules and / or associated
security credentials to the device. The provisioning client application may implement one or more
provisioning protocols and may support one or more types of credential. Multiple provisioning client
applications may also coexist on the same device.

OATH Reference Architecture, Release 2.0
29

The Provisioning Server
As shown in the figure, the provisioning server consists of the following components.

Protocol handler framework - The protocol handler framework is built on top of the infrastructure layer
and supports the provisioning application framework through a generic application programming interface.
Different device platforms require different provisioning protocols. The framework enables deployment of
multiple provisioning protocols by specifying the necessary interfaces and configuration parameters. The
protocol handler framework may host several protocol handlers. These may include credential-specific
protocol handlers, such as XKMS, CTKIP and DSKPP, or software-specific protocol handlers, such as
J2ME DL and OMA DLOTA.

Provisioning application framework - The provisioning application framework defines generic
interfaces and configuration parameters for building and deploying provisioning applications. A
provisioning application implements the business rules for processing provisioning requests for
credentials and / or software. The provisioning application may process provisioning requests internally
or delegate them to an external system, such as a credential issuer, for servicing. Multiple provisioning
applications can coexist within the provisioning application framework. For example, one application may
be responsible for provisioning and managing the life-cycles of security credentials, such as HOTP
secrets, while another application may be responsible for provisioning and managing updates of the
authentication token software modules on the devices.

Infrastructure layer - The infrastructure layer forms the basis for the provisioning system. It provides
some of the common functions, such as client authentication, configuration, persistent storage and
communication to the top-level components of the system (i.e. the provisioning application framework and
the protocol handler framework). The infrastructure layer services may be provided by several modules,
including the following.

• Customer management module - This module allows access to, and management of, customer
records.

• Device inventory module - This module performs the registration and configuration of supported

devices, such as PDAs, mobile phones and SIM cards.

• Configuration module - This module performs the registration and configuration of the
components of the system, such as the protocol handlers, provisioning applications and
interfaces to external enterprise information systems and services.

• Security policies module - This module performs the configuration of the access policies that

control which provisioning clients may access which protocol handlers.

• Persistent storage interfaces - These interfaces enable the system components to store and /
or access persistent data, such as configuration data, credentials, software packages, security
policies, business rules and audit data.

• Enterprise Information Systems / Services - The provisioning application may connect through

the infrastructure layer to various external enterprise information systems and services, in order
to fulfill the business requirements. Such external systems may include:

o Credentials issuer
o Billing / payment system
o Enterprise user directory

6.4.2. Salient Features
The OATH provisioning framework supports the following key features.

OATH Reference Architecture, Release 2.0
30

Supports existing standards - Implementations of the OATH provisioning architecture allow vendors to
implement existing standard-based provisioning protocols. The framework also enables vendors and
customers to deploy proprietary provisioning protocols for provisioning and managing specific credentials
and devices.

Credentials provisioning - The protocol handler framework enables implementation and deployment of
secure protocols for credentials provisioning and subsequent life-cycle management (renewal, revocation,
suspension and reactivation).

Software provisioning - The protocol handler framework enables implementation of secure protocols for
software provisioning and subsequent life-cycle management (i.e. update and uninstall).

Multiple credential types - The protocol handler framework allows multiple credential provisioning
protocols to coexist and, hence, it allows provisioning of different types of credentials (shared keys,
certificates, etc.) to various devices.

Multiple device types - The framework supports a wide range of devices types.

Optimized provisioning protocols - The protocol handler framework supports highly optimized and
customized provisioning protocols to cope with device constraints, such as network latency, bandwidth,
memory, cryptographic capacity and processing power.

Multiple provisioning client applications - The client framework enables multiple provisioning client
applications to coexist, thereby handling different types of credentials on the same device.

Standardized configuration - The provisioning framework supports standard primitives for configuring,
registering and querying the protocol handlers and provisioning applications.

Framework for logging audit and operational events - The provisioning framework supports common
methods for protocol handlers and provisioning applications to log audit and operational events.

Data store abstraction - The provisioning framework provides appropriate data storage interfaces for
data, such as credential data, audit and operational log data and configuration data. This allows an
organization to use whatever data storage technology best meets its requirements.

6.4.3. Existing Standards and Technologies
There are several methods for secure credential provisioning to connected devices. However, existing
methods and protocols are usually designed to support one type of credential only. The objective of the
OATH provisioning framework is to support credential issuance, provisioning and other life-cycle
management functions for all types of credentials (e.g. symmetric keys, asymmetric key-pairs,
certificates) and for all types of devices.

Existing Credential Provisioning Protocols
This section describes some of the credential provisioning and related security protocols that can be
leveraged by the OATH provisioning architecture.

XML Key Management Specification - XKMS provides a secure method for the registration and
subsequent life-cycle management of public-key information. It comprises two parts: the XML Key
Information Service Specification (XKISS) and the XML Key Registration Service Specification (XKRSS).
The XKRSS specification defines an interface for a Web service that performs registration of public-key
information. Once registered, the public key may be used in conjunction with other Web services,
including XKISS. See [XKMS].

OATH Reference Architecture, Release 2.0
31

PKCS #10, CRMF and PKCS #7 - PKCS #10 and CRMF define standard syntax for certificate requests.
Certificate requests are sent to a certification authority, which transforms the request into an X.509 public-
key certificate. The resulting certificate, or certificate chain, is usually returned in PKCS #7 format. PKCS
#10, CRMF and PKCS #7 are widely supported in public-key infrastructures and public-key enabled
applications. See [RFC2986], [RFC2511] and [RFC2315].

Certificate Management Protocol - CMP provides protocols for certificate requests and management.
The protocol messages are defined for X.509 certificate creation and management. CMP defines online
interactions between PKI components, including an exchange between a certification authority and a
client. See [RFC2510].

Certificate Management Messages over CMS - CMC is a certificate management protocol using CMS.
The protocol defines an interface to public-key infrastructure components, based on CMS, PKCS #10 and
CRMF. See [RFC2797] and [RFC2630].

Simple Certificate Enrollment Protocol - SCEP was proposed by Cisco in an Internet draft. Its most
compelling feature is the possibility for automatically enrolling certificates for large-scale installations.
SCEP supports the RSA public-key algorithm only and leverages PKCS #7. See [SCEP].

Simple Password-authentication Exponential Key Exchange – SPEKE provides authentication and
key establishment over an insecure channel using only a small password, without risk of off-line dictionary
attack. SPEKE is a variant of Diffie-Hellman Encrypted Key Exchange (DHEKE). See [SPEKE] and
[DHEKE].

Crypto Token Key Initialization Protocols (CTKIP) Proposal - The CTKIP proposal provides a secure
method of initializing and configuring cryptographic tokens with secret keys, without exposing the secrets
to any entities other than the server and the cryptographic token itself. The protocol does not require
private-key capabilities in the cryptographic token, and does not mandate an established public-key
infrastructure. The initialization session may be secured either using a key, agreed beforehand between
the client and the server, or using the server’s public key. See [CTKIP].

Dynamic Symmetric Key Provisioning Protocol (DSKPP) Proposal –DSKPP is a proposed standard
for key provisioning that is based on the OATH-developed DSKPP Internet Draft and CTKIP. It is the
target IETF standard provisioning protocol that OATH sponsors. See [DSKPP] and [DSKPP1].

Existing Software Provisioning Protocols
This section describes existing methods and protocols for downloading software modules to devices.

Browser based download over HTTPS - Software modules can be downloaded to most devices using a
standard mobile Internet browser over HTTPS.

Download Over-The-Air (DLOTA) protocol - The DLOTA protocol is defined by the OMA Forum. It
defines a protocol for discovering and downloading content and applications to mobile devices. The
protocol can be used to download authentication token software modules. DLOTA security relies fully on
security in the transport layer, i.e. it uses HTTP basic authentication. See [DLOTA].

Java MIDP OTA provisioning - The Java MIDP 2.0 download protocol allows discovery and delivery of
Java MIDLets to Java devices. See [MIDPOTA].

GSM 03.48 applet download - GSM 03.48 defines a secure protocol for over-the-air delivery and
subsequent life-cycle management of SIM applets to SIM cards. See [GSM0348].

6.4.4. OATH Focus Areas
OATH has chosen the following focus areas.

OATH Reference Architecture, Release 2.0
32

• Existing protocols (such as XKMS) can be used to provision public-key information and shared
secret keys. However, given the limitations of low-end devices, such as SIM cards and some
mobile phones, these protocols may not be suitable. Therefore, OATH will evaluate the
requirement for standardizing one or more provisioning protocols for specific credential types.

• Different credential provisioning protocols have different requirements for handling user, token,

and credential identification. OATH will explore the requirement for standardizing a common
mechanism for managing these identities.

• For symmetric credentials, including OTP secrets, OATH has identified requirements and created

a draft provisioning protocol [DSKPP1]. OATH will work with the IETF KeyProv working group to
standardize a symmetric-key provisioning protocol, where DSKPP is submitted as one of the
input documents. A combined protocol from DSKPP1 and CTKIP has been drafted with the same
name, DSKPP, under the IETF KeyProv working group. A draft that has features from both
proposals and additional enhancements is under review.

• Different provisioning protocols may have different container formats for a securely protected

credential. OATH will explore the requirement for standardizing a common format for symmetric
key containers. OATH has submitted a standard format Internet Draft [PSKC] to the IETF
KeyProv working group. OATH will work with the IETF KeyProv working group to standardize a
portable symmetric-key container, where PSKC is the input document for this effort.

6.5. Common Data Model
The requirement for a common data model derives from two OATH principles.

• Minimize impact on existing infrastructure, and leverage existing infrastructure

• Drive interoperability and best-of-breed solutions

User store schema extensions - Most enterprises have expended significant resources in the last few
years to centralize their user stores; both employee directories and customer databases. By
standardizing the user store schema extensions required for strong credentials, and working with
directory vendors to make this part of their default schema, OATH will minimize the impact of strong
authentication on the user directory. Additionally, this will help to standardize the provisioning and
management of credential attributes, thereby allowing the enterprise to deploy a best-of-breed solution for
the provisioning, and life-cycle management, of credentials that is integrated with the rest of the
enterprise infrastructure.

Token metadata - Standardized token metadata will complement the validation and provisioning
frameworks described above. Token metadata standardization will enable vendors to ship token
information, including key material (e.g. shared secrets) in standardized formats that can be imported into
validation and provisioning modules supplied by other vendors.

6.5.1. Existing Standards and Technologies
This section describes existing standard data models.

InetOrgPerson - The inetOrgPerson object class is a general-purpose object class for holding attributes
of people. The attributes it holds were chosen to accommodate information requirements found in typical
Internet and intranet directory service deployments. The inetOrgPerson object class is designed to be
used within directory services based on the LDAP and the X.500 families of protocols, and it should be
useful in other contexts as well. It is not mandatory that directory-service implementers use the
inetOrgPerson object class; it is simply presented as a well-documented class that implementers can use
if they wish. See [RFC2798] and [RFC2251].

OATH Reference Architecture, Release 2.0
33

PKCS#5 XML – PKCS#5 defines a general key container format that can be used to store token
metadata. PKCS#5 XML specifies the PKCS#5 data format in both ASN.1 and XML formats. See
[PKCS5XML].

PKCS#12 – PKCS#12 defines a general key-transfer container format that can be used to store token
metadata. PKCS#12 specifies the data format in ASN.1. It is mainly used to transfer the private key of
an asymmetric key-pair. However, it also specifies a format for a symmetric key. See [PKCS12].

6.5.2. OATH Focus Areas
OATH has chosen the following focus areas.

• OATH plans to encourage development of standardized schema extensions for common user
stores such as LDAP directories.

• OATH intends to encourage development of standardized portable token metadata formats that

will complement its provisioning and validation frameworks. Specifically, OATH has proposed a
standard key container format to the IETF, called Portable Symmetric Key Container (PSKC).
The Internet draft specification is an input document to the IETF KeyProv working group, where it
will be included as one of the group’s deliverables.

6.6. Authentication and Identity Sharing
Most strong authentication solutions today are deployed on an enterprise-by-enterprise basis and used
only for a single application. There are several issues with such an approach – each enterprise needs to
provision a separate credential to all their users, thereby increasing the cost of the deployment.
Additionally, users have to potentially carry multiple devices resulting in poor user experience.

Therefore, if a single authentication token can be used across many sites, then it is much more likely that
the consumer will begin to carry it around as a necessary personal tool, much like a cell phone, car keys
or credit cards.

Token sharing can occur in several different ways, the two main ways are ‘authentication sharing’
and ’identity sharing’.

One approach could be to enable sharing of the authentication credential such as an OTP token as an
anonymous second factor that can be layered on top of your existing identities and thereby strengthening
your various identities. We call this approach as ‘authentication sharing’.

In the second approach, identity sharing technologies such as federated identity technologies are used to
assert the user’s strong identity across organizations. We refer to strong identity as an identity that is
backed by a strong authentication method such as an OTP token or a smartcard.

The liability model for the first approach is much simpler since the only thing that is shared across
organizations is a second factor strong authentication token that can be anonymous. The second
approach requires a higher level of liability risk for the participating organizations since you are sharing
user identities. In the first model each organization is typically responsible for vetting the user’s identity,
while in the second approach the relying parties are relying on the identity vetting performed by the
asserting Identity Provider or IdP.

While Identity sharing is a mature and well-understood concept, we are introducing the concept of a
shared second factor as a lighter-weight alternative to full identity sharing, and it may be a more
appropriate solution for strengthening authentication levels across consumer applications.

OATH Reference Architecture, Release 2.0
34

6.6.1. Authentication Sharing
Sharing second factors is a new approach that enables a network of Web-sites to leverage each other’s
authentication solutions, and thereby reduce the cost and time needed to deploy consumer strong
authentication.

Models
There are several models that can facilitate such a token-sharing ’network’ and allow ubiquitous strong
authentication for consumers. This section will discuss three different models:

• Centralized Token Service Model
• Distributed Validation Model
• Credential Wallet

The working assumption for these models is that second factor validation can typically be performed at
only one place, typically by the token-issuer. However, the models are agnostic in respect of the specific
authentication method (one-time-password, certificate, challenge / response, etc.) that provides the
second factor.

Centralized Token Service Model
The key concept in the first token-sharing model is a centralized token service infrastructure. See Figure
7. This centralized token service is responsible for provisioning and validating the second factor
credential – typically a certificate or an OTP from a hardware token. The token implementing the second
factor can be activated by multiple applications or Web-sites. Each application manages a separate first
factor – typically a username and password in its own user store. As part of the token activation life-cycle
phase, the application stores a mapping between the local username and the common second factor
token (e.g. by means of the serial number).

Figure 7 - Centralized token service model

The primary advantage of this model is its ease of deployment. By pushing the infrastructure for second
factor support into the service itself, the additional infrastructure that each application needs to deploy is
minimal (just a validation proxy to the service). Since the applications are just sharing the anonymous

OATH Reference Architecture, Release 2.0
35

second factor and not the user identity information, this model entails a relatively simple liability model,
which focuses more on the use of the token and its distribution and contents. On the other hand, one of
the limitations of this model is that the application will be dependent on the centralized service for second
factor validation.

Distributed Validation Model
The second token-sharing model balances the operational need for ‘control’ with the business need for
‘sharing’ strong authentication. This model enables token-sharing in a distributed fashion without requiring
a centralized token service, as in the first model. It is based on the familiar Domain Name System (DNS).

The key concept of this model is the Token Lookup Service (or TLS) that is analogous to the root DNS
server. The token lookup service stores the mapping of the token serial number and the IP address of
the validation server that can validate the second factor credential (OTP, etc.) obtained from that token.
We will call this validation server the Authoritative Validation Node (AVN) for that token serial number.
This model is shown in Figure 8.

4. Validate

Figure 8 - Distributed validation model

This model has been inspired by DNS and hence it can leverage proven technology and business and
deployment models. One of the primary advantages of this model is that it enables an organization to
implement strong authentication in isolation, joining a broader authentication network at some point in the
future. From the operational point of view, in this model, the application Web-site becomes dependent on
a third-party authentication infrastructure for its second-factor validation. Additionally, different token-
issuing parties may have deployed infrastructures with varying levels of sophistication.

Credential Wallet
This model leverages next-generation devices, like Java cell phones, PDAs and USB flash drives that
have storage and application capabilities and some form of built-in or external graphical interface for
managing credentials. See Figure 9. In this model, the device becomes a ‘wallet’ that can contain

OATH Reference Architecture, Release 2.0
36

multiple instances of a second-factor credential. For each site that needs strong authentication, the
necessary credential can be selected.

Each site can provision, manage and validate its own instance of the second factor credential, which is
typically an OTP token, on the same physical device; thereby obviating the need for users to carry
multiple tokens.

1. Provision

Figure 9 - Credential wallet

The primary advantage of this model is that the second-factor tokens are not shared, and hence, each
organization has the flexibility to deploy and manage its own second-factor authentication solution. There
are no external dependencies for validating the second-factor credential. The support and operational
models are relatively simple. However, in this model, each organization has to issue, deploy and manage
second-factor credentials for its users. Another limitation of this model is that, at the current time, not all
users have next-generation devices.

OATH Focus Areas
• Common token identifier namespace

• Protocol for token lookup service

• Provisioning protocols that enable provisioning of credentials to devices such as cell phones,

USB drives, etc.

• A Web-services validation protocol specification that enables validation of a variety of
authentication methods across networks.

OATH Reference Architecture, Release 2.0
37

6.6.2. Identity Sharing
Sharing of identity comprises all standards and technologies that enable the portability of identity
information across otherwise autonomous security domains. The identity provider (or IdP) is the domain
that authenticates the user identity and provides identity assertions to other domains (relying parties).
The identity assertion typically contains one or more attributes of the user identity.

This approach effectively enables the sharing of second-factor credentials across domain boundaries,
provided that the user is required to authenticate with a second-factor token to the identity provider. The
identity assertion typically includes an ’authentication context’. The authentication context is a set of
attributes that describes the credentials that the IdP used to authenticate the user in the first place. For
example, the IdP may add an authentication context to indicate that the user was authenticated using a
username / password and a one-time-password token.

Figure 10 shows a typical federated identity scenario.

Figure 10 - Federated identity

There are several types of identity-sharing – the traditional ‘enterprise-controlled’ or B2B approaches,
such as Liberty, as well as the more recent ‘user-controlled’ or ‘user-centric’ approaches such as OpenID
and CardSpace.

6.6.3. Traditional Federated Identity
Traditional approaches to identity-sharing on the Internet have been formalized through technologies
such as [SAML] and Liberty Alliance [LBTY] standards. These technologies enable use cases such as
cross-domain Web-based single sign-on; cross-domain user-account provisioning, cross-domain
entitlement management and cross-domain user attribute exchange. In these scenarios, the Identity
Provider typically controls with whom, where and when the identity may be shared. This has, typically,
worked well in enterprise-controlled, or B2B, scenarios.

OATH Reference Architecture, Release 2.0
38

6.6.4. User-centric Identity Sharing
More recently, another approach to identity-sharing has emerged – called user-centric identity or Identity
2.0. The major difference between this and the traditional approach is, typically, that there is an identity
agent that participates in every transaction on behalf of the user. The identity agent may be implemented
on the client (as in Microsoft’s CardSpace) or it may be hosted remotely (as in OpenID). There are three
major advantages to this approach:

• The user has absolute control over how, where, when and what identity attributes are shared.
• Scalability - there is no need for relying parties to be pre-registered with the identity provider.
• Usability – the user has a consistent user experience.

Figure 11 shows the CardSpace Identity Selector UI that lets the user choose which identity to disclose to
the relying party. Here, the user’s identity agent is manifested as a client on the user’s computer.

Figure 11 - CardSpace identity-selector user interface

Figure 12 shows the user interaction for OpenID. Here, the user’s identity agent is manifested as a
remote URL.

OATH Reference Architecture, Release 2.0
39

Figure 12 - OpenID user interface

6.6.5. OATH Focus Areas
There are several industry initiatives that enable identity-sharing or federated identity. Hence, OATH will
focus on collaborating, and making sure that OATH credentials are supported as “first-class citizens” in
emerging standards and technologies, such as CardSpace and OpenID.

Additionally, OATH will look at standardizing some attributes for use in the authentication context
component of an identity assertion. This will ensure that all applications and relying parties can expect a
consistent experience when the user uses an OATH credential to authenticate to the Identity Provider.

OATH Reference Architecture, Release 2.0
40

7. Example Deployment Scenario
In this section, we provide an example to illustrate how an implementation of the OATH reference
architecture might be deployed in the real world. In this example, a fictitious bank, called MyBank, has
deployed two-factor authentication for its retail banking customers. The bank has a mixed user
population, with three user categories.

• The first category contains mobile users who need to access their banking application from
multiple locations. Also, this set of users has next-generation mobile phones that are capable of
acting as a container for OTP credentials.

• The second category contains users who mainly access their bank from a single location.

• The third category contains users who already have tokens from Vendor A, provisioned as part of

a corporate banking application.

User 1:
OTP on mobile phone

User 2:
OTP on desktop

Pr
ot

oc
ol

 h
an

dl
er

 fr
am

ew
or

k

Pr
ov

is
io

ni
ng

 a
pp

lic
at

io
n

fr
am

ew
or

k

Infrastructure layer

Over-the-air
provisioning protocol

handler

Desktop
provisioning protocol

handler

HOTP software
provisioning
application

HOTP credential
provisioning

MyBank credential
provisioning server

O
TA

 p
ro

vi
si

on
in

g
of

 H
O

TP
so

ftw
ar

e
an

d
cr

ed
en

tia
l

fo
r m

ob
ile

 p
ho

ne

P
ro

vi
si

on
in

g
of

 H
O

TP
so

ftw
ar

e
an

d
cr

ed
en

tia
l

fo
r d

es
kt

op

HOTP
software

repository

HOTP
credential
issuance

User 3:
Vendor A OTP token

User 1:
OTP on mobile phone

User 1:
OTP on mobile phone

User 2:
OTP on desktop

User 2:
OTP on desktop

Pr
ot

oc
ol

 h
an

dl
er

 fr
am

ew
or

k

Pr
ov

is
io

ni
ng

 a
pp

lic
at

io
n

fr
am

ew
or

k

Infrastructure layer

Over-the-air
provisioning protocol

handler

Over-the-air
provisioning protocol

handler

Desktop
provisioning protocol

handler

Desktop
provisioning protocol

handler

HOTP software
provisioning
application

HOTP software
provisioning
application

HOTP credential
provisioning

HOTP credential
provisioning

MyBank credential
provisioning server

O
TA

 p
ro

vi
si

on
in

g
of

 H
O

TP
so

ftw
ar

e
an

d
cr

ed
en

tia
l

fo
r m

ob
ile

 p
ho

ne

P
ro

vi
si

on
in

g
of

 H
O

TP
so

ftw
ar

e
an

d
cr

ed
en

tia
l

fo
r d

es
kt

op

HOTP
software

repository

HOTP
software

repository

HOTP
credential
issuance

HOTP
credential
issuance

User 3:
Vendor A OTP token

User 3:
Vendor A OTP token

Figure 13 - MyBank provisioning infrastructure

Figure 13 shows the provisioning infrastructure deployed by MyBank. MyBank has deployed two
provisioning protocol handlers. One can provision authentication software and credentials over-the-air to
mobile devices. The second handler can provision authentication software and credentials to desktop
PCs. MyBank has also deployed two provisioning applications: a HOTP software provisioning application,
and a HOTP credential provisioning application. These applications talk to the HOTP software repository
and the HOTP credential issuer, respectively.

As shown in the figure, there are three users, representing each user category. User 1 has a mobile
phone, and is provisioned with the necessary HOTP software token and HOTP credential (shared secret)
using the OTA provisioning protocol. User 2 is similarly provisioned with the necessary HOTP software
token for the desktop and the corresponding HOTP credential, using the desktop provisioning protocol.

OATH Reference Architecture, Release 2.0
41

Finally, User 3 already has an OTP token from Vendor A. At this point, all three representative users can
access MyBank’s retail banking application using strong authentication.

Figure 14 shows the validation infrastructure deployed by MyBank. The validation deployment has two
different protocol handlers that can accept OATH-WebServicesValidationProtocol and RADIUS validation
requests. Also, MyBank has validation handlers to validate the two different flavors of OTP credentials
(HOTP and Vendor A’s OTP tokens) that have been deployed to the user population. It also has a
username / password validation handler that the application can leverage.

Corporate
Banking

Retail

Banking

Validation
Clients

Validation
Protocols

User 1

User 2

User 3

Protocol
Handlers

Validation
Handlers

OATH
WebServices

Validation
Protocol

HOTP

Vendor A
OTP

Username/
Password

Risk Evaluation and Sharing

RADIUS

Validation Framework

Infrastructure Layer

P
ro

to
co

l H
an

dl
er

 F
ra

m
w

or
k

V
al

id
at

io
n

H
an

dl
er

 F
ra

m
w

or
k

RADIUS

Risk
Interface

OATH-
WebServices

Validation
Protocol

Figure 14 - MyBank validation infrastructure

There are two applications that make use of this risk and validation infrastructure: a retail banking Web
application that communicates with the validation server using the OATH-WebServicesValidationProtocol,
and a corporate banking Web application that uses RADIUS as its validation protocol.

Additionally, the retail banking application also uses a risk-based approach to authentication by using the
risk evaluation and sharing module. In this approach the user is required to use an OTP credential when
the risk is perceived to be high. On the other hand the corporate banking web application requires the use
of an OTP credential at all times.

When the user connects with the retail banking web application the request is first passed to the risk
evaluation and sharing module using the risk interface. If the risk is perceived to be low, then the user
may log in to the application using username and password only. On the other hand if the request is
deemed to be high risk (e.g. from an unknown terminal) then the user is requested to enter an OTP in
addition to the username and password.

As shown in the figure, all three representative users can use the OTP values generated by their
respective tokens (viz. HOTP soft token on the mobile phone, HOTP soft token on the desktop and the

OATH Reference Architecture, Release 2.0
42

standalone token from Vendor A). The validation server will route the request to the appropriate handler
to validate the user credentials.

Note that the HOTP software token may have multi-key capabilities. In this case, the user can be
provisioned with more than one instance of the HOTP credential; one from MyBank and the other one
from a brokerage service or ISP, turning the user’s mobile phone or desktop into a credential wallet.

User 3 can, additionally, continue to log into the corporate banking application using Vendor A’s OTP
token. The validation request will be received by the RADIUS protocol handler and routed to the Vendor
A validation handler to be validated.

As this example shows, the OATH reference architecture enables MyBank to consolidate its various
credential provisioning, management and validation systems into a single infrastructure that can service
its diverse user population and application requirements.

OATH Reference Architecture, Release 2.0
43

8. Summary of OATH Focus Areas
The reference architecture described above, addresses five main architectural components: client
framework, validation framework, risk-evaluation framework, provisioning / management framework and
common data model.

Focus areas that OATH has identified are summarized below.

Client Framework

• Authentication methods - OATH will encourage the standardization of an OTP algorithm to
enable client / server interoperability for two-factor authentication, with extensions for event-
based, time-based and challenge / response variants such as OCRA. Additionally, OATH will
promote standard, low-cost authentication methods for consumer usage.

• Authentication tokens - OATH will foster innovation in tokens by embedding authentication

technologies into devices that users carry for other purposes, such as mobile phones, and by
providing flexibility and cost savings through multi-function tokens and multi-key tokens. OATH
will also consider the requirement for standards governing other aspects, such as a namespace
for the token identifier, based on the IEEE EUI-64 standard, in order to improve interoperability
among vendors.

• Token interface - OATH will promote extensions to existing APIs to support OTP algorithms,

such as HOTP, and define new token interface APIs, including a standard software token OTP
API, and authentication-specific HTML tags for Web applications.

• Authentication protocols - OATH is currently investigating the creation of a Web-services-

based standard authentication protocol. OATH’s aim is to promote, either by extension or
creation, a royalty-free protocol that supports validation of authentication requests with a variety
of methods, as described above. OATH will research the use of sideband signaling through
separate IP channels (e.g., wired and wireless) to address more advanced account hijacking
threats associated with ID theft and phishing / pharming. It will define HTML tags to identify
authentication-related data elements in Web applications.

Validation Framework

• Pluggable validation handlers - OATH will promote the development of appropriate interfaces
(for both protocol and validation handlers) that will enable vendors to write pluggable validation
handlers. In particular, it will define JAAS Modules for HOTP and OCRA.

• Web-services validation protocol - OATH will develop a Web-services validation protocol

specification suitable for a variety of authentication methods.

• Credential-specific validation protocols - OATH will evaluate the requirement for either

specifying standardized extensions to existing validation protocols (e.g. RADIUS) or standardizing
one or more additional validation protocols that target specific credential types.

Risk evaluation framework

• Fraud-pattern exchange - OATH will complete development of a Web-services interface
specification for exchanging identity-fraud pattern data.

• Risk interface - The risk interface has to be defined. It allows the validation framework (or

application) to pass relevant information about the request/transaction and obtain, in return, a risk
score and/or identifiers for the set of authentication methods that both satisfy the risk requirement
and are available to the user.

OATH Reference Architecture, Release 2.0
44

• Validation protocol extension point - Extension points must be added to both the validation
protocol (OATH-WebServicesValidationProtocol) and the risk interface to allow the application to
pass the necessary context information to the risk component (schema for the context information
will not be defined at this stage).

• Language bindings - Bindings for both Java and Web-services are required for the risk interface.

• Database schema - The need to define database schema to contain the identifiers for the

authentication methods available to the user will be explored.

Client Provisioning and Management Framework

• Framework for existing provisioning protocols - OATH will promote the development of a
framework for existing standard-based provisioning protocols that will enable vendors and
customers to deploy proprietary provisioning protocols for specific types of credentials and
devices.

• Standardized provisioning protocols - OATH will participate in the development of a standard

key provisioning protocol as part of the IETF KeyProv working group formed at the start of 2007.

Common Data Model

• User-store extensions - OATH will promote the definition of standard user-store extensions
such as LDAP directories.

• Token metadata – OATH will propose standard formats for OTP token metadata to support open

authentication, including the profiling of EUI-64 as a token namespace identifier. It will complete
the standardization of PSKC in the context of the IETF KeyProv working group.

OATH Reference Architecture, Release 2.0
45

9. References
[CAP04] MasterCard International Incorporated, ”Chip Authentication Program - Functional

rchitecture”, September 2004 A
[CKM_HOTP] “PKCS#11 Mechanisms for One-Time Password Tokens”, available at:
http://www.rsasecurity.com/rsalabs/node.asp?id=2818

[CTKIP] “Cryptographic Token Key Initialization Protocol”, draft 2, 14 April 2005, RSA Laboratories,
available at: ftp://ftp.rsasecurity.com/pub/otps/ctkip/ ctkipv10d2.pdf

[DHEKE] W. Diffie, M.E. Hellman, "New directions in cryptography", IEEE Trans. Inform. Theory, IT-22,
6, 1976, pp.644-654

[DLOTA] “Generic Content Download Over The Air”, approved version 1.0, 25 June 2005, Open
Mobile Alliance, available at: http://www.openmobilealliance.org/release_program/download_v10.html

[DSKPP] M. Nystrom, S. Machani, M. Pei, A. Doherty, “Dynamic Symmetric Key Provisioning Protocol”,
IETF Internet Draft, available at: http://tools.ietf.org/id/draft-doherty-keyprov-dskpp-00.txt

[DSKPP1] M. Pei, S. Machani, “Dynamic Symmetric Key Provisioning Protocol”, IETF Internet Draft,
available at: http://tools.ietf.org/id/draft-pei-keyprov-dynamic-symkey-prov-protocol-00.txt

[EUI64] “Guidelines for 64-bit global identifier (eui-64) registration authority”, IEEE, available at:
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

[GSM0348] “Security Mechanisms for the SIM application toolkit”, GSM 03.48, version 8.2.0 Release
1999, Digital cellular telecommunications system (Phase 2+)

[HOTP] D. M’Raihi et al, “HOTP: An HMAC-based One Time Password Algorithm”, available at:
http://www.ietf.org/internetdrafts/draftmraihioathhmacotp03.txt

[JAAS] “Java Authentication and Authorization Service”, available at: http://java.sun.com/products/jaas/

[LBTY] “The Liberty Alliance”, available at: http://www.projectliberty.org/

[MIDPOTA] “Mobile Information Device Profile 2.0”, JSR 118, Java Community Process, available at:
http://jcp.org/aboutJava/communityprocess/final/jsr118/

[MINA] “Multipurpose Infrastructure for Network Applications”, Apache Directory Project, available at:
http://directory.apache.org/subprojects/network/index.html

[MSCNG] “Cryptographic API: Next Generation”, Microsoft Corporation, available at:
http://msdn2.microsoft.com/en-us/library/aa376214.aspx

[OPNI] “What is OpenID?” Available at: http://openid.net/

[MSFT] “What is Windows Cardspace?” Available at: http://cardspace.netfx3.com/

[PAM] “Pluggable Authentication Module”, available at: http://www.freebsd.org/doc/en_US.ISO8859-
1/articles/pam/

OATH Reference Architecture, Release 2.0
46

[PKCS5] “Password-Based Cryptography standard”, RSA Laboratories, available at:
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2_1.pdf

[PKCS5XML] “Amendment 1: XML Schema for Password-Based Cryptography”, RSA Laboratories,
available at: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs-5v2-0a1.pdf

[PKCS11] “Cryptographic Token Interface Standard”, RSA Laboratories, available at:
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20a3.pdf

[PKCS12] “Personal Information Exchange Syntax Standard”, RSA Laboratories, available at:
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12-tc1.pdf

[PSKC] P. Hoyer, M. Pei, S. Machani, A. Vassilev, J. Martinsson, “Portable Symmetric Key Container”,
IETF Internet Draft, available at: http://tools.ietf.org/id/draft-hoyer-keyprov-portable-symmetric-key-
container-00.txt

[RFC2315] B. Kaliski, “Cryptographic Message Syntax Version 1.5”, IETF, RFC 2315, March 1998,
available at: http://www.ietf.org/rfc/rfc2315.txt

[RFC2510] C. Adams, S. Farrell, “Internet X.509 Public Key Certificate Management Protocols”, IETF,
RFC 2510, March 1999, available at: http://www.ietf.org/rfc/rfc2510.txt

[RFC2511] M. Myers, C. Adams, D. Solo, D. Kemp, “Internet X.509 Certificate Request Message
Format”, IETF, RFC 2511, March 1999, available at: http://www.ietf.org/rfc/rfc2511.txt

[RFC2616] “Hypertext Transfer Protocol – HTTP/1.1”, IETF, RFC 2616, June 1999, available at:
http://www.ietf.org/rfc/rfc2616.txt

[RFC2617] “HTTP Authentication”, IETF, RFC 2617, June 1999, available at:
http://www.ietf.org/rfc/rfc2617.txt

[RFC2630] R. Housley, "Cryptographic Message Syntax", IETF, RFC 2630, available at:
http://www.ietf.org/rfcs/rfc2630.html

[RFC2797] M. Myers, X. Liu, J. Schaad, J. Weinstein, “Certificate Management Messages over CMS”,
IETF, RFC 2797, April 2000, available at: http://www.ietf.org/rfc/rfc2797.txt

[RFC2986] M. Nystrom, B. Kaliski, “PKCS #10: Certification Request Syntax Specification, version 1.7”,
IETF, RFC 2986, November 2000, available at: http://www.ietf.org/rfcs/rfc2986.html

[SAML] “Assertions and Protocols for the OASIS Security Assertion Markup Language”, v2.0, OASIS
Standard, 15 March 2005, available at: http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[SCEP] Internet Draft, X. Liu, C. Madson, D. McGrew, A. Nourse, “Simple Certificate Enrollment
Protocol”, revised 11 Feb 2005

[SPEKE] D. Jablon, “Simple Password Exponential Key Exchange”, September 1996, available at:
http://www.jablon.org/jab96.pdf

[THRD] “How to Share Transaction Fraud (Thraud) Report Data”, M'Raihi et al, March 2007, available
at: http://www.ietf.org/internet-drafts/draft-mraihi-inch-thraud-02.txt

OATH Reference Architecture, Release 2.0
47

[TPM] “Trusted Platform Module”, Trusted Computing Group, available at:
https://www.trustedcomputinggroup.org/downloads/specifications/

[VRSN] “Consumer strong authentication, addressing deployment obstacles by enabling token sharing”,
VeriSign, Inc., available at: http://www.verisign.com/static/029726.pdf

[WSS] “Web Services Security: SOAP Message Security 1.1”, OASIS Standard Specification, February
2006, available at: http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

[XKMS] “XML Key Management Specification”, 30 March 2001, W3C, available at:
http://www.w3.org/TR/xkms/

OATH Reference Architecture, Release 2.0
48

10. Contributing members
This paper is a result of contributions from members of the OATH Technical Focus Group. The following
people were members of the OATH Technical Focus Group at the time of publication.

Amol U. Deshmukh Gemalto, Corp.
Anthony Nadalin IBM, Corp.
C Russell Swivel Secure
Dave Jevans Ironkey
David Berman VeriSign, Inc.
David M'Raihi VeriSign, Inc.
Didier Mobetie Ncryptone
Don Malloy Innovative Card Technologies
Dragoljub Nesic Thales e-Security
Eric Plet Gemalto, Corp.
Eric Vila ActivIdentity, Inc.
Ernesto Frutos Authenex
Fred McClain Boojum Mobile, Inc.
Frederic Engel Livo Technologies
Gary Chew Gemalto, Corp.
Gireesh Subramanya FNF
Graham Newton Thales e-Security
Hagai Bar-El Discretix, Inc.
Henri Quiniou Citrix Systems, Inc.
J Hamaguchi Konica Minolta
Jean-Philippe Authier Ncryptone
Jeff Bohren BMC Software, Inc.
Jim Spring Ironkey
Johan Rydell Portwise
John Stewart Signify
Jonathan Tuliani Cryptomathic
Julian Lovelock ActivIdentity, Inc.
Kevin Lewis Sandisk
Larry Hamid MXI Security
Liam Crilly Signify
Mingliang Pei VeriSign, Inc.
Ohad Ranen Aladdin Knowledge Systems
Ophir Shalitin Discretix, Inc.
Philip Hoyer ActivIdentity, Inc.
Philippe Buschini Ncryptone
Phillip Hallam-Baker VeriSign, Inc.
Rami Elron BMC Software, Inc.
Rich Skibo Spyrus
Robert Johnston Executive Events
Ron Ensh Citala
Ron LaPedis Sandisk
Salah Machani Diversinet Corp.
Sharon Boeyen Entrust, Inc.
Shiddalinganagouda Rati HP
Shuh Chang Gemalto, Corp.
Siddharth Bajaj VeriSign, Inc.
Steve Anderson BMC Software, Inc.
Steve Ryan Ironkey
Stuart Vaeth Diversinet Corp.
Sudhakar Avula Symwave

OATH Reference Architecture, Release 2.0
49

Thomas Fleury Xelios
Thomas Le Ouedec Ncryptone
Tim Moses Entrust, Inc.
Todd Inskeep Bank of America
Younghwan Kim Cluem

OATH Reference Architecture, Release 2.0
50

	1. Executive Summary
	2. Abbreviations
	3. OATH Vision and Goals
	4. Usage Scenarios
	4.1. Remote Access
	4.2. Online Banking
	4.3. Telecommuting
	4.4. Client and Business Partner Extranet
	4.5. eGovernment
	4.6. 24x7 IT Infrastructure Support
	4.7. Wireless Roaming
	4.8. Desktop Logon
	4.9. Closed network
	5. Authentication Framework
	5.1. Client Framework
	5.2. Provisioning and Management Framework
	5.3. Validation Framework
	5.4. Applications
	5.5. Authorization
	5.6. User Store
	5.7. Policy Store
	5.8. Audit Store
	5.9. Authentication and Identity Sharing
	5.10. Risk evaluation and sharing

	6. OATH Reference Architecture
	6.1. Client Framework
	6.1.1. High-Level Architecture
	6.1.2. Salient Features
	6.1.3. Authentication Methods
	Existing Standards and Technologies
	OATH Focus Areas

	6.1.4. Authentication Tokens
	Existing Token Types
	OATH Focus Areas

	6.1.5. Token Interface
	Existing Standards and Technologies
	OATH Focus Areas

	6.1.6. Authentication Protocols
	Existing Standards and Technologies
	OATH Focus Areas

	6.2. Validation Framework
	6.2.1. High-Level Architecture
	6.2.2. Salient Features
	6.2.3. Existing Standards and Technologies
	Existing Validation Protocols
	Existing Authentication and Validation Interfaces
	Existing Protocol Handler Frameworks

	6.2.4. OATH Focus Areas

	6.3. Risk evaluation and sharing framework
	6.3.1. High-level architecture
	6.3.2. Salient features
	6.3.3. Existing Standards and Technologies
	6.3.4. OATH Focus Areas

	6.4. Provisioning and Management Framework
	6.4.1. High-Level Architecture
	The Provisioning Client Application
	The Provisioning Server

	6.4.2. Salient Features
	6.4.3. Existing Standards and Technologies
	Existing Credential Provisioning Protocols
	Existing Software Provisioning Protocols

	6.4.4. OATH Focus Areas

	6.5. Common Data Model
	6.5.1. Existing Standards and Technologies
	6.5.2. OATH Focus Areas

	6.6. Authentication and Identity Sharing
	6.6.1. Authentication Sharing
	Models
	Centralized Token Service Model
	Distributed Validation Model
	Credential Wallet
	OATH Focus Areas

	6.6.2. Identity Sharing
	6.6.3. Traditional Federated Identity
	6.6.4. User-centric Identity Sharing
	6.6.5. OATH Focus Areas

	7. Example Deployment Scenario
	8. Summary of OATH Focus Areas
	9. References
	10. Contributing members

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

